PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
Tematyka wykładu 1 ES tarczowe dla UP Najprostszy ES tarczowy CST ES tarczowy Q4 ES wyższych rzędów 2 ES płytowy czterowęzłowy 3 Podsumowanie i klasyfikacja ES dla UP ES elementy skończone UP ustroje powierzchniowe
Najprostszy ES tarczowy CST Najprostszy ES tarczowy CST trójkątny, 3-węzłowy Y v1 3 v3 u3 Liczba stopni swobody węzła: LSSW = 2 Liczba węzłów elementu: LWE = 3 Liczba stopni swobody elementu: LSSE = LSSW LWE = 6 1 u1 2 v2 u2 X Wektory przemieszczeń węzła i elementu: q w = {u w, v w } T q e n = {u 1, v 1 u 2, v 2 u 3, v 3 } T dla w = 1,..., LWE, e = 1,..., LE Do aproksymacji obu przemieszczeń u i v używane są biliniowe funkcje kształtu N i, i = 1, 2, 3: u n (2 1) = Nn (2 6) qe n (6 1) CST Constant Strain Triangle
Najprostszy ES tarczowy CST Najprostszy ES tarczowy CST trójkątny, 3-węzłowy u n = N n q e n [ N e N e = 1 0 N2 e 0 N3 e 0 0 N1 e 0 N2 e 0 N3 e N 1(x e, y e ) 1 1 x e 2 3 y e N 2(x e, y e ) 1 x e 1 ], q e = 2 q 1 q 2 q 3 q 4 q 5 q 6 3 y e Ogólne właściwości funkcji kształtu: N i = 1 w węźle i 0 w pozostałych węzłach LWE i=1 N i = 1 N 3(x e, y e ) 1 x e 2 3 1 y e
ES tarczowy Q4 ES tarczowy Q4 prostokątny, 4-węzłowy b u 4 u 1 v 4 v 1 Y η = 2 y/b 4 3 1 2 a v 3 u 3 ξ = 2 x/a X u 2 v 2 Liczba stopni swobody węzła: LSSW = 2 Liczba węzłów elementu: LWE = 4 Liczba stopni swobody elementu: LSSE = LSSW LWE = 8 Wektory przemieszczeń węzła i elementu: q w = {u w, v w } T q e n = {u 1, v 1 u 2, v 2 u 3, v 3 u 4, v 4 } T dla w = 1,..., LWE, e = 1,..., LE Do aproksymacji obu przemieszczeń u(ξ, η) i v(ξ, η) używane są funkcje kształtu N i (ξ, η), i = 1, 2, 3, 4, biliniowe (liniowe względem dwu bezwymiarowych unormowanych współrzędnych ξ, η [ 1, +1]): u n (ξ, η) (2 1) = {u(ξ, η), v(ξ, η)} = N n (2 8) qe (8 1) n u(ξ, η) = N 1 u 1 + N 2 u 2 + N 3 u 3 + N 4 u 4 v(ξ, η) = N 1 v 1 + N 2 v 2 + N 3 v 3 + N 4 v 4
ES tarczowe dla UP ES płytowy czterowęzłowy Podsumowanie i klasyfikacja ES dla UP ES tarczowy Q4 Biliniowe funkcje kształtu dla ES tarczowego 4-węzłowego N1 = 14 (1 ξ)(1 η) N2 = 14 (1 + ξ)(1 η) N3 = 14 (1 + ξ)(1 + η) N4 = 14 (1 ξ)(1 + η)
ES tarczowy Q4 Bazowy element wzorcowy dla elementu Q4 Część obliczeń wykonywana jest na elemencie wzorcowym, np. wyznaczanie macierzy pochodnych funkcji kształtu: B = L N. Element wzorcowy: ξ, η [ 1, 1] [ ξ η { x, y = J [ x y } { ξ, η Macierz ] Jacobiego - relacja między pochodnymi ] [ x y ξ ξ, gdzie: J = x η } y η ]
ES tarczowy Q4 Wektor zastępników obciążeń powierzchniowych Wektor obciążeń powierzchniowych: Macierz funkcji kształtu: ˆp n e = {ˆp x, ˆp y } T [ ] N n (2 8) = N1 0 N 2 0 N 3 0 N 4 0 0 N 1 0 N 2 0 N 3 0 N 4 Wektor zastępników węzłowych obciążeń powierzchniowych: f(8 1) n e = N n (8 2) et ˆpn (2 1) e da A e Gdy fragment brzegu A e leży na brzegu obszaru A σ, to podobnie obliczamy wektor zastępników węzłowych obciążeń brzegowych f n e b(8 1).
ES tarczowy Q4 Macierz sztywności tarczowego ES 4-węzłowego Macierz sztywności: k e (8 8) n = B nt (8 3) Dn (3 3) Bn (3 8) da A e Macierz związków kinematycznych: N 1 B n x 0... (3 8) = N 0 1 y... 0 N 1 N 1 y x... N 4 x 0 N 4 y N 4 N 4 y x Macierz związków fizycznych: D n (3 3) = Dn 1 ν 0 ν 1 0 1 ν 0 0 2 Sztywność tarczowa: D n = E h 1 ν 2
ES wyższych rzędów ES izoparametryczne Aproksymacja geometrii: P Ω e : x P (ξ, η) = N(ξ, η) x e, gdzie: x i y i [ ] x j xp x P =, x y e = y j P x k y k x l y l ES jest izoparametryczny jeśli do aproksymacji geometrii i pola przemieszczeń wykorzystujemy te same węzły i te same funkcje kształtu. x(ξ, η) = N(ξ, η) x e u(ξ, η) = N(ξ, η) q e
ES wyższych rzędów ES wyższych rzędów tarczowe Typ: LST Q8 Q9 6 1 3 4 7 3 4 7 5 6 9 8 8 4 2 2 1 5 1 5 LSSE = 12 LSSE = 16 LSSE = 18 3 6 2 Wzrastająca liczba węzłów podwyższa stopień wielomianu interpolacyjnego do opisu geometrii i pola przemieszczeń.
ES wyższych rzędów Trójkąt Pascala Q9 Q4 1 x y CST x 2 x y y 2 x 3 x 2 y x y 2 y 3 x 2 y 2 Q8 LST
ES wyższych rzędów Całkowanie numeryczne ES Kwadratura Gaussa 1 1 k e = B T DB h da = B(ξ, η) T D B(ξ, η) h det J dξdη A e 1 1 n m w i w j B T (i,j) D B (i,j) h det J (i,j) i=1 j=1 Całkowanie Q4 Q8 pełne (FI) zredukowane (RI)
ES płytowy dla płyt cienkich prostokątny, 4-węzłowy, dostosowany LSSW = 4 LWE = 4 LSSE = LSSW LWE = 16 Aproksymacji wewnątrz ES podlega funkcja ugięcia w(x, y) z użyciem następującego wektora węzłowych i elementowych SS: q m w(4 1) = {w, ϕ x, ϕ y, χ} T w = {w, w/ y, w/ x, 2 w/ x y} T w q e m (16 1) = {w 1, ϕ x1, ϕ y1, χ 1.........χ 4 } T
Aproksymacja pola ugięcia Bezwymiarowe współrzędne powierzchniowe ξ = 2 ( x a ) 1, η = 2 ( y b ) 1 Wielomianowa aproksymacja: w(ξ, η) = (α 1 + α 2 ξ + α 3 ξ 2 + α 4 ξ 3 )(β 1 + β 2 η + β 3 η 2 + β 4 η 3 ) = C 1 + C 2 ξ + C 3 η + C 4 ξ 2 + C 5 ξη + C 6 η 2 + C 7 ξ 3 + C 8 ξ 2 η + C 9 ξη 2 + C 10 η 3 + C 11 ξ 3 η + C 12 ξ 2 η 2 + C 13 ξη 3 + C 14 ξ 3 η 2 + C 15 ξ 2 η 3 + C 16 ξ 3 η 3 w(ξ, η) = N m m (1 16)(ξ, η) qe (16 1) = = {N1 1, N2 1, N3 1, N4 1, N1 2......... N4 4 } {w 1, ϕ x1, ϕ y1, χ 1 w 2......... χ 4 } T
ES tarczowe dla UP ES płytowy czterowęzłowy Podsumowanie i klasyfikacja ES dla UP Bisześcienne funkcje kształtu dla pierwszego węzła elementu płytowego, 4-wezłowego (bazowego) N11 odpowiadająca w1 N12 odpowiadająca ϕx1 N13 odpowiadająca ϕy 1 N14 odpowiadająca χ1
Aproksymacja pól wtórnych Pola odkształceń i momentów Odkształcenia: e m = [3 1] [3 1] Lm N [1 16] qe [16 1] = B e [3 16] qe = [16 1] = {B 1, B 2, B 3, B 4 } {q 1, q 2, q 3, q 4 } T B i = L m N i = [3 4] [3 1][1 4] 2 / x 2 2 / y 2 2 2 / x y [ N 1 i N 2 i N 3 i N 4 i ] Momenty zginające: s m = [3 1] [3 3] Dm [3 1] em = [3 3] Dm [3 16] Be qe [16 1]
Macierz sztywności płytowego ES 4-węzłowego Macierz sztywności: k e (16 16) m = B mt (16 3) Dm (3 3) Bm (3 16) da A e Macierz związków kinematycznych: B m (3 16) = Macierz związków fizycznych: 2 N 1 1 x 2 N 2 2 1 x 2 N 3 2 1 x 2 N 4 2 1 x... 2 N 4 2 4 x 2 2 N 1 1 y 2 N 2 2 1 y 2 N 3 2 1 y 2 N 4 2 1 y... 2 N 4 2 4 y 2 2 2 N 1 1 x y 2 2 N 2 1 x y 2 2 N 3 1 x y 2 2 N 4 1 x y... 2 2 N 4 4 x y D m (3 3) = Dm Sztywność płytowa: D m = Eh3 12(1 ν 2 ) 1 ν 0 ν 1 0 1 ν 0 0 2
ES płytowe dostosowane i niedostosowane Elementy dostosowane mają zapewnioną ciągłość funkcji ugięcia wb e=1 = wb e=2 i ciągłość pochodnych normalnej ( ) w e=1 n = ( ) w e=2 b n i stycznej ( ) w e=1 b s = ( ) w e=2 b s. b Elementy niedostosowane mają zapewnioną ciągłość funkcji ugięcia wb e=1 = wb e=2 i pochodnej stycznej ( w s ) e=1 b = ( w s ) e=2 b. 1 2 Dla elementów niedostosowanych powierzchnia w(x, y) nie jest gładka, a załomy na styku elementów mogą prowadzić w konsekwencji do rozwiązania odpowiadającego bardziej wiotkiej konstrukcji.
Diagram zależności P P 0 E U P P 0 E U σ E +h/2...z dz h/2 (Lm ) T s m ˆp = {ˆp z } D m ( ) N A fp e F K k e Q=F ɛ z e m L m u = {w} N q e A 1 Q ( ) oznacza [( L m ) T D m ( L m )]u m ˆp = 0 A oznacza symbol agregacji, A 1 oznacza powrót z U do E
Niekorzystne kształty ES Duża wartość współczynnika wydłużenia (aspect ratio) a a b b b h h b b α β a Prawie trójkąt: a b Trójkątny czworobok Ukosowanie: α β Położenie węzłów (off-center node) Silnie zakrzywiony brzeg
Wymagania dla powierzchniowych ES ES dla UP powinny: spełniać warunek geometrycznej izotropii, który wymaga równouprawnienia kierunków x i y (stosujemy tą samą aproksymację w każdym kierunku), mieć zdolność do zreprodukowania stanów stałych odkształceń oraz bezodkształceniowego ruchu sztywnego, zachować ciągłość na granicach międzyelementowych, posiadać odpowiedni stopień wielomianu interpolacyjnego do aproksymacji pola przemieszczeń i odkształceń (!).
Klasa ciągłości ES tarczowych i płytowych Tarczowe ES CST i Q4 Stosujemy biliniowe funkcje kształtu do aproksymacji pola przemieszczeń. Zapewniamy ciągłość pola przemieszczeń u klasy C 0. Pole odkształceń stanu membranowego jest opisane pochodnymi cząstkowymi rzędu p = 1. Wymagana jest ciągłość pochodnych przemieszczeń rzędu p 1 = 0. W konsekwencji na granicach międzyelementowych występują skoki wartości składowych wektora odkształcenia (naprężenia) ciągłość klasy C 1. Płytowe ES czterowęzłowe dostosowane Stosujemy bisześcienne funkcje kształtu do aproksymacji pola przemieszczeń (ugięcia). Pole odkształceń stanu giętnego jest opisane pochodnymi cząstkowymi rzędu p = 2. Wymagana jest ciągłość pochodnych ugięcia rzędu p 1 = 1. Ciągłość C 1 (ciągłość ugięcia i ciągłość pierwszych pochodnych) gwarantuje się w ES dostosowanych.
Charakter stanu, jaki panuje w ES Rozróżnia się trzy typowe stany: 1 stan membranowy rozpatrywany w powłokach, analogiczny do tarczowego w niezakrzywionych UP, czyli w tarczach, oznaczony indeksem n, 2 stan giętny, któremu towarzyszą w cienkich płytach i powłokach zerowe odkształcenia poprzecznego ścinania, oznaczony indeksem m, 3 stan poprzecznego ścinania, konieczny do uwzględnienia w zginanych ustrojach powierzchniowych umiarkowanie grubych, oznaczony indeksem t (nie był omawiany).
Klasyfikacja ES ze względu na analizowane zadania Wyróżniamy typy ES: dla tarcz (płaskiego stanu naprężenia), dla zginanych płyt cienkich oparte na jednoparametrowej teorii Kirchhoffa-Love a (K-L), dla zginanych płyt umiarkowanie grubych oparte na trójparametrowej teorii płyt Mindlina-Reissnera (M-R), dla zakrzywionych powłok oparte na trójparametrowej teorii powłok cienkich K-L, dla zakrzywionych powłok oparte na pięcioparametrowej teorii powłok umiarkowanie grubych M-R, powłokowe, tzw. zdegenerowane, oparte na równaniach kontinuum 3D, zmodyfikowanych hipotezami powłokowymi, spójne z pięcioparametrową teorią powłok cienkich i umiarkowanie grubych M-R, ES bryłowe do dyskretyzacji powłok grubych, korzystające z równań kontinuum 3D.
Literatura M. Radwańska. Ustroje powierzchniowe. Podstawy teoretyczne oraz rozwiązania analityczne i numeryczne. Skrypt PK, Kraków, 2009. A. Borkowski, Cz. Cichoń, M. Radwańska, A. Sawczuk, Z. Waszczyszyn. Mechanika budowli. Ujęcie komputerowe. T.3, rozdz.9, Arkady, Warszwa, 1995. Cz. Cichoń, W. Cecot, J.Krok, P. Pluciński. Metody komputerowe w liniowej mechanice konstrukcji. Wybrane zagadnienia. Skrypt PK, wydanie 2, Kraków, 2010. G. Rakowski, Z. Kacprzyk. Metoda elementow skończonych w mechanice konstrukcji. Oficyna Wyd. PW, Warszawa, 2005. R.D. Cook, D.S. Malkus, M.E. Plesha, R.J Witt. Concepts and Applications of Finite Element Analysis. University of Wisconsin Madison, John Wiley&Sons, 2002. O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. VI edition, Elsevier Butterworth Heineman, 2005.