Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki. Po zakończeniu zajęć proszę usunąć swój katalog z dysku twardego (ewentualnie wcześniej skopiować swoje pliki na własny nośnik lub konto mailowe, itp.) Do wykonania ćwiczeń należy ściągnąć ze strony plik excel_cw3.xls. Zadanie 1 Amortyzacja środków trwałych Amortyzacja - proces utraty wartości majątku trwałego, wywołany jego zużyciem fizycznym - powstałym w skutek eksploatacji oraz ekonomicznym (moralnym) - będącym wynikiem postępu technicznego, związanego z możliwością uzyskania na rynku np. maszyn, urządzeń bardziej wydajnych, tańszych w eksploatacji, pozwalających uzyskać produkty lepszej jakości. Ta utrata wartości jest przenoszona na wartość produktów wytworzonych przy wykorzystaniu amortyzowanego majątku trwałego. Funkcja SLN Funkcja SLN oblicza wartość amortyzacji liniowej środka trwałego dla jednego okresu. Składnia funkcji jest następująca: SLN(koszt; odzysk; czas_życia) gdzie koszt to koszt początkowy środka trwałego, odzysk to wartość środka trwałego po zakończeniu okresu amortyzacji (argument ten nazywany jest nieraz wartością odzyskaną środka trwałego) a czas_życia to liczba okresów, w których środek trwały jest amortyzowany (argument ten nazywany jest nieraz czasem użytkowania środka trwałego). Wszystkie trzy parametry są wymagane. Funkcja DB Funkcja DB oblicza amortyzację środka trwałego w podanym okresie, obliczoną z wykorzystaniem metody równomiernie malejącego salda. Składnia funkcji jest następująca: DB(koszt;odzysk;czas_życia;okres;miesiąc) Pierwsze trzy parametry są identyczne jak w przypadku funkcji SLN. Argument okres to okres, dla którego zostanie obliczona amortyzacja. Argument okres musi być wyrażony w tych samych jednostkach, co argument czas_życia. Pierwsze cztery argumenty funkcji są wymagane, natomiast miesiąc (parametr opcjonalny) to liczba miesięcy w pierwszym roku. Jeżeli argument zostanie pominięty, przyjmowana jest liczba miesięcy równa 12. Funkcja DDB Funkcja DDB oblicza amortyzację środka trwałego w podanym okresie, obliczoną przy użyciu metody podwójnie malejącego salda lub innej metody określonej przez użytkownika. Składnia funkcji jest następująca: DDB(koszt;odzysk;czas_życia;okres;współczynnik) Znaczenie pierwszych czterech argumentów jest identyczne jak w przypadku funkcji DB; wszystkie cztery argumenty są wymagane. Ostatni argument, współczynnik, to szybkość
zmniejszania się salda. Jeżeli współczynnik ten zostanie pominięty, to zakłada się, że wynosi 2 (metoda podwójnie malejącego salda). Funkcja SYD Funkcja SYD oblicza amortyzację środka trwałego w podanym okresie metodą sumy cyfr wszystkich lat amortyzacji. Składnia funkcji jest następująca: SYD(koszt;odzysk;czas_życia;okres) Znaczenie argumentów jest identyczne jak w przypadku funkcji DB i DDB; wszystkie cztery argumenty są wymagane. a) Za pomocą metody liniowej obliczyć wartość amortyzacji środka trwałego o koszcie początkowym 10000 zł, wartości odzyskanej 1000 zł, jeżeli czas użytkowania wynosi 4 lata. b) Za pomocą metody równomiernie malejącego salda obliczyć wartość amortyzacji maszyny o koszcie początkowym 55000, wartości odzyskanej 6000 zł, w 2 roku amortyzacji, jeżeli czas użytkowania wynosi 4 lata przyjmując, że w pierwszym roku maszyna była wykorzystywana przez 5 miesięcy. c) Za pomocą metody podwójnie malejącego salda obliczyć amorytzację samochodu o koszcie 75000 zł, którego wartość odzyskana wynosi 25000 w 3 roku amortyzacji, jeżeli czas użytkowania wynosi 5 lat. Przeprowadzić też te same obliczenia dla metody ze współczynnikiem = 1,5. d) Za pomocą metody sumy cyfr wszystkich lat amortyzacji obliczyć wartość amortyzacji maszyny o koszcie początkowym 15000, wartości odzyskanej 1000 zł, w 1 roku amortyzacji, jeżeli czas użytkowania wynosi 4 lata. Zadanie 2 Przedstaw na arkuszu schemat spłaty kredytu zgodnie z przyjętymi założeniami: wielkość kredytu 12 000 zł okres spłaty 1 rok oprocentowanie nominalne wynosi 11% rocznie spłata kredytu w 12 miesięcznych ratach, kapitał + odsetki
Miesiąc Kapitał do spłacenia Rata kapitałowa Należne odsetki Kwota spłaty 1 12 000,00 zł 2 3 4 5 6 7 8 9 10 11 12 Razem x - zł - zł - zł Oprocentowanie 11% a) Dla kredytu z zadania oblicz odsetki za wszystkie okresy spłaty kredytu wstawiając funkcję Excela. Wykonuj po kolei polecenia: W okienku kategorii wybierz Finansowe/ Nazwa funkcji: IPMT / OK. b) Dla kredytu z zadania 1 oblicz spłatę kapitału za wszystkie okresy spłaty kredytu wstawiając funkcję Excela. Wykonuj po kolei polecenia: W okienku kategorii wybierz Finansowe/ Nazwa funkcji: PPMT / OK. c) Dla kredytu z zadania 1 oblicz spłatę pożyczki za 1 wstawiając funkcję Excela. Wykonuj po kolei polecenia: W okienku kategorii wybierz Finansowe/ Nazwa funkcji: PMT / OK. Objaśnienia: Podaj stopę procentową obliczoną dla danego okresu (miesiąca, kwartału) czyli oprocentowanie / liczbę rat w roku dla miesiąca wpisz np. 20% / 12 dla kwartału 21% / 4 Okres oznacza kolejny miesiąc lub kwartał spłaty, wpisz 1 Podaj liczbę rat dla całego okresu spłaty kredytu (12, 24, 16) Wa oznacza wartość początkową kredytu Wp i Typ można pominąć. Oznaczają one:
WP - wartość końcową w naszym przypadku 0 (kredyt spłacamy do końca) Typ = 0 oznacza ratę płatną z dołu, za miniony miesiąc, Typ = 1 oznacza ratę płatną z góry, na początku miesiąca lub kwartału Zadanie 3 Funkcja FV Funkcja FV oblicza przyszłą wartość lokaty przy założeniu stałych płatności (rata wartość ujemna), danej wartości początkowej (wa wartość ujemna) i stałej stopie procentowej (stopa roczna). =FV(stopa; liczba_rat; rata; wa; typ) Zadania: a. Obliczyć ile będzie pieniędzy na rachunku po 12 miesiącach, jeżeli wkład początkowy wynosi 1000 zł, co miesiąc wpłacamy 100 zł a oprocentowanie w stosunku rocznym 6%. Kapitalizacja odsetek następuje co miesiąc. b. Bank oferuje następujące usługi: c. lokatę miesięczną przy oprocentowaniu 28% w stosunku rocznym d. lokatę kwartalną przy oprocentowaniu 30% w stosunku rocznym Dysponujemy kwotą 2 000 zł, gdzie korzystniej umieścić te pieniądze na 2 lata? Zadanie 4 Funkcja PV Funkcja PV oblicza wartość bieżącą przyszłych płatności, przy założeniu stałych płatności i stałej stopie procentowej. Składnia formuły tej funkcji ma następującą postać: =PV(stopa; liczba_rat; rata; wp; typ) Stopa stopa procentowa Liczba_rat całkowita liczba płatności i kapitalizacji Rata okresowa wpłata nie ulegająca zmianie w czasie (ujemna) Wp wartość końcowa Typ - to cyfra 0 lub 1 wskazująca, kiedy płatność ma miejsce (0 na końcu okresu, 1- na początku okresu) a) obliczyć jaką kwotę trzeba zdeponować, aby po 3 latach zgromadzić 20000 zł, jeżeli kapitalizacja następuje co miesiąc, a oprocentowanie wynosi 8% w skali roku b) obliczyć jaką kwotę trzeba zdeponować, aby po 2 latach zgromadzić 10000 zł, jeżeli kapitalizacja następuje co kwartał, a oprocentowanie wynosi 6% w skali roku c) obliczyć ile należy wpłacić do banku, aby uzyskać po 20 latach 100000 zł. Oprocentowanie wynosi 10% w stosunku rocznym, kapitalizacja co roku. Zadanie 5 Funkcja RATE RATE(liczba rat; rata; wa; wp; typ; przypuszczenie) oblicza, jaka powinna być stopa procentowa, aby lokata początkowa oraz seria płatności osiągnęły przez dany okres wartość końcową. a) Wpłacamy kwotę 1000 zł na konto i zamierzamy wpłacać miesięcznie po 100 zł. Po roku na koncie jest 2284,16 zł. Jakie jest roczne oprocentowanie konta? b) Bank udziela pożyczki w wysokości 1000 zł na 4 lata, z miesięczną ratą 30 zł, po upływie których otrzymuje 3191,74 zł. Jakie jest oprocentowanie roczne tej pożyczki?
Zadanie 6 Funkcja NPER NPER(stopa;rata;wa;wp;typ) oblicza liczbę spłat kredytu przy okresowych stałych wpłatach i stałej stopie procentowej. a) Przez ile miesięcy trzeba wpłacać do banku po 300 zł, aby zaoszczędzić kwotę 18000 zł, jeśli wkłady są oprocentowane na 7% w skali roku? b) Bank udziela pożyczki w wysokości 1000 zł z oprocentowaniem rocznym 10%. Po jakim czasie wpłacimy do banku 3000 zł, jeżeli co miesiąc będziemy wpłacać 200 zł