Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie stałej dysocjacji kwasu mlekowego metodą potencjometryczną

Wielkość: px
Rozpocząć pokaz od strony:

Download "Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie stałej dysocjacji kwasu mlekowego metodą potencjometryczną"

Transkrypt

1 Ktedr Chemii Fizycznej Uniwersytetu Łódzkiego Wyzncznie stłej dysocjcji kwsu mlekowego metodą potencjometryczną opiekun ćwiczeni: dr K. Kublczyk ćwiczenie nr 12 Zkres zgdnień obowiązujących do ćwiczeni 1. Definicj kwsów i zsd. 2. Równowgi kwsowo-zsdowe. 3. Rol rozpuszczlnik w procesie dysocjcji. 4. Pomir ph roztworu. 5. Budow i zsd dziłni elektrod odwrclnych względem jonów wodorowych orz elektrod odniesieni. Litertur 1. Prc zbiorow pod red. Woźnickiej J. i Piekrskiego H. Ćwiczeni lbortoryjne z chemii fizycznej, Wydwnictwo UŁ, Łódź Libuś W., Libuś Z., Elektrochemi, PWN, Wrszw Prc zbiorow pod red. Bielńskiego A., Chemi fizyczn, PWN, Wrszw Sobczyk L., Kisz A., Gtner K., Koll A., Eksperymentln chemi fizyczn, PWN, Wrszw Sobczyk L., Kisz A., Chemi fizyczn dl przyrodników, PWN, Wrszw Kisz A., Elektrochemi I, WNT, Wrszw Atkins P. W., Chemi fizyczn, Wydwnictwo Nukowe PWN, Wrszw Minczewski J., Mrczenko Z., Chemi nlityczn, t. 3, PWN, Wrszw Oprcownie ćwiczeni: dr A. Piekrsk

2 Celem ćwiczeni jest wyznczenie stłej dysocjcji kwsu mlekowego metodą potencjometryczną Ukłd pomirowy Do pomiru ph bdnego roztworu stosowny jest pehmetr typu N 5170E, zoptrzony w elektrodę kombinowną typu OSH orz czujnik tempertury. Odczynniki chemiczne i sprzęt lbortoryjny: kws mlekowy (0,01 mol dm -3 ), NOH (0,05 mol dm -3 ), bufor (N 2 HPO 4 C 6 H 8 O 7 H 2 O) o ph = 3,00±0,05, biuret utomtyczn, 2 zlewki (100 cm 3 ) i (150 cm 3 ), mieszdło mgnetyczne, pipet (25 cm 3 ), gruszk gumow, tryskwk z wodą destylowną. Wykonnie ćwiczeni i przedstwienie wyników pomirów 1. Włączyć pehmetr do sieci. 2. Zlewkę o pojemności 100 cm 3 npełnić roztworem buforowym o wrtości ph = Elektrodę pomirową wyjąć ze zlewki z wodą destylowną, osuszyć z pomocą bibuły, nstępnie znurzyć w zlewce z buforem. 4. Uruchomić pehmetr wyłącznikiem znjdującym się n prwej bocznej ścince przyrządu. Ustwić przełącznik zkresu pomirowego n pomir ph Pokrętłem klibrcj ustwić n skli przyrządu wrtość ph odpowidjącą wrtości ph roztworu buforowego, czyli ph = Do zlewki o pojemności 150 cm 3 odmierzyć dokłdnie z pomocą pipety 75 cm 3 roztworu kwsu mlekowego o stężeniu 0,01 mol dm Przenieść elektrodę pomirową do zlewki z roztworem kwsu mlekowego. Mireczkownie wstępne 8. Wykonć mireczkownie wstępne bdnego roztworu. W tym celu roztwór kwsu mlekowego mireczkowć roztworem NOH o stężeniu c = 0,05 mol dm -3, dodjąc kżdorzowo po 1,0 cm 3 zsdy. Po dokłdnym wymieszniu roztworu odczytć wrtość jego ph n skli pehmetru. Mireczkownie zkończyć, gdy ph roztworu osiągnie wrtość 11,5. N podstwie uzysknych dnych lub wykonnego odręcznie wykresu, ocenić zkres ph w pobliżu punktu równowżnikowego. 2

3 Mireczkownie dokłdne 9. Mireczkownie kwsu wykonć ponownie w tki sposób, by uzyskć duże zgęszczenie pomirów n łukch krzywej mireczkowni orz w pobliżu punktu równowżnikowego. W tym celu roztwór NOH nleży początkowo dodwć po 0,5cm 3, w pobliżu punktu końcowego mireczkowni po 0,1cm Po zkończeniu ćwiczeni przemywć elektrodę wodą destylowną ż do osiągnięci wrtości ph = 7, nstępnie umieścić ją w zlewce z wodą destylowną. Tbel wyników V NOH [cm 3 ] 0 0,5 1 1,5 ph ph V [cm 3 ] ph/ V [cm -3 ] Oprcownie i dyskusj wyników pomirów Metod grficzn uzyskni stłej dysocjcji kwsu mlekowego ( p K ) grf 1. Sporządzić wykres zleżności ph = f(v NOH ) krzyw cłkow. 2. Wyznczyć punkt końcowy mireczkowni metodą pierwszej pochodnej, tzn. wykreślić funkcję ph/ V = f(v NOH ) (krzyw różniczkow). Wykres sporządzić w zkresie 9 16 cm 3 dodwnej zsdy. Otrzymne wrtości pochodnych ph/ V odkłd się w funkcji objętości w środku odcink osi V odpowidjącego dodnej porcji odczynnik. 3. Odczytć dokłdną wrtość objętości zsdy NOH, któr odpowid mksimum n krzywej różniczkowej. Mksimum krzywej ph/ V = f(v) rzutowne n oś odciętych wyzncz objętość odczynnik (NOH) odpowidjącą punktowi końcowemu mireczkowni. Obliczyć rzeczywiste stężenie kwsu mlekowego wziętego do mireczkowni (c 0 HA ). 4. Odczytć z wykresu ph = f(v NOH ) wrtość ph roztworu kwsu, gdy zostł on w połowie zmireczkowny ( c HA c ). W tych wrunkch równnie Henderson Hsselblch, w którym A p K ozncz stłą dysocjcji słbego kwsu, cha stężenie kwsu w roztworze po dodniu określonej ilości zsdy, c A stężenie sprzężonej z kwsem zsdy: 3

4 cha p K = ph+ lg (1) c A przyjmuje postć: p K = ph tym smym odczytn przez ns wrtość ph jest równ poszukiwnej wrtości ( p K ) grf. Oblicznie stłej dysocjcji kwsu mlekowego n podstwie krzywej mireczkowni 1. Korzystjąc ze wzoru Henderson Hsselblch (1) obliczyć p K kwsu mlekowego dl poszczególnych pomirów. Do obliczeń nleży brć pod uwgę wrtości ph z początkowego zkresu mireczkowni (obszr prostoliniowy). Wyznczyć wrtość średnią p K. 2. Obliczyć średni błąd kwdrtowy średniej wrtości p K wg wzoru: S p K = n ν i= 1 2 i n( n 1) gdzie: ν = p K i p K, n liczb pomirów. 3. Porównć uzyskne dwiem metodmi wrtości p K kwsu mlekowego ( p K ) grf i ( p K ) num z wrtością literturową ( p K ) lit. Zinterpretowć otrzymne wyniki. 4. Do sprwozdni dołączyć wykresy wykonne n ppierze milimetrowym. Tbel wyników obliczeń Objętość dodnego NOH [cm 3 ] ph Stężenie kwsu c HA [mol dm -3 ] Stężenie zsdy c A - [mol dm -3 ] p K p K ν 2 i ν i S p K 0,5 1 1,5. Zestwienie wrtości stłych kwsowych kwsu mlekowego ( p K ) grf p K ( p K ) lit 4

5 Pomir ph Pomiru wrtości ph (zgodnie z definicją ph = lg + ) dokonuje się poprzez wyznczenie ktywności jonów wodorowych znjdujących się w roztworze. Aktywność H 3 O + możn uzyskć n podstwie pomiru siły elektromotorycznej (SEM) ogniw zbudownego z elektrody odwrclnej względem jonów wodorowych orz elektrody odniesieni. Do elektrod odwrclnych względem jonów wodorowych nleżą nstępujące elektrody: wodorow (H + /H 2,1br,Pt), ntymonow (H + /Sb 2 O 3,Sb) orz chinhydronow (H + /Q,QH 2 /Pt). Potencjł kżdej z nich opisuje tk sm zleżność: E = E 0 + RT F ln H + 3 O Wrtości potencjłów poszczególnych elektrod różnią się jednk między sobą z powodu różnych wrtości potencjłów stndrdowych E 0. Potencjł stndrdowy elektrody wodorowej jest równy zeru, podczs gdy elektrody ntymonowej i chinhydronowej przybierją określone wrtości chrkterystyczne dl kżdej z nich. Jko elektrody odniesieni zwykle używ się elektrody II rodzju odwrclnej względem nionu. Zzwyczj są to elektrody klomelow (Cl - /Hg 2 Cl 2,Hg) lub chlorosrebrow (Cl - /AgCl,Ag), których potencjły w dnych wrunkch ciśnieni i tempertury zleżą wyłącznie od ktywności jonów chlorkowych obecnych w roztworze. W celu uzyskni stłej wrtości potencjłu elektrody odniesieni w dnych wrunkch, niezleżnej od stężeni jonów chlorkowych stosuje się elektrody nsycone, w których stężenie jonów chlorkowych zleży wyłącznie od rozpuszczlności elektrolitu w dnej temperturze. Sił elektromotoryczn ogniw zbudownego z elektrody odwrclnej względem jonów wodorowych i elektrody odniesieni o stłym i znnym potencjle pozwl obliczyć ph roztworu. N przykłd, znjąc SEM ogniw zbudownego z elektrody wodorowej i nsyconej elektrody klomelowej możn obliczyć ph roztworu z równni: 0,2444 ph = E 0,0591 gdzie: 0,2444V wrtość potencjłu nsyconej elektrody klomelowej, 0,0591 wrtość ilorzu 2,303RT/F w temperturze 298K. H 5

6 Kżd z wyżej przedstwionych elektrod odwrclnych względem jonów wodorowych m pewne ogrniczeni. Elektrody wodorowej nie możn używć w roztworch zwierjących substncje dezktywujące powierzchnię pltyny, zś elektrody chinhydronowej w roztworch o ph > 8. W prktyce, zmist wymienionych wyżej elektrod stosuje się elektrodę szklną. Elektrod szkln nie jest elektrodą odwrclną względem jonów wodorowych, chociż doświdczlnie stwierdzono, że zchowuje się tk, jk omówione wyżej elektrody tego typu. Stnowi ją rurk szkln zkończon cienkościenną bnieczką wykonną ze specjlnego szkł o ściśle określonym skłdzie chemicznym. Bnieczk wypełnion jest roztworem o stłej wrtości ph, zwierjącym jony Cl (np. HCl o stężeniu 0,1 mol dm -3 ). W roztworze tym umieszczon jest elektrod chlorosrebrn, któr spełni tutj tylko rolę niepolryzowlnego kontktu elektrycznego. Bnieczk szkln stnowi membrnę, któr oddziel bdny roztwór o nieznnym ph od wewnętrznego roztworu, o stłej wrtości ph. Rekcj elektrody szklnej n zminę ktywności jonów wodorowych jest wynikiem złożonego procesu zchodzącego pomiędzy powierzchnią membrny, roztwormi po obu jej stronch. Potencjł elektrody szklnej zleży od stosunku stężeni jonów wodorowych w roztworze wewnętrznym i zewnętrznym. Jk wcześniej wspomnino, wewnątrz bnieczki utrzymywne jest stłe stężenie jonów wodorowych, ztem potencjł elektrody zleży od ktywności jonów wodorowych znjdujących się w roztworze zewnętrznym, w którym elektrod jest znurzon. Zleżność tę wyzncz się przez klibrcję elektrody w roztworch buforowych o znnej wrtości ph. Przyjmuje się, że potencjł elektrody szklnej jest równy zeru (E = 0), gdy ph roztworu jest równe 7. Często elektrodę szklną łączy się z elektrodą chlorosrebrną jko elektrodą odniesieni w jednej obudowie. Elektrod tk nosi nzwę elektrody kombinownej, chociż fktycznie jest ogniwem pomirowym, przeznczonym do pomirów ph roztworów wodnych. Siłę elektromotoryczną ogniw, którego jedną z elektrod jest elektrod szkln mierzy się przy pomocy mikrowoltomierzy, które ze względu n brdzo duży opór bnieczki szklnej muszą zwierć ukłdy wzmcnijące. Przyrządy tkie nzwne zostły pehmetrmi i dją możliwość odczytu zrówno SEM, jk i ph. Wrtość ph roztworu możn bezpośrednio odczytć ze skli pehmetru po uprzedniej klibrcji elektrody. 6

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Energia aktywacji jodowania acetonu. opracowała dr B. Nowicka, aktualizacja D.

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Energia aktywacji jodowania acetonu. opracowała dr B. Nowicka, aktualizacja D. Ktedr Chemii Fizycznej Uniwersytetu Łódzkiego Energi ktywcji jodowni cetonu oprcowł dr B. Nowick, ktulizcj D. Wliszewski ćwiczenie nr 8 Zkres zgdnień obowiązujących do ćwiczeni 1. Cząsteczkowość i rzędowość

Bardziej szczegółowo

Wyznaczanie stałych kwasowości p-nitrofenolu i glicyny metodą pehametryczną

Wyznaczanie stałych kwasowości p-nitrofenolu i glicyny metodą pehametryczną Wyzncznie stłych kwsowości p-nitrofenolu i glicyny metodą pehmetryczną 1 Wyzncznie stłych kwsowości p-nitrofenolu i glicyny metodą pehmetryczną 1. Cel ćwiczeni Celem pomirów jest ilościowe schrkteryzownie

Bardziej szczegółowo

Ćwiczenie Nr 5A: WYZNACZANIE LICZB PRZENOSZENIA Z POMIARÓW SIŁY ELEKTROMOTORYCZNEJ OGNIW STĘŻENIOWYCH

Ćwiczenie Nr 5A: WYZNACZANIE LICZB PRZENOSZENIA Z POMIARÓW SIŁY ELEKTROMOTORYCZNEJ OGNIW STĘŻENIOWYCH Ćwiczenie Nr 5A: WYZNACZANIE LICZB PRZENOSZENIA Z POMIARÓW SIŁY ELEKTROMOTORYCZNEJ OGNIW STĘŻENIOWYCH Ogniw stężeniowe zbudowne są z dwóch identycznych elektrod, znurzonych w roztworch tego smego elektrolitu,

Bardziej szczegółowo

ZASTOSOWANIE POMIARU SEM OGNIW GALWANICZNYCH DO WYZNACZANIA WIELKOŚCI FIZYKOCHEMICZNYCH

ZASTOSOWANIE POMIARU SEM OGNIW GALWANICZNYCH DO WYZNACZANIA WIELKOŚCI FIZYKOCHEMICZNYCH Ćwiczenie nr 6 ZASTOSOWANIE POMIARU SEM OGNIW GALWANICZNYCH DO WYZNACZANIA WIELKOŚCI IZYKOCHEMICZNYCH I. Cel ćwiczeni Celem ćwiczeni jest: wyznczenie iloczynu rozpuszczlności soli trudno rozpuszczlnych

Bardziej szczegółowo

A4.05 Instrukcja wykonania ćwiczenia

A4.05 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.05 nstrukcja wykonania ćwiczenia Wyznaczanie współczynników aktywności soli trudno rozpuszczalnej metodą pomiaru rozpuszczalności Zakres zagadnień obowiązujących

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Obliczenia z wykorzystaniem równowagi w roztworach

Obliczenia z wykorzystaniem równowagi w roztworach Obliczeni z wykorzystniem równowgi w roztworch Obliczeni w roztworch Jkie są skłdniki roztworu? tóre rekcje dysocjcji przebiegją cłkowicie (1% dysocjcji)? tóre rekcje osiągją stn równowgi? tóre z rekcji

Bardziej szczegółowo

Q = a 3. równ. równ. N 2 (g) + 3H 2 (g) 2 NH 3 (g) θ H

Q = a 3. równ. równ. N 2 (g) + 3H 2 (g) 2 NH 3 (g) θ H ĆWICZENIE 4. Wyzncznie stłych dysocjcji kwsów metodą potencjometryczną. Bdnie wpływu podstwników n równowgę dysocjcji kwsów krboksylowych. STATYKA CEMICZNA. Stł równowgi oszukiwnie wyrżeni opisującego

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

ĆWICZENIE 2 KONDUKTOMETRIA

ĆWICZENIE 2 KONDUKTOMETRIA ĆWICZENIE 2 KONDUKTOMETRIA 1. Oznaczanie słabych kwasów w sokach i syropach owocowych metodą miareczkowania konduktometrycznego Celem ćwiczenia jest ilościowe oznaczenie zawartości słabych kwasów w sokach

Bardziej szczegółowo

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH

WYZNACZANIE STAŁEJ RÓWNOWAGI KWASOWO ZASADOWEJ W ROZTWORACH WODNYCH Politehni Śląs WYDZIŁ CHEMICZNY KTEDR FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNCZNIE STŁEJ RÓWNOWGI KWSOWO ZSDOWEJ W ROZTWORCH WODNYCH Opieun: Miejse ćwizeni: Ktrzyn Kruiewiz Ktedr Fizyohemii i Tehnoii

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Ćwiczenie 8 (studenci biotechnologii) Potencjometria Potencjometryczne wyznaczanie PK miareczkowania słabego kwasu

Ćwiczenie 8 (studenci biotechnologii) Potencjometria Potencjometryczne wyznaczanie PK miareczkowania słabego kwasu Ćwiczenie 8 (studenci biotechnologii) Potencjometria Potencjometryczne wyznaczanie PK miareczkowania słabego kwasu Potencjometria Klasyczne miareczkowanie od miareczkowania potencjometrycznego różni się

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Adsorpcja kwasu octowego na węglu aktywnym. opracowała dr hab. Małgorzata Jóźwiak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Adsorpcja kwasu octowego na węglu aktywnym. opracowała dr hab. Małgorzata Jóźwiak Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Adsorpcja kwasu octowego na węglu aktywnym opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr Zakres zagadnień obowiązujących do ćwiczenia 1. Charakterystyka

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Miareczkowanie potencjometryczne

Miareczkowanie potencjometryczne Miareczkowanie potencjometryczne Miareczkowanie potencjometryczne polega na mierzeniu za pomocą pehametru zmian ph zachodzących w badanym roztworze pod wpływem dodawania do niego mol ściśle odmierzonych

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wpływ stężenia kwasu na szybkość hydrolizy estru ćwiczenie nr 25 opracowała dr B. Nowicka, aktualizacja D. Waliszewski Zakres zagadnień obowiązujących do

Bardziej szczegółowo

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek Ćwiczenie 4 Wyzncznie ogniskowych soczewek Wstęp teoretyczny: Krzyszto Rębils. utorem ćwiczeni w Prcowni izycznej Zkłdu izyki Uniwersytetu Rolniczego w Krkowie jest Józe Zpłotny. ZJWISK ZŁMNI ŚWITŁ Świtło,

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Izoterma rozpuszczalności w układzie trójskładnikowym ćwiczenie nr 28 Zakres zagadnień obowiązujących do ćwiczenia 1. Stan równowagi układu i rodzaje równowag

Bardziej szczegółowo

WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO

WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO 10 WYZNACZANIE STAŁEJ DYSOCJACJI SŁABEGO KWASU ORGANICZNEGO CEL ĆWICZENIA Poznanie podstawowych zagadnień teorii dysocjacji elektrolitycznej i problemów związanych z właściwościami kwasów i zasad oraz

Bardziej szczegółowo

1 Ćwiczenie Reakcje utleniania - redukcji wstęp teoretyczny. RT nf Procesy utleniania-redukcji

1 Ćwiczenie Reakcje utleniania - redukcji wstęp teoretyczny. RT nf Procesy utleniania-redukcji Ćwiczenie 5. Rekcje utlenini - redukcji wstęp teoretyczny.. Procesy utlenini-redukcji Rekcjmi utlenini-redukcji nzywmy procesy chemiczne, którym towrzyszy zmin stopni utlenieni. Procesem utlenieni nzywmy

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdemi Morsk w Gdyni Ktedr utomtyki Okrętowej Teori sterowni lger mcierzow Mirosłw Tomer. ELEMENTRN TEORI MCIERZOW W nowoczesnej teorii sterowni rdzo często istnieje potrze zstosowni notcji mcierzowej uprszczjącej

Bardziej szczegółowo

ph ROZTWORÓW WODNYCH

ph ROZTWORÓW WODNYCH ph ROZTWORÓW WODNYCH ph roztworów monyh kwsów i zsd H O H O A α 00 % MeOH Me OH MeOH α 00 % np.: HCl, r, HI, HNO, HClO i HClO NOH, OH, CsOH i ROH [H O [OH MeOH ph - log poh - log MeOH Mone kwsy dwuprotonowe,

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Porównanie precyzji i dokładności dwóch metod oznaczania stężenia HCl

Porównanie precyzji i dokładności dwóch metod oznaczania stężenia HCl Porównanie precyzji i dokładności dwóch metod oznaczania stężenia HCl Metoda 1: Oznaczanie stężenia HCl metodą miareczkowania potencjometrycznego (strąceniowe) Wyposażenie: - miernik potencjału 1 szt.

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Hydroliza i bufory. Hydroliza soli Bufory Krzywe miareczkowania Wskaźniki ph

Hydroliza i bufory. Hydroliza soli Bufory Krzywe miareczkowania Wskaźniki ph Hydroliz i bufory Hydroliz oli Bufory rzywe mirezkowni Wkźniki ph 1 Hydroliz Proe rozkłdu jkiejś ubtnji ntępująy pod wpływem wody Hydroliz oli - rekje nionów lub ktionów z zątezkmi wody ole łbyh kwów i

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ

BADANIE ZALEŻNOŚCI PRZENIKALNOŚCI MAGNETYCZNEJ ADANIE ZAEŻNOŚCI PRZENIKANOŚCI MAGNETYCZNEJ FERRIMAGNETYKÓW OD TEMPERATURY 1. Teori Włściwości mgnetyczne sstncji chrkteryzje współczynnik przeniklności mgnetycznej. Dl próżni ten współczynnik jest równy

Bardziej szczegółowo

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane? INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

RÓWNOWAGI REAKCJI KOMPLEKSOWANIA

RÓWNOWAGI REAKCJI KOMPLEKSOWANIA POLITECHNIK POZNŃSK ZKŁD CHEMII FIZYCZNEJ ĆWICZENI PRCOWNI CHEMII FIZYCZNEJ RÓWNOWGI REKCJI KOMPLEKSOWNI WSTĘP Ważną grupę reakcji chemicznych wykorzystywanych w chemii fizycznej i analitycznej stanowią

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

cz. 2 dr inż. Zbigniew Szklarski

cz. 2 dr inż. Zbigniew Szklarski Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Metody Badań Składu Chemicznego

Metody Badań Składu Chemicznego Metody Badań Składu Chemicznego Wydział Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa (NIESTACJONARNE) Ćwiczenie 5: Pomiary SEM ogniwa - miareczkowanie potencjometryczne. Pomiary

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne

Ćwiczenia laboratoryjne z przedmiotu : Napędy Hydrauliczne i Pneumatyczne Lbortorium nr 11 Temt: Elementy elektropneumtycznych ukłdów sterowni 1. Cel ćwiczeni: Opnownie umiejętności identyfikcji elementów elektropneumtycznych n podstwie osprzętu FESTO Didctic. W dużej ilości

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

ĆWICZENIE 13. ANALIZA INSTRUMENTALNA Miareczkowanie Potencjometryczne

ĆWICZENIE 13. ANALIZA INSTRUMENTALNA Miareczkowanie Potencjometryczne ĆWICZENIE 13 ANALIZA INSTRUMENTALNA Miareczkowanie Potencjometryczne Oznaczanie kwasu ortofosforowego w Coca-Coli za pomocą miareczkowania potencjometrycznego roztworem wodorotlenku sodu DZIAŁ: Potencjometria

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Zadanie 5. Kratownica statycznie wyznaczalna.

Zadanie 5. Kratownica statycznie wyznaczalna. dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Praca, potencjał i pojemność

Praca, potencjał i pojemność Prc, potencjł i pojemność Mciej J. Mrowiński 1 listopd 2010 Zdnie PPP1 h Wyzncz wrtość potencjłu elektrycznego w punkcie oddlonym o h od cienkiego, jednorodnie nłdownego łdunkiem Q pierścieni o promieniu.

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Spis treści. Wstęp. Roztwory elektrolitów

Spis treści. Wstęp. Roztwory elektrolitów Spis treści 1 Wstęp 1.1 Roztwory elektrolitów 1.2 Aktywność elektrolitów 1.3 Teorie kwasów i zasad 1.3.1 Teoria Arrheniusa 1.3.2 Teoria Lowry ego-brönsteda 1.3.3 Teoria Lewisa 1.4 Roztwory buforowe 1.5

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną. Zakres wymaganych

Bardziej szczegółowo

Ćwiczenie 6 Wpływ dawki kwasu acetylosalicylowego na jego farmakokinetykę

Ćwiczenie 6 Wpływ dawki kwasu acetylosalicylowego na jego farmakokinetykę Ćwiczenie 6 Wpływ dwki kws cetyloslicylowego n jego frmkokinetykę Celem ćwiczeni jest zbdnie wpływ dwki kws cetyloslicylowego n jego frmkokinetykę. Wprowdzenie: Ćwiczenie poleg n oznczeni ilości slicylnów

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych

Układ elektrohydrauliczny do badania siłowników teleskopowych i tłokowych TDUSZ KRT TOMSZ PRZKŁD Ukłd elektrohydruliczny do bdni siłowników teleskopowych i tłokowych Wprowdzenie Polsk Norm PN-72/M-73202 Npędy i sterowni hydruliczne. Cylindry hydruliczne. Ogólne wymgni i bdni

Bardziej szczegółowo

Ćwiczenie nr 2-SCO. Warstwa połowiąca WP. Ćwiczenie nr 2. 1 Cel ćwiczenia

Ćwiczenie nr 2-SCO. Warstwa połowiąca WP. Ćwiczenie nr 2. 1 Cel ćwiczenia Ćwiczenie nr 2-SCO. Wrstw połowiąc WP 1 Cel ćwiczeni Wyznczenie pierwszej wrstwy połowiącej WP (Hlf Vlue Lyer) dl promieniowni X generownego w prcie rentgenowskim (energi 5-15 kev). Wyzncznie współczynnik

Bardziej szczegółowo

A4.04 Instrukcja wykonania ćwiczenia

A4.04 Instrukcja wykonania ćwiczenia Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.04 Instrukcja wykonania ćwiczenia Wyznaczanie cząstkowych molowych objętości wody i alkoholu Zakres zagadnień obowiązujących do ćwiczenia 1. Znajomość

Bardziej szczegółowo

Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych

Uszczelnienie przepływowe w maszyn przepływowych oraz sposób diagnozowania uszczelnienia przepływowego zwłaszcza w maszyn przepływowych Uszczelnienie przepływowe w mszyn przepływowych orz sposób dignozowni uszczelnieni przepływowego zwłszcz w mszyn przepływowych Przedmiotem wynlzku jest uszczelnienie przepływowe mszyn przepływowych orz

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

POMIAR MODUŁU SPRĘŻYSTOŚCI STALI PRZEZ POMIAR WYDŁUŻENIA DRUTU

POMIAR MODUŁU SPRĘŻYSTOŚCI STALI PRZEZ POMIAR WYDŁUŻENIA DRUTU POMIAR MODUŁU SPRĘŻYSTOŚCI STALI PRZEZ POMIAR WYDŁUŻENIA DRUTU I. Cel ćwiczeni: zpoznnie z teorią odksztłceń sprężystych cił stłych orz z prwem Hooke.Wyzncznie modułu sprężystości (modułu Young) metodą

Bardziej szczegółowo

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej opracowanie: dr Jadwiga Zawada Cel ćwiczenia: poznanie podstaw teoretycznych i praktycznych metody

Bardziej szczegółowo

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć

Bardziej szczegółowo

Ćwiczenie 19 Wyznaczanie molowego współczynnika absorpcji. Ilościowe oznaczanie p-nitrofenolu. Zależność molowego współczynnika absorpcji od ph.

Ćwiczenie 19 Wyznaczanie molowego współczynnika absorpcji. Ilościowe oznaczanie p-nitrofenolu. Zależność molowego współczynnika absorpcji od ph. Ćwiczenie 19 Wyzncznie molowego współczynnik bsorpcji. Ilościowe ozncznie p-nitrofenolu. Zleżność molowego współczynnik bsorpcji od ph. Część teoretyczn: Spektroskopi obejmuje szereg metod bdni mterii

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł

ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)

Bardziej szczegółowo

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych Edwrd Musił Oddził Gdński SEP Zokrąglnie i zpisywnie wyników obliczeń przybliżonych Inżynier wykonuje nieml wyłącznie obliczeni przybliżone i powinien mieć nieustnnie n względzie dokłdność, jką chce uzyskć

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

Obliczenia w roztworach

Obliczenia w roztworach Oblizeni z wykorzystniem równowgi w roztworh Oblizeni w roztworh Jkie są skłdniki roztworu? tóre rekje dysojji przebiegją łkowiie (% dysojji)? tóre rekje osiągją stn równowgi? tóre z rekji równowgowyh

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO

METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 151-156, Gliwice 2006 METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO JÓZEF GACEK LESZEK BARANOWSKI Instytut Elektromechniki,

Bardziej szczegółowo

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Oznaczanie kwasu fosforowego w Coca-Coli

Oznaczanie kwasu fosforowego w Coca-Coli Oznaczanie kwasu fosforowego w Coca-Coli Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Miareczkowanie jest jedną z podstawowych czynności laboratoryjnych. Polega

Bardziej szczegółowo