. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki ośrodk ciągłego. Istnieje wiele rodzjów urządzeń służących do pomiru brdzo młych wrtości wydłużeni. Przy jego wyborze nleży się kierowć wielom przesłnkmi: czytelnością odczytu łtwością montżu/zstosowni czułością dokłdnością i precyzją pomirową potrzebą szkoleni obsługi technicznej powtrzlnością wyników zkresem pomirowym rozmirem urządzeni częstością odpowiedzi. Poz czysto mechnicznymi czujnikmi, wiele innych zjwisk fizycznych jest wykorzystywnych do zwielokrotnieni mierzonych wrtości wydłużeni. Njczęściej są to: zminy oporności, pol mgnetycznego, indukcji pol, pojemności, ciśnieni powietrz ukłdy optyczne fotoogniw potencjometry ogniw węglowe Czujniki mechniczne Są to urządzeni znne głównie jko ekstensometry, gdyż używne są do pomirów wydłużeni przy stłym lub wolno zmiennym obciążeniu. Czujniki zegrowe Rys.1 Czujnik zegrowy i jego schemt
Czujniki zegrowe używne są głównie jko ekstensometry i ugięciomierze, ich typowe przełożenie jest 100-krotne. Przesuw pionowy trzpieni czujnik przekzywny jest poprzez zębtkę n przekłdnię zębtą, skłdjącą się z 5 kółek. Pry współprcujących kółek zpewniją przełożeni po i = 4.6. Sprężyn przy wskzówce dję stłą siłę ncisku trzpieni n belkę. Proste czujniki wydłużeni Zsdniczym elementem prostych czujników wydłużeni są dw ostrz nożowe. Dociskne są do bdnej próbki w określonej odległości od siebie, zwnej bzą pomirową tensometru. Gdy próbk jest rozciągn, również odległość między ostrzmi zmieni się. T niewielk zmin odległości jest powiększn poprzez mechniczne dźwignie lbo różne ukłdy optyczne w wyniku czego otrzymuje się czytelną wrtość wydłużeni n odpowiednio sklibrownej skli. Njprostsze wzmocnienie uzyskuje się przez użycie dźwigni, jk to m miejsce w tensometrze Berry ego, rys.. Innym prostym tensometrem jest tensometr Mrtens-Kennedy ego, rys.3. Czujnik Tuckermn dził podobnie, gdzie zmist mechnicznego przełożeni użyt jest optyk, rys. 4. Rys. Tensometr Berry ego
Rys. 3 Tensometr Mrtens-Kennedy ego Rys. 4 Tensometr Tuckermn
Tensometr Huggenberger Jest to tensometr o krótkiej bzie pomirowej (od 10 do 0 milimetrów, któr może być powiększn z pomocą przedłużki do 100 mm) i złożonym ukłdzie dźwigni djącym 100-krotne przełożenie. Rys. 5 Tensometr Huggenberger Powiększenie może być określone n podstwie proporcji długości rmion: l1 l i = 1 minimln wrtość odksztłceni odczytywn ze wzoru: lt ε =, il g gdzie l t i l g są odpowiednio długością podziłki i bzą pomirową. Inne czujniki mechniczne Czujnik pneumtyczny, rys. 6, wzmcni sygnł wydłużeni poprzez zminę ciśnieni w knłch wypływu. Historycznie pierwszym czujnikiem wydłużeni był tensometr strunowy, w którym wykorzystuje się zjwisko zminy częstości drgń struny przy zminie siły jej nciągu (zminie odksztłceni). Zleżność pomiędzy różnicą kwdrtów częstości i odksztłceniem jest prwie liniow: ε C( f f1 ). Obecnie czujniki tkie używne są często w bdnich geotechnicznych, gdzie stosunkowo duż bz pomirow urządzeni jest zletą nie jego wdą.
Rys. 6 Czujnik pneumtyczny Ćwiczeni z użyciem tensometrii mechnicznej Pomir modułu Young tensometrem Huggenberger moment zginjący jest w przęśle stły sił poprzeczn jest równ zero - jest to więc proste zginnie = tensometr Huggenberger h σ = b W l l0 ε = l 0 σ l0 6l0 E = = = ε W l0 bh l0 Mierząc tensometrem przyrosty długości bzy pomirowej dl odpowidjących im przyrostów obciążeni, możemy z powyższego wzoru wyznczyć moduł Young. Położenie tensometru n przęśle belki jest dowolne - ni nprężeni ni odksztłceni skrjnych włókien nie zleżą od wyboru przekroju. Przeprowdzenie pomiru: pomir geometrii belki:, l, b, h, zmocownie tensometru i wyzerownie go, wykonnie odczytów dl rosnącego obciążeni (wg szlki 3 kg, przyrosty obciążeni kg), wykonnie obliczeń z uwzględnieniem rozrzutu sttystycznego. Tbelk obliczeń = kg = x9.81 N
l.p. odczyt Hugg. l 0, m 1 0 1 10-6 1 10-6 3 3 9 Adm Pweł Zborski l 0 śr =K średni wrtość ( ) średni wrtość E E ( l ) ś r [ śr] = 0 odchylenie średnie l 0, S l0 =K odchylenie średnie E, S E l = 6 0 bh ( l ) 0 śr S l0 SE SE przedził ufności = t( n 1) α =. 365 = K n 8 gdzie współczynnik rozkłdu t-student.365 odpowid 8 różnicom pomierzonych wrtości dl poziomu ufności 95%. Ostteczny wynik: E = Eśr ± E, GP. l Pomir modułu Young ugięciomierzmi Dl zginni prostego zleżność między promieniem krzywizny (drugą pochodną ugięć) momentem zginjącym m postć: w''( x) = EJ y x Po scłkowniu, mmy: w( x) = + C1x + C. EJ Z wrunków kinemtycznych widomo, że w( 0) = w( l) = 0, skąd C Osttecznie: w( x) = EJ x ( x l ). y y l =, C = 0. EJ 1 y Jk widć, ugięci zleżą od zmiennej x, czyli od wyboru przekroju pomirowego. Obliczeni czujniki mocujemy w jednkowej odległości od podpór. Tbelk obliczeń powinn zwierć: odczyty obu zmontownych czujników zegrowych orz różnice między kolejnymi pomirmi n dnym czujniku. Oprcownie sttystyczne wyników przeprowdzmy dl końcowego wzoru: c( l c) E =, GP bh w podjąc wynik w postci: E = Eśr ± E. b h 3 1