WYZNACZANIE CHARAKTERYSTYK NOŚNOŚCI STATYCZNEJ ŁOŻYSK TOCZNYCH WIEŃCOWYCH ZA POMOCĄ PROGRAMÓW KOMPUTEROWYCH

Podobne dokumenty
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź maja 1995 roku

PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź maja 1995 roku

USZKODZENIA BIEŻNI ŁOŻYSK WIEŃCOWYCH

WPŁYW MODELOWANIA ZASTĘPCZYCH ELEMENTÓW TOCZNYCH NA DYSTRYBUCJĘ SIŁ W ŁOŻYSKACH TOCZNYCH WIEŃCOWYCH

ZWIĘKSZENIE NOŚNOŚCI ŁOŻYSK WIELKOGABARYTOWYCH METODĄ KOREKCJI BIEŻNI. 1. Wstęp. Tadeusz Smolnicki*, Grzegorz Przybyłek*, Mariusz Stańco*

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

Spis treści. Przedmowa 11

Projekt wału pośredniego reduktora

Spis treści. Wstęp Część I STATYKA

Teoretyczny model panewki poprzecznego łożyska ślizgowego. Wpływ wartości parametru zużycia na nośność łożyska

METODYKA BUDOWANIA MODELI OBLICZENIOWYCH MES ŁOŻYSK WIEŃCOWYCH DOTYCZĄCA DYSKRETYZACJI PIERŚCIENI ŁOŻYSKA

DOSKONALENIE ZASTĘPCZYCH ELEMENTÓW TOCZNYCH W NUMERYCZNYM MODELOWANIU ŁOŻYSK TOCZNYCH WIEŃCOWYCH

Wyjaśnienie w sprawie różnic wyników obliczeń statycznych otrzymanych z programu TrussCon Projekt 2D i innych programów

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

Komputerowe projektowanie konstrukcji mechanicznych

PŁUCIENNIK Paweł 1 MACIEJCZYK Andrzej 2

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Konstrukcje betonowe Wykład, cz. II

Analiza numeryczna wpływu przylegania kulki do bieżni łożysk wieńcowych na wartość współczynnika twardości

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

8. PODSTAWY ANALIZY NIELINIOWEJ

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11

WYZNACZANIE REAKCJI KULEK ŁOŻYSKA WIEŃCOWEGO OSADZONEGO W STRUKTURACH ROBOCZYCH KOPARKI JEDNONACZYNIOWEJ

WPŁYW LUZU W ŁOŻYSKACH KULKOWYCH NA NIEPRAWIDŁOWĄ PRACĘ WAŁU TRZYPODPOROWEGO

ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH W ANALIZIE NUMERYCZNEJ ŁOŻYSK TOCZNYCH WIEŃCOWYCH

SPECYFIKA ZMIAN OPORU TOCZENIA ŁOŻYSKA WIEŃCOWEGO PODWÓJNEGO W ASPEKCIE DOBORU SIŁ NAPIĘCIA WSTĘPNEGO ŚRUB ŁOŻYSKOWYCH

Ć w i c z e n i e K 4

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

1. Obciążenie statyczne

Wyboczenie ściskanego pręta

Łożysko stożkowe CX

ANALIZA WPŁYWU PARAMETRÓW MOCOWANIA ŁOŻYSK WIEŃCOWYCH NA ICH NOŚNOŚĆ STATYCZNĄ

PaleZbrojenie 5.0. Instrukcja użytkowania

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Analiza fundamentu na mikropalach

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

ŁOŻYSKA KULKOWE WZDŁUŻNE JEDNO I DWUKIERUNKOWE

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe

Zadania do samodzielnego rozwiązania zestaw 11

WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W ANALIZIE OBCIĄŻENIA WEWNĘTRZNEGO W ŁOŻYSKACH TOCZNYCH

Wewnętrzny stan bryły

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt.

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Tarcie poślizgowe

Łożyska - zasady doboru

Projekt reduktora. B x. Układ sił. z 1 O 2. P z C 1 O 1. n 1. A S b S a. n 2 z 2

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Linie wpływu w belce statycznie niewyznaczalnej

Podstawy Konstrukcji Maszyn

2kN/m Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeń dobieram wstępne przekroje prętów.

3. Wstępny dobór parametrów przekładni stałej

METODA SIŁ KRATOWNICA

PRZYKŁADY CHARAKTERYSTYK ŁOŻYSK

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

1. METODA PRZEMIESZCZEŃ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM

OBLICZANIE KÓŁK ZĘBATYCH

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

Rozwiązywanie ramy statyczne niewyznaczalnej Metodą Sił

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Akademia Górniczo- Hutnicza Im. Stanisława Staszica w Krakowie

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Analiza stanu przemieszczenia oraz wymiarowanie grupy pali

WYZNACZANIE OPORÓW RUCHU ŁOŻYSKA TOCZNEGO WIEŃCOWEGO W OPARCIU O ROZKŁAD OBCIĄŻENIA WEWNĘTRZNEGO

MECHANIKA BUDOWLI LINIE WPŁYWU BELKI CIĄGŁEJ

SKRĘCANIE WAŁÓW OKRĄGŁYCH

PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź maja 1995 roku ROZDZIAŁ PARAMETRÓW KONSTRUKCYJNYCH ZESPOŁU WRZECIONOWEGO OBRABIARKI

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

Metoda elementów skończonych

Uwaga: Linie wpływu w trzech prętach.

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3

OBLICZENIA STATYCZNE

NOŚNOŚCI ODRZWI WYBRANYCH OBUDÓW ŁUKOWYCH**

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

5. Rozwiązywanie układów równań liniowych

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum

Zagadnienia brzegowe dla równań eliptycznych

Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA

Kompleksowe wyznaczanie nośności łożysk tocznych wieńcowych

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

(13)B1 PL B1. (54) Sposób oraz urządzenie do pomiaru odchyłek okrągłości BUP 21/ WUP 04/99

TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Transkrypt:

PROBLEMY IEKOWECJOALYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 2 4 maja 999 r. Andrzej Dziurski, Ludwik Kania, Eugeniusz Mazanek Politechnika Częstochowska WYZACZAIE CHARAKERYSYK OŚOŚCI SAYCZEJ ŁOŻYSK OCZYCH WIEŃCOWYCH ZA POMOCĄ PROGRAMÓW KOMPUEROWYCH SŁOWA KLUCZOWE: maszyny robocze ciężkie, łożyska wieńcowe, charakterystyki nośności SRESZCZEIE ajczęściej spotykaną charakterystyką nośności statycznej łożysk wieńcowych jest wykres M = f(q), gdzie Q jest składową osiową obciążenia zewnętrznego łożysk, natomiast M składową momentową (nazywaną momentem wywrotnym). akie charakterystyki nie zawsze są wystarczające, ponieważ nośność w wielu przypadkach obciążenia zależna jest również od siły promieniowej H. W celu uzyskania tego rodzaju charakterystyk stosuje się nomogramy do wyznaczania nośności, które są zbudowane w oparciu o ogólny wykres nośności M = f(q,h). Korzystanie z podstawowej postaci takich nomogramów jest jednak uciążliwe i obarczone błędami przybliżenia. W referacie przedstawiono sposób automatycznego sporządzania charakterystyk łożyska z wykorzystaniem odpowiedniego systemu programów, umożliwiającego określanie charakterystyk dowolnego typu łożysk wieńcowych, w tym również z uwzględnieniem luzu osiowego, który ma decydujący wpływ na nośność i trwałość użytkową łożyska. WPROWADZEIE Łożyska toczne wieńcowe są najczęściej stosowane w mechanizmach obrotu maszyn roboczych ciężkich i przenoszą jednocześnie obciążenia osiowe, promieniowe i moment wywrotny. Ze względu na duże koszty wykonania i ewentualnej wymiany łożyska pożądany jest ich staranny dobór i duża trwałość użytkowa. Dobór łożysk tocznych przeprowadza się najczęściej w oparciu o wykresy nośności statycznej zwane charakterystykami łożyska. ajczęściej spotykaną w katalogach firmowych charakterystyką nośności statycznej jest wykres M = f(q) [5,6], gdzie Q jest składową osiową obciążenia zewnętrznego łożyska, natomiast M składową momentową, nazywaną momentem wywrotnym. akie charakterystyki nie zawsze są wystarczające, ponieważ w wielu przypadkach łożysko przenosi duże siły promieniowe H i wówczas charakterystyki nośności, zbudowane dla takiego obciążenia łożyska mają inny przebieg. W celu uzyskania wykresów nośności M = f(q,h) można korzystać z nomogramów 09

[]. W obecnej pracy będą zaprezentowane możliwości automatycznego sporządzania charakterystyki łożyska z wykorzystaniem systemu programów komputerowych, umożliwiającego określenie charakterystyki nośności dla różnych typów łożysk wieńcowych. MODEL OBLICZEIOWY Ze względu na ograniczona objętość pracy rozważania ograniczono do łożysk wieńcowych kulkowych jednorzędowych o styku czteropunktowym (rys. ). Rys.. Przekrój łożyska wieńcowego jednorzędowego kulkowego Do budowy modelu obliczeniowego przyjęto klasyczny zestaw założeń upraszczających [,3] przyjmując całkowitą sztywność giętno-skrętną pierścieni łożyskowych. Podstawowy przypadek obciążenia łożyska, nazwany modelem, przedstawiono na rys. 2. Rys. 2. Podstawowy model obliczeniowy łożyska wieńcowego Przyjęto, że pierścienie łożyska przemieszczają się względem siebie, jako bryły sztywne, chwilowym środkiem obrotu jest punkt C. rójkąt DAA obrazuje wzajemne przemieszczenie się pary bieżni nośnych, trójkąt EBB wzajemne przemieszczanie się pary bieżni podtrzymujących, a prosta A B przekoszenie pierścienia wewnętrznego względem pierścienia zewnętrznego. Obciążenie wewnętrzne łożyska, tzn. oddziaływanie pomiędzy bieżniami i częściami tocznymi potraktowano jako obciążenie ciągłe q z maksymalnymi wartościami węzłowymi q A w rzędzie nośnym i q B2 w rzędzie podtrzymującym oraz wypadkowymi reakcjami R w kierunku osiowym i w kierunku promieniowym w rzędzie nośnym i odpowiednio R 2 i 2 w rzędzie podtrzymującym. Inne przypadki obciążenia łożyska nazwane 2 i 3 są omówione w pracy []. Są to przypadki zachodzące wtedy, gdy obciążenie promieniowe H przekroczy określona wartość bądź ze zwrotem dodatnim, model 2, bądź ze zwrotem ujemnym model 3. 0

ośność statyczną łożyska określono przyjmując względne dopuszczalne odkształcenia plastyczne w miejscu styku części tocznej i bieżni δ pldop /d = 2 0-4. astępnie korzystając ze wzorów empirycznych Eschmanna [2] obliczono siły P dop przypadające na najbardziej obciążoną kulkę na bieżni. Układ sił w łożysku umożliwia ustalenie warunków równowagi statycznej i następnie tzw. równań statyki łożyska oraz równań przemieszczeń pierścieni dla każdego z modeli tzn., 2 i 3, przy czym wielkości R, R 2,, 2 (rys. 2) są wypadkowymi obciążenia ciągłego i wyznacza się je przez całkowanie po odpowiadającym im zakresie kątów ϕ i ϕ 2. Równania te zostały wyprowadzone we wcześniejszych pracach autorów [3,4], gdzie uwzględniano również luz osiowy w łożysku. Wprowadzając parametry obciążenia zewnętrznego łożyska określone zależnościami: M H k = oraz kh = () Qa Q o gdzie: a o - promień toczenia na bieżniach, Q max - maksymalna siła, jaką może przenieść łożysko obciążone tylko siłą osiową, dla modelu otrzymano dwa równania statyki łożyska:,5 max,5 + e kj J3 v ( 2 4 ) = 0 kj J (2) e2,5,5,5 + e π tg α( + e ) k 3 = 4 = 0 H J v J (3) e2 Wielkości e, e 2 oraz v = η B2 /η A są parametrami rozkładu obciążenia wewnętrznego łożyska, a J J 4 są całkami obciążenia jednostkowego liczonymi po obwodzie łożyska wg wzorów przedstawionych w []. Równania te w połączeniu z równaniem przemieszczeń: 2 + e2 e v 2v + = 0 (4) e + e 2 stanowią układ, który dla założonych wartości parametrów k i k H pozwala wyznaczyć wartości współczynników obciążenia wewnętrznego. Rozwiązanie układu równań (2), (3), (4) oraz analogicznych równań ustalonych dla przypadków 2 i 3 pozwala na określenie pełnej charakterystyki łożyska w układzie współrzędnych (M,Q,H). Z uwagi na złożony charakter równań, szczególnie występowanie w nich całek eliptycznych, uzyskanie rozwiązania jest możliwe jedynie na drodze numerycznej. Omówiona metodyka obliczeń pozwala zbudować wykres nośności we współrzędnych (M,Q,H). Po przeprowadzeniu obliczeń numerycznych zbudowano taki wykres (rys. 3) dla łożyska kulkowego jednorzędowego o parametrach: średnica toczenia d t = 390 mm, liczba kulek z = 86, średnica kulki d = 44,45 mm, promień bieżni r = 23,0 mm, kąt działania α = 45, twardość bieżni 52 HRC. CHARAKERYSYKI ŁOŻYSK Przedstawiony na rys. 3 wykres nie jest oczywiście wygodny w praktyce. Do doboru łożyska z katalogu, czy do sprawdzenia, gdzie znajduje się punkt pracy łożyska określony poprzez składowe obciążenia zewnętrznego najwygodniej korzystać jest z charakterystyki łożyska M =f(q). Do sporządzania takich charakterystyk w przypadku obciążenia łożyska siłą promieniowa H w pracy [] zaproponowano metodę opartą na wykorzystaniu odpowiednio

skonstruowanych nomogramów łożysk wieńcowych. Obciążenie promieniowe w tej metodzie jest potraktowane jako parametr eksploatacyjny łożyska. akie rozwiązanie obok podstawowej zalety, jaką jest możliwość określenia charakterystyki dla dowolnej wartości obciążenia promieniowego, posiada szereg wad. Rys. 3. Pełna charakterystyka łożyska wieńcowego M = f(q,h) Charakterystyki trzeba sporządzać metoda wykreślną, co prowadzi do pewnych koniecznych uproszczeń przebiegu krzywych nośności łożyska (zastępuje się je odcinkami prostych) oraz do nieuniknionych błędów wynikających z samej techniki sporządzania wykresów. Ponadto niejednokrotnie konieczne jest określanie charakterystyk dla wielu wariantów rozwiązań konstrukcyjnych łożyska, w celu wybrania najkorzystniejszego rozwiązania. Odręczne sporządzanie wielu charakterystyk jest więc czasochłonne. Okazuje się również, że w przypadku obciążenia łożyska siłą promieniowa o odpowiednio dużej wartości traci sens sporządzanie charakterystyki w postaci wykresu [3]. Znacznie korzystniejsze jest wtedy posługiwanie się charakterystykami w postaci wykresów M = f(h), jednak tego typu wykresów nie można uzyskać bezpośrednio z nomogramu łożyska wieńcowego []. Aby wyeliminować te i inne wady dotychczas stosowanej metody opracowano system programów komputerowych do automatycznego sporządzania charakterystyk łożyska. Podstawowym wymaganiem, jakie postawiono przed tym systemem jest możliwość uzyskiwania wykresów dla wszystkich rodzajów łożysk wieńcowych tzw. grupy II, czyli tych łożysk w których wszystkie składowe obciążenia zewnętrznego są przenoszone przez te same rzędy części tocznych Dodatkowo uwzględniono możliwość analizy luzów łożyskowych i określania współczynników pewności łożyska dla określonego punktu pracy. Poprzez współczynnik pewności rozumiany jest iloraz obciążenia granicznego łożyska (wynikającego z krzywej nośności dla zadanej wartości parametru k) i rzeczywistego obciążenia zewnętrznego łożyska. Przy sporządzaniu charakterystyk łożyska przyjęto ten sam sposób jaki zaproponowano w pracy [], tzn. za charakterystykę łożyska M =f(q) dla zadanej wartości parametru H uważa się wspólną część pól pracy łożyska dla dodatniej i ujemnej wartości tego parametru. a system obliczania charakterystyk składają się cztery bloki programowe (trzy główne i jeden pomocniczy), które przetwarzają dane wykorzystując odpowiedni system plików z parametrami łożyska i wynikami obliczeń. Ogólny schemat wzajemnych powiązań między blokami systemu programów pokazano na rys. 4. Blok wprowadzania danych pozwala na wprowadzenie do programu wartości wszystkich koniecznych parametrów: 2

- rodzaju łożyska (jednorzędowe łożyska wałeczkowe krzyżowe, łożyska kulkowe jednorzędowe i dwurzędowe, łożyska kulkowe podwójne), - podstawowych wymiarów łożyska (średnicy tocznej, liczby i średnicy części tocznych, promienia zaokrąglenia bieżni, kąta działania, średnicy rozmieszczenia śrub mocujących i ich liczby, średnicy gwintu, sposobu rozmieszczenia tych śrub), - parametrów eksploatacyjnych (liczby i wartości luzów osiowych, liczby i wartości sił promieniowych, rzeczywistego punktu pracy, twardości bieżni), - parametrów numerycznych warunkujących poprawność całkowania numerycznego i odpowiednią dokładność rozwiązywania równań. blok wprowadzania danych dane obliczanych łożysk blok obliczeń numerycznych bieżące wyniki obliczeń blok graficzny i archiwizujący końcowe wyniki obliczeń blok przeglądania wyników wykresy nośności (charakterystyki) Rys. 4. Ogólny schemat systemu programów do obliczania nośności łożysk wieńcowych Blok obliczeń numerycznych stanowi jądro programu. Z uwagi na trudności numeryczne na jakie napotkano przy rozwiązywaniu łożysk opracowano specjalizowane procedury iteracyjne obliczania nośności dla kolejnych wartości parametru k, oraz specjalizowane, dostosowane do specyfiki równań równowagi łożysk, procedury rozwiązujące układy równań dla poszczególnych przypadków modelu łożyska (oparte o metodę ewtona z uwzględnieniem szeregu zabezpieczeń zapobiegającym rozbieganiu się ciągów iteracyjnych). Całki eliptyczne obliczano za pomocą algorytmu opartego o metodę Gaussa. Wartości wielu parametrów numerycznych zostały ustalone na podstawie eksperymentu numerycznego. Jak napisano powyżej, charakterystykę łożyska w postaci wykresu M = f(q) sporządza się tylko do pewnych wartości siły promieniowej H gr, jej definicję podano w [3]. Powyżej tej wartości zachodzi przypadek obciążenia łożyska tzw. dużą siłą promieniową, charakter pracy łożyska wieńcowego jest bardziej zbliżony do pracy łożyska promieniowego (oczywiście nadal uwzględnia się wszystkie trzy składowe obciążenia zewnętrznego). Przy obliczaniu charakterystyk w postaci M = f(q) dla dużych sił promieniowych napotkano ponadto na pewne trudności numeryczne. Zatem charakterystyki te zastępuje się charakterystykami typu M = f(h). a rys. 5 przedstawiono uproszczony schemat działań bloku numerycznego. Blok graficzny i archiwizujący pozwala na uzyskanie wykresów nośności łożyska według założonych parametrów. Blok ten pozwala na wydrukowanie charakterystyk łożysk wieńcowych dla zadanych wartości parametrów. a rys. 6 pokazano przykładowe charakterystyki łożyska wieńcowego uzyskane za pomocą omawianego systemu programów. Wyniki obliczeń są następnie archiwizowane dla wykorzystania przez blok przeglądania wyników. 3

Dane łożyska obliczanie mocowania? obliczanie śrub mocuj ących czy sporz ądza ć nomogram? czy obci ążenie promieniowe? obliczenia bez si promieniowych ł pe łne obliczenia charakterystyki M =f(q,h) charakterystyka M =f(q) dlah = 0 H 0? nomogram H H gr? charakterystyka M =f(q) dlah = 0 charakterystyka M =f(q) dlah = 0 Zapis wyników oblicze ń Rys. 5. Uproszczony schemat bloku numerycznego Rys. 6. Charakterystyki przykładowego łożyska wieńcowego: a) w postaci wykresu M = f(q) dla H = 500 k, b) w postaci wykresu M = f(h) dla Q = 2000 k linia gruba oznacza łożysko bezluzowe, linia cienka łożysko z luzem osiowym 0,3 mm 4

Blokiem pomocniczym jest blok przeglądania wyników, za pomocą którego można wydrukować wcześniej obliczone i zapisane charakterystyki łożysk. System zbudowano w dwóch wersjach programowych: dla systemu operacyjnego DOS, (można używać go również spod systemu Windows 95) oraz w wersji dla Windows 95/98. W przygotowaniu jest wersja dla sytemu operacyjnego Windows. UWAGI KOŃCOWE Przedstawiony powyżej w dużym skrócie schemat działania systemu programów do obliczania nośności statycznej łożysk wieńcowych pozwala na łatwe uzyskanie dowolnej charakterystyki każdego z powszechnie stosowanych typów łożysk. System ułatwia analizę konstrukcji łożysk pozwalając sporządzać charakterystyki dla różnych wartości luzów osiowych i dowolnych wartości sił promieniowych obciążających łożysko. Jest to szczególnie ważne dla użytkownika. System bloków programowych pozwala na modyfikację każdego z bloków niezależnie od pozostałych, ułatwia to wprowadzanie zmian do systemu, który jest systemem otwartym, podlegającym zmianom wynikającym z jednej strony z rozwoju metod obliczeniowych łożysk wieńcowych a z drugiej strony z modyfikacji metod numerycznych i usuwaniu usterek napotykanych przez użytkowników programu w trakcie obliczeń dla nietypowych parametrów. System obliczeń numerycznych pozwala na osiąganie założonej dokładności rozwiązywania równań. Przewiduje się w najbliższej przyszłości na powiązanie tego systemu z blokiem programów do obliczania trwałości łożysk wieńcowych, a w dalszej kolejności z blokiem do obliczania nośności ruchowej. Obecnie system jest rozbudowywany o procedury wspomagające automatyczne sporządzanie dokumentacji łożysk wieńcowych w powiązaniu z programem AutoCAD. LIERAURA. Dziurski A., Kania L. Mazanek E.: Charakterystyki łożysk wieńcowych. Przegląd Mechaniczny 990, 49, (20) s. 5-60. 2. Eschmann P., Hasberger L., Weigand K.: Die Wälzlagerpraxis. Oldenburg Verlag, München 978. 3. Dziurski A., Kania L. Mazanek E.: Charakterystyki łożysk wieńcowych obciążonych dużymi siłami promieniowymi. Zagadnienia Eksploatacji Maszyn 996, 3, (4) s. 509-528. 4. Mazanek E.: An Expanded Method for Calculating Load Carrying Capacity of Large- Dimensional wo-row Ball Bearings. Archiwum Budowy Maszyn 992, 39 (3). 5. Rothe Erde. Großwälzlager. Krupp, Dortmund 993. 6. Łożyska toczne wielkogabarytowe. Katalog informator. ZAFAMA, Zawiercie 997. ABSRAC DELIMIAIO OF SAIC LOAD CARRYIG CAPACIY DIAGRAMS FOR SLEWIG RIG RIMMED BEARIGS WIH USE OF COMPUAIOAL PROGRAMS. he most frequently applied diagram of load carrying capacity for slewing ring rimmed bearings is a diagram of M = f(q), where Q is an axial component of external loading of the bearing, and M is the so called overturning moment. Sometimes this diagram is unsatisfac- 5

tory because in many cases the capacity depends on a radial component H of external loading of a bearing. o obtain diagrams of that kind a system built on a base of a general diagram of load capacity M = f(q,h) is used. Applying those alignments chart systems is toilsome and the results may suffer approximation errors. he paper presents a manner of automatic preparation of characteristics of a bearing with the use of a proper system of programs making it possible to characterise all kinds of bearings, among others a bearing clearance, which has a great effect on the capacity and practical exploitation durability of a bearing. Pracę wykonano w ramach projektu badawczego r 7 07C 00 2 finansowanego przez Komitet Badań aukowych w latach 997-999. Recenzent: Jan Burcan 6