Porównanie kilku metod obliczania wartości gruntów leśnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Porównanie kilku metod obliczania wartości gruntów leśnych"

Transkrypt

1 Adam Zydroń, Ryszard Walkowiak, Krzysztof Moliński Porówaie kilk metod obliczaia wartości grtów leśych The compariso of several forest grod calclatig methods sylwa r 6: 3 11, 2007 ABSTRACT Zydroń A., Walkowiak R., Moliński K Porówaie kilk metod obliczaia wartości grtów leśych. Sylwa 6: I the paper the vales of forest grods were calclated sig profitable methods (Baz, Fastma, Martieit, Glaser, Riebel) as well as stadard methods. The reslts were also compared with the data cotaiig the vale of adjacet grods. The forestry maagemets sed for the research have bee typed accordig to atral, ecoomical ad social criteria. I order to compare the above metioed methods, the reslts have bee aalyzed by clster aalysis ad correlatio matrix. KEY WORDS forest grods calclatig, clster aalysis, correlatio matrix Addresses Adam Zydroń Katedra Melioracji, Kształtowaia Środowiska i Geodezji; Akademia Rolicza; l. Piątkowska 94E; Pozań; e mail: adzyd@a.poza.pl Ryszard Walkowiak Katedra Metod Matematyczych i Statystyczych; Akademia Rolicza; l. Wojska Polskiego 28; Pozań; e mail: rwal@a.poza.pl Krzysztof Moliński Katedra Metod Matematyczych i Statystyczych; Akademia Rolicza; l. Wojska Polskiego 28; Pozań; e mail: krys@a.poza.pl Wprowadzeie Problem wycey lasów wyika z ogólych przesłaek i procesów jakie kształtją się we współ czesej gospodarce. Zmierzają oe do stworzeia podstaw ocey zasobów atralych w cel poprawy ich sta, ochroy i racjoalego wykorzystaia [Partyka, Parzchowska 1993]. Zapotrzebowaie a metody rachkowe pieiężej wycey wartości drzewostaów, grtów leśych i iych ierchomości leśych pojawiło się w Polsce dopiero w latach dzie więćdziesiątych po trasformacji strojowej. W wyik powstaia ryk ierchomości stao wiących przedmiot wymiay, tj. kpa sprzedaży, asila się zapotrzebowaie a opracowaia traktjące o zasadach, metodach oraz procedrach wartościowaia różego rodzaj iercho mości leśych [Podgórski, Zydroń 2001]. Praktyka gospodarcza przyosi codzieie szereg sytacji, których rozwiązaie wymaga określeia wartości wszystkich rówocześie lb poszczególych tylko elemetów środowiska leśego. Dlatego za żytecze ależy zać wszystkie prace i stdia, których efektem koń cowym byłoby skostrowaie racjoalej i klarowej rówocześie metodyki ekoomiczej wycey środowiska leśego [Grszczyk, Żywioł 1990]. Ekoomika leśictwa ma w historyczym rozwoj iteresjący i waży rozdział tzw. statykę leśą, czyli akę o retowości gospodarstwa leśego oraz o szacowai las i jego

2 4 Adam Zydroń, Ryszard Walkowiak, Krzysztof Moliński podstawowych składików, tj. drzewostaów i grtów (gleb) leśych [Moleda 1945]. Statycy leśi opracowali metody określaia wartości spodziewaej grt leśego oparte a dochodzie. Wśród prac współczesych ekoomistów leśych związaych z tą tematyką badań moża przy toczyć prace: Podgórskiego [2001], Płotkowskiego [1994], Klocka [2000] oraz Zająca i Święto jańskiego [2002]. Wypracowae przez ekoomików leśych metody dochodowe wycey grtów leśych zastosowao w iiejszym opracowai. Celem przedstawioych badań było porówaie astępjących metod wycey grtów leśych: Baza, Riebla, Martieita, Fastmaa, Glasera, Stadard oraz metody opartej a wyceie grtów przyległych do leśych. Przeprowadzoe badaia przyczyią się do ocey przydatości we współczesym gospodarstwie leśym metod dochodowych wycey grtów leśych opracowaych przez statyków leśych. Porówaia metod wycey dokoao dla poszczególych typów siedliskowych w wybra ych adleśictwach. W tym cel zastosowao w pracy aalizę skpień wspartą obliczeiem macierzy korelacji. Na podstawie przeprowadzoych badań wskazao metody osiągające podob e wartości, co możliwi rozszerzeie współczesej metodyki wycey grtów leśych. Materiał badawczy Materiał badawczy staowiły dae z System Iformatyczego Lasów Państwowych (SILP) dotyczące pozyskaia sortymetów drzewych w żytkowai główym a poszczególych siedliskach. Dae z SILP pochodziły z obszar obejmjącego 17 adleśictw (Piaski, Babki, Piewy, Oboriki, Solec Kjawski, Włocławek, Wejherowo, Gdańsk, Kobiór, Krasiczy, Radymo, Garwoli, Sokołów, Hajówka, Agstów, Ełk i Swałki) podlegających admiistra cyjie pięci regioalym dyrekcjom Lasów Państwowych i leżących a obszarze ośmi woje wództw i sześci krai przyrodiczo leśych. Podstawową przesłaką dobor adleśictw było zapewieie możliwości przestrzeej reprezetacji całego kraj oraz możliwość zyskaia daych. Wybór wymieioych adleśictw był celowy, poieważ chodziło o określeie wartości grtów leśych a obszarach charakteryzjących się dżą zmieością czyików przyrodi czych i społeczo gospodarczych. Przy wyborze adleśictw do badań wzięto pod wagę kry teria: a) przyrodicze: zasobość drzewostaów, lesistość, b) ekoomicze: dochód miesięczy brtto a jedego mieszkańca, prodkcja sprzedaa przemysł, c) socjale: stopa bezrobocia, gęstość zaldieia a 1 km 2. Łączie dla wszystkich siedlisk występjących w aalizowaych adleśictwach pozyskao dae z 922 powierzchi zrębowych, które posłżyły do obliczeia wartości grtów leśych w przeliczei a 1 ha powierzchi. Na obszarze wybraych adleśictw występowały siedliska: Bór świeży (Bśw), Bór wilgoty (Bw), Bór mieszay świeży (BMśw), Bór mieszay wilgoty (BMw), Las łęgowy (Lł), Las mieszay świeży (LMśw), Las mieszay wilgoty (LMw), Las świeży (Lśw), Las wilgoty (Lw), Las wyżyy (Lwyż), Ols (Ols).

3 Porówaie kilk metod obliczaia wartości grtów leśych 5 Metodyka badań W cel porówaia metod opracowaych przez statyków leśych z metodami obecie stosowa ymi wybrao spośród współczesych metod: metodę Stadard V6 stosowaą w wyceie ierchomości przez rzeczozawców majątko wych, wartość grt rolego przyległego do wyceiaego grt leśego. Natomiast spośród metod dochodowych do porówaia wybrao metody, które w obliczeiach wykorzystją stopę procetową (Fastma, Baz, Riebel) i metody bez stopy procetowej (Glaser, Martieit). Po zebrai daych z SILP przystąpioo do obliczeia wartości grt leśego. W tym cel dokoao obliczeń pomociczych w kolejości: wartość pieięża poszczególych sortymetów a daym siedlisk (iloczy ilości sorty metów pozyskaego drewa i ich cey dla każdego gatk drzewa w przeliczei a jede hektar); sma kosztów prodkcji drewa dla daego siedliska; sma wartości pieiężej żytkowaia przedrębego i rębego. Założoo za Ladebergerem [1930], że wartość żytków przedrębych staowi 40% wartości żytkowaia główego. Przy obliczeiach, ze względ a dostępość daych, ie brao pod wagę czyików zewętrzych (współczyików korygjących) wpływających a wartość ierchomości. Następie obliczoo wartość grtów leśych: metodami dochodowymi opracowaymi przez statyków leśych, podejściem mieszaym zalecaym przez Stadard rzeczozawców majątkowych. Zebrao rówież dae o wartościach rykowych grtów rolych przyległych do wyceiaych grtów leśych celem porówaia z obliczoymi wartościami grtów leśych. W pracy przyjęto, a podstawie badań Podgórskiego [1991], stopę procetową w wysoko ści p=0,02. Ze względów techiczych (tabele, ryciy) azwy metod określaia wartości ier chomości leśych podao w formie proszczoej. W związk z tym wyróżioo metody: Fastmaa i Baza (wykorzystjące stopę procetową) oraz Glasera, Martieita i Riebla. Rówocześie w cel porówaia podao wartość grt leśego obliczoą podejściem mieszaym zalecaym przez rzeczozawców majątkowych oraz wartość rykową grtów rol ych przyległych do wyceiaych grtów. PODEJŚCIE MIESZANE ZALECANE DO STOSOWANIA PRZEZ STANDARD V6 RZECZOZNAWCÓW MAJĄTKOWYCH. Wartość grt leśego przy zastosowai podejścia mieszaego, metody wskaźików szackowych grtów (W gl ) oblicza się wedłg wzor: W æ gl = å N szij Pi C 3 1m dr ç1 + å v i i = 1 è i = 1 gdzie: N szij wskaźik szackowy dla i tej grpy typ siedliskowego lasów oraz j tego okręg podatkowego, powierzchia ierchomości leśej w i tej grpie typ siedliskowego, P i ( ) ø ö

4 6 Adam Zydroń, Ryszard Walkowiak, Krzysztof Moliński C 1m 3 dr cea jedego metra sześcieego drewa, v i współczyiki korekcyje względiające szczególe cechy rykowe (p.: stopień degradacji siedliska leśego, jakość drogi dojazdowej itp.) przyjmowae z tabel (Sta dard V6). METODY DOCHODOWE OBLICZANIA WARTOŚCI GRUNTU LEŚNEGO. Poiżej podajemy ieco prze kształcoe wzory obliczaia wartości grt leśego, zaczerpięte z pracy Ladebergera [1930]: a) wzór Fastmaa -i A + å Di (1 + p) - C(1 + p) i = 1 v B = - (1 + p) - 1 p gdzie: B wartość dochodowa grt leśego, A wartość żytków rębych pozyskaych w wiek (po potrącei kosztów pozy skaia), D i wartość żytków międzyrębych pobraych odpowiedio w wiek i=1, 2,..., liczba żytków międzyrębych, C koszty założeia praw a powierzchiach objętych żytkowaiem rębym, v rocze koszty admiistracyje, wiek kolei ręb, p stopa procetowa, b) wzór Riebla B A = å Di - ( q + k s ) i = 1 [( 1 + p) 1] + c) wzór Baza gdzie: k s koszty zarząd. B = A + å D i - ( q + k i = 1 p(1 + p) / 2 s ) d) wzór Glasera B = 600A 2 e) wzór Martieita B = 0,5A 0,035 WARTOŚĆ RYNKOWA GRUNTÓW ROLNYCH. Wartość rykową grtów rolych dla odpowiedich terytorialie adleśictw pozyskiwao z opracowań Główego Urzęd Statystyczego. Grty role w opracowaiach GUS są pogrpowae a słabe, średie i dobre. Odpowiedio do tego podział, wykorzystjąc zasady opracowae przez Mroczkiewicza i Tramplera [Pchalski, Prsikiewicz 1990], pogrpowao siedliska leśe a:

5 Porówaie kilk metod obliczaia wartości grtów leśych 7 siedliska bardzo dobre (lasowe), siedliska dobre (lasy mieszae), siedliska średie (bory mieszae), siedliska słabe (bory). W cel porówaia grtów leśych z rolymi, siedliska leśe przyporządkowao odpowiedim grpom grtów rolych. W związk z tym przyjęto, że: siedliska bardzo dobre (lasowe) i dobre (lasy mieszae) to odpowiedik grtów rolych dobrych (klasy boitacyje III i lepsze), siedliska średie (bory mieszae) to odpowiedik grtów rolych średich (klasa boi tacyja IV), siedliska słabe (bory) to odpowiedik grtów rolych słabych (klasy boitacyje V i VI). METODY STATYSTYCZNE ZASTOSOWANE W PRACY. Wartości grtów zyskae za pomocą wymie ioych metod wycey poddao badaiom eksploracyjym. Następie zbadao korelacje między poszczególymi metodami wycey grtów [Eladt 1964]. Ostateczie, stosjąc aalizę skpień metodą Warda [Marek 1989] pogrpowao metody wycey w ramach poszczególych siedlisk w grpy dające podobe wyiki wycey. W bada iach wykorzystao program kompterowy do aaliz statystyczych pakiet STATISTICA Wyiki badań W tabeli 1 zamieszczoo średie i odchyleia stadardowe wartości grtów w poszczególych środowiskach obliczoe badaymi metodami. Średie te różią się dość zaczie. Dże warto ści odchyleń stadardowych, przekraczające iekiedy awet połowę wartości średiej, świadczą o dżej zmieości wycey. Tym iemiej z aalizy średich i odchyleń stadardowych (tab. 1) oraz współczyików korelacji (tab. 2) wyikają pewe prawidłowości. Metody dochodowe: Glasera, Baza, Riebla, Martieita i Fastmaa są silie dodatio skorelowae, tz. większej wyceie grt jedą z tych metod towarzyszy wyższa wycea pozostałymi metodami. Natomiast metody stadardowe i porówaie z wyceą grtów rolych ie wykazją żadego związk z metodami dochodowymi. Macierz korelacji pokazje tylko,,podobieństwo zmieości poszczególych metod. Aby wychwycić podobieństwo w wartościach zyskiwaych poszczególymi metodami zastosowao grpowaie wyików metodą aalizy skpień Warda. Ryciy 1 i 2 (dedrogramy) przedstawiają grpowaie metod wycey wartości grt leśego i rolego charakterystycze dla typów siedliskowych w badaych adleśictwach. W większości aalizowaych adleśictw i typów siedliskowych badae metody tworzyły dwie grpy: grpa 1 metody wedłg: Glasera, Riebla, Stadard (małe wartości wycey), grpa 2 metody wedłg: Fastmaa, Baza, wartość rykowa grtów rolych (dże wartości wycey). Metoda wedłg Martieita, dająca średie wartości wycey, była przydzielaa do grpy pierw szej (Lśw, Lł, Ol) lb, częściej, do grpy drgiej (pozostałe siedliska). Moża zaważyć, że w grpie pierwszej metody wedłg Glasera i Riebla są do siebie bar dzo zbliżoe (mają ajmiejsze odległości wiązaia), atomiast metoda wg Stadard łączy się z tymi dwoma metodami przy większych odległościach wiązaia. W grpie 2 metody wedłg

6 8 Adam Zydroń, Ryszard Walkowiak, Krzysztof Moliński Tabela 1. Średie i odchyleia stadardowe wartości grtów w poszczególych typach siedliskowych Mea stadard deviatio of lad vale for idividal forest habitat types Glaser Riebel Martieit Baz Fastma Stadard Role Siedlisko odch. odch. odch. odch. odch. odch. odch. średia średia średia średia średia średia średia stad. stad. stad. stad. stad. stad. stad. BMśw 2904,18 974, ,53 960, , , , , , , ,25 286, ,86 699,55 BMw 1918,66 702, ,79 814, , , , , , , ,84 285, ,97 826,61 Bśw 2017,68 948, ,48 823, , , , , , , ,15 74, ,69 321,49 Bw 1885,41 256, ,41 300, ,79 740, ,55 776, ,38 659, ,29 470, ,05 275,43 Lł 2057,53 593, ,05 766, ,21 833, , , , , ,08 256, , ,15 LMśw 2692,63 650, ,91 898, , , , , , , ,46 371, , ,33 LMw 1946,65 535, ,82 559, , , , , , , ,57 439, , ,59 Lśw 2778, , , , , , , , , , ,18 450, , ,87 Lw 2900, , , , , , , , , , ,10 517, , ,74 Ol 2469,52 651, ,39 905, , , , , , , ,82 228, , ,91 Ogółem 2366, , , , , , , , , , ,57 682, , ,71 Baza i Fastmaa są do siebie bardzo zbliżoe (mała odległość wiązaia) i po adto wiążą się z imi metody wedłg: Martieita, wartość rykowa grtów rol ych (przy większych odległościach wią zaia). Łączeie w pierwszej i drgiej grpie odbywa się w podoby sposób a siedliskach: bor świeżego i bor wilgot ego, bor mieszaego świeżego i bor mieszaego wilgotego. Metody Glasera i Riebla we wszyst kich badaych typach siedliskowych dają bardzo podobe wartości wycey (mała odległość wiązaia). Natomiast w grpie drgiej, a siedliskach: las mieszaego świeżego, las mieszaego wilgotego, las świeżego, las łęgowego i las wilgo tego występją dość zacze różice w grpowai. Aby powiązać wioski wyikające z aalizy skpień i macierzy korelacji, przedstawioo a wykresie (ryc. 3) śred ie wycey zyskae wybraą z grpy pierwszej metodą Baza, z grpy drgiej metodą Glasera oraz metodą Stadard i wycey grtów rolych. Okazje się, że metody dochodowe, mimo silego skorelowaia, wykazją dże różice w średich wartościach wycey grtów. Skorelowaie zobrazowae jest podobą zmieością odpowiedich łamaych. Aalogicze wioski moża wyciągąć w stosk do metody Stadard i wyce y grtów rolych. Średie wycey dokoae tymi metodami różią się zaczie, ale charakter ich zmieości jest podoby, róży jedak od charakter zmieości metod dochodowych. Stąd współczyiki korelacji metod dochodo wych ze Stadardem i z wyceą grtów rolych są bliskie zer. Średie wartości wycey metodą Stadard zbliżoe są do wartości zyskaych metodą Glasera, zatem, po zastosowai aalizy skpień, metoda

7 Porówaie kilk metod obliczaia wartości grtów leśych 9 Stadard zaliczoa została do grpy 2. Średie wycey grtów rolych zbliżoe są do śred iej wycey metodą Baza, zatem została oa zaliczoa do grpy 1. Podsmowaie badań Aaliza statystycza wykazała istieie ścisłego związk między metodami wedłg Glasera, Riebla i Stadardem. Na tej podstawie moża wioskować, że metoda wedłg Stadard mogłaby być zastąpioa metodą wedłg Glasera lb Riebla. Przyczyiłoby się to do rozbdo waia współczesej metodyki wycey grtów leśych przez względieie prodkcyjości daego typ siedliskowego. Tabela 2. Wartość współczyików korelacji dla wszystkich badaych metod Correlatio coefficiet vales for all aalysed methods Zmiea Grty Glaser Riebel Martieit Baz Fastma Stadard (metody wycey) role Glaser 1,00 0,98 0,93 0,98 0,98 0,01 0,02 Riebel 0,98 1,00 0,90 0,99 0,99 0,00 0,04 Martieit 0,93 0,90 1,00 0,94 0,91 0,08 0,08 Baz 0,98 0,99 0,94 1,00 0,99 0,04 0,07 Fastma 0,98 0,99 0,91 0,99 1,00 0,04 0,06 Stadard 0,01 0,00 0,08 0,04 0,04 1,00 0,74 Grty role 0,02 0,04 0,08 0,07 0,06 0,74 1,00 Diagram drzewa; metoda Warda; odległ. eklidesowa Glaser Riebel Stadard Martieit Fastma Baz Role Ryc. 1. Dedrogram grpowaia metod obliczaia wartości grt leśego i rolego dla typ siedliskowego las mieszaego świeżego Dedrogram of gropig forest ad agricltral lad vale calclatio methods for fresh mixed broadleaved forest type

8 10 Adam Zydroń, Ryszard Walkowiak, Krzysztof Moliński Diagram drzewa; metoda Warda; odległ. eklidesowa Glaser Stadard Riebel Martieit Baz Fastma Role Ryc. 2. Dedrogram grpowaia metod obliczaia wartości grt leśego i rolego dla typ siedliskowego las łęgowego Dedrogram of gropig forest ad agricltral lad vale calclatig methods for floodplai forest type Ryc. 3. Zmieość wartości wycey grtów leśych dla wybraych metod średie wartości wycey grtów leśych Variability of forest lad calclatio vales for the selected methods. Average forest lad calclatio vales

9 Porówaie kilk metod obliczaia wartości grtów leśych 11 Metoda wykorzystjąca wartość rykową grtów rolych została zaliczoa do grpy drgiej, razem z metodami Baza, Fastmaa i Martieita, ze względ a podobą średią wartość wycey grtów leśych, zaczie większą iż metody Stadard, Glasera i Riebla. Jedak różice między tą metodą a pozostałymi metodami z grpy drgiej a poszczególych typach siedliskowych są tak dże (ryc. 3), że metoda ta ie powia zastępować żadej z metod dochodowych. Literatra Eladt R Statystyka matematycza w zastosowaiach do doświadczalictwa roliczego. PWN Warszawa. Grszczyk A., Żywioł M Jak wyceiać grty leśe? Las Pol. 17: 4. Klocek A Jaka reta leśa. Wartość dochodowa (kapitałowa) las. Głos Las 11: 5 6. Ladeberger J Oceieie las i statyka leśa. Maszyopis. Lwów. Marek T Aaliza skpień w badaiach empiryczych. Metody SAHN. PWN, Warszawa. Moleda T Wyceiaie ierchomości leśych w ekoomii i w techice. (maszyopis). Koło Leśików UP, Pozań. Partyka T., Parzchowska J Metodyka wartościowaia las oraz poszczególych jego składików. Sylwa 8: Podgórski M Podstawy wycey lasów. Zachodie Cetrm Orgaizacji, Zieloa Góra. Podgórski M Próba wycey wartości prodkcyjej las a podstawie wskaźika etat żytkowaia las i wielkości zmiay zapas drzewego a pi. PTPN t. 72, Pozań. Podgórski M., Zydroń A Możliwości wykorzystaia zmodyfikowaego rachk leśej stopy procetowej do wartościowaia las i jego składików. PTPN t. 90, Pozań. Pchalski T., Prsikiewicz Z Ekologicze podstawy siedliskozawstwa leśego. Wyd II. PWRiL, Warszawa. Płotkowski L Las to także kapitał. Las Polski 3: 4 7. Rozporządzeie Miistra Fiasów z r. w sprawie zaliczeia gmi oraz miast do jedego z czterech okręgów podatkowych Dz. U. 143, poz Stadard V Określeie wartości ierchomości leśych oraz zadrzewioych i zakrzewioych. Polska Federacja Stowarzyszeń Rzeczozawców Majątkowych, Warszawa. Zając S., Świętojański A Podstawy metodycze wycey las. Sylwa 146, 3: smmary The compariso of several forest grod calclatig methods The statistical aalysis showed that there is a strict relatioship betwee the Glaser, the Riebel ad the stadard lad vale calclatio methods. Therefore, it ca be coclded that the stadard method cold be replaced by oe of the above metioed methods.this provides a possibility of extesio for the forest lad vale calclatio method to iclde the evalatio of prodctivity of a give forest habitat type. The method of calclatio of the market vale of agricltral lad was classified ito the secod grop of methods, alog with the Baz, the Fastma ad the Martieit methods, sice the average forest lad vale was cosiderably higher i compariso with the stadard, the Riebel ad the Glaser methods. However, the differeces betwee the preseted method ad the other grops of calclatio methods for certai habitat types were so large that this method shold ot replace ay of the methods.

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

OCENA METOD OBLICZANIA ŁADUNKÓW ZANIECZYSZCZEŃ WYMYWANYCH ZE ZLEWNI. Mariusz Sojka, Sadżide Murat-Błażejewska, Jolanta Kanclerz

OCENA METOD OBLICZANIA ŁADUNKÓW ZANIECZYSZCZEŃ WYMYWANYCH ZE ZLEWNI. Mariusz Sojka, Sadżide Murat-Błażejewska, Jolanta Kanclerz Acta Sci. Pol., Formatio Circumiectus 6 (1) 2007, 3 13 OCENA METOD OBLICZANIA ŁADUNKÓW ZANIECZYSZCZEŃ WYMYWANYCH ZE ZLEWNI Mariusz Sojka, Sadżide Murat-Błażejewska, Jolata Kaclerz Akademia Rolicza w Pozaiu

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Na podstawie art. 55a ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz. U. z 2013 r. poz. 1409) zarządza się, co następuje:

Na podstawie art. 55a ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz. U. z 2013 r. poz. 1409) zarządza się, co następuje: Projekt z dia 16.12.2013 r. Rozporządzeie Miistra Ifrastruktury i Rozwoju 1) z dia.. 2013 r. w sprawie metodologii obliczaia charakterystyki eergetyczej budyku i lokalu mieszkalego lub części budyku staowiącej

Bardziej szczegółowo

Analiza potencjału energetycznego depozytów mułów węglowych

Analiza potencjału energetycznego depozytów mułów węglowych zaiteresowaia wykorzystaiem tej metody w odiesieiu do iych droboziaristych materiałów odpadowych ze wzbogacaia węgla kamieego ależy poszukiwać owych, skutecziej działających odczyików. Zdecydowaie miej

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika

Wpływ warunków eksploatacji pojazdu na charakterystyki zewnętrzne silnika POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszy Istrukcja do zajęć laboratoryjych z przedmiotu: EKSPLOATACJA MASZYN Wpływ waruków eksploatacji pojazdu a charakterystyki

Bardziej szczegółowo

Planowanie gospodarki przyszłej

Planowanie gospodarki przyszłej Planowanie gospodarki przyszłej Planowanie gospodarki przyszłej Określenie rozmiaru użytkowania ETAT Planowanie gospodarki przyszłej Podział na gospodarstwa Struktura klas wieku Wiek dojrzałości TKW kolej

Bardziej szczegółowo

Instytut Badawczy Leśnictwa

Instytut Badawczy Leśnictwa Instytut Badawczy Leśnictwa www.ibles.pl Drzewostany Puszczy Białowieskiej w świetle najnowszych badań monitoringowych Rafał Paluch, Łukasz Kuberski, Ewa Zin, Krzysztof Stereńczak Instytut Badawczy Leśnictwa

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

ANALYSIS OF LOCAL AGRICULTURAL BIOMASS RESOURCES IN ŁASIN COMMUNITY

ANALYSIS OF LOCAL AGRICULTURAL BIOMASS RESOURCES IN ŁASIN COMMUNITY 28 Staisław Stowarzyszeie Bielski, Aleksader Mikołaj Ekoomistów Jasiński Rolictwa i Agrobizesu Rocziki Naukowe tom XVI zeszyt 4 Staisław Bielski, Aleksader Mikołaj Jasiński Uiwersytet Warmińsko-Mazurski

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

AUDYT SYSTEMU GRZEWCZEGO

AUDYT SYSTEMU GRZEWCZEGO Wytycze do audytu wykoao w ramach projektu Doskoaleie poziomu edukacji w samorządach terytorialych w zakresie zrówoważoego gospodarowaia eergią i ochroy klimatu Ziemi dzięki wsparciu udzieloemu przez Isladię,

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

ISSN 1898-6447. Zeszyty Naukowe. Uniwersytet Ekonomiczny w Krakowie. Cracow Review of Economics and Management. Metody analizy danych.

ISSN 1898-6447. Zeszyty Naukowe. Uniwersytet Ekonomiczny w Krakowie. Cracow Review of Economics and Management. Metody analizy danych. ISSN 1898-6447 Uiwersytet Ekoomiczy w Krakowie Zeszyty Naukowe Cracow Review of Ecoomics ad Maagemet 93 Metody aalizy daych Kraków 013 Rada Naukowa Adrzej Atoszewski (Polska), Slavko Arsovski (Serbia),

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Przyrodnicze uwarunkowania gospodarki przestrzennej PUGP. Ćwiczenie 1 zagadnienia wprowadzające do informacji o środowisku przyrodniczym

Przyrodnicze uwarunkowania gospodarki przestrzennej PUGP. Ćwiczenie 1 zagadnienia wprowadzające do informacji o środowisku przyrodniczym Przyrodnicze uwarunkowania gospodarki przestrzennej PUGP Ćwiczenie 1 zagadnienia wprowadzające do informacji o środowisku przyrodniczym Zagadnienia wprowadzające czyli przypomnienie - po trochę o wszystkim

Bardziej szczegółowo

Podejście mieszane w wycenie nieruchomości

Podejście mieszane w wycenie nieruchomości Podejście mieszane w wycenie nieruchomości ci PODEJŚCIE MIESZANE 15-19 19 RozpWyc Nota Interpretacyjna Nr 4: Zastosowanie metody pozostałościowej w wycenie nieruchomości ci PODEJŚCIE MIESZANE [założenie]

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia Ewelia Majka, Katarzya Kociuba-Adamczuk, Mariola Bałos Wpływ religijości a ukształtowaie postawy wobec eutaazji The impact of religiosity o the formatio of attitudes toward euthaasia Ewelia Majka 1, Katarzya

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA

ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA SYSTEMY WSPOMAGANIA W INŻYNIERII PRODUKCJI Środowisko i Bezpieczeństwo w Iżyierii Produkcji 2013 5 ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA 5.1 WPROWADZENIE

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

Właściwości gleb oraz stan siedliska w lasach drugiego pokolenia na gruntach porolnych Marek Ksepko, Przemysław Bielecki

Właściwości gleb oraz stan siedliska w lasach drugiego pokolenia na gruntach porolnych Marek Ksepko, Przemysław Bielecki Właściwości gleb oraz stan siedliska w lasach drugiego pokolenia na gruntach porolnych Marek Ksepko, Przemysław Bielecki J. Porowski W zasięgu administrowanym przez RDLP w Białymstoku powierzchnia lasów

Bardziej szczegółowo

Projekt z dnia 8.07.2013 r.

Projekt z dnia 8.07.2013 r. Projekt z dia 8.07.2013 r. Rozporządzeie Miistra Trasportu, Budowictwa i Gospodarki Morskiej 1) z dia.. 2013 r. w sprawie metodologii obliczaia charakterystyki eergetyczej budyku i lokalu mieszkalego lub

Bardziej szczegółowo

Wytwarzanie energii odnawialnej

Wytwarzanie energii odnawialnej Adrzej Nocuñ Waldemar Ostrowski Adrzej Rabszty Miros³aw bik Eugeiusz Miklas B³a ej yp Wytwarzaie eergii odawialej poprzez współspalaie biomasy z paliwami podstawowymi w PKE SA W celu osi¹giêcia zawartego

Bardziej szczegółowo

Michał Księżakowski Project Manager (Kraków, 17.02.2012)

Michał Księżakowski Project Manager (Kraków, 17.02.2012) Ekoomicze aspekty budowy biogazowi i dystrybucji biogazu Michał Księżakowski Project Maager (Kraków, 17.02.2012) Czyiki warukujące budowę biogazowi Uwarukowaia Ekoomicze Prawe Techologicze Aspekty Prawe

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Zbigniew Filipek. Dyrekcja Generalna Lasów Państwowych

Zbigniew Filipek. Dyrekcja Generalna Lasów Państwowych Porównanie wyników i pracochłonności dwóch metod jesiennych poszukiwań szkodników liściożernych sosny w drzewostanach na terenie Leśnych Kompleksów Promocyjnych Zbigniew Filipek Dyrekcja Generalna Lasów

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r.

ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dnia 21 października 2011 r. Dzieik Ustaw Nr 251 14617 Poz. 1508 1508 ROZPORZĄDZENIE MINISTRA NAUKI I SZKOLNICTWA WYŻSZEGO 1) z dia 21 paździerika 2011 r. w sprawie sposobu podziału i trybu przekazywaia podmiotowej dotacji a dofiasowaie

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekoomisty Mieriki wzrostu gospodarczego dr Baha Kaliowska-Sufiowicz Uiwersytet Ekoomiczy w Pozaiu 7 marca 2013 r. Ayoe who believes that expotetial growth ca go o for ever i a fiite world

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

Metody oceny projektów inwestycyjnych

Metody oceny projektów inwestycyjnych Metody ocey projektów iwestycyjych PRZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Pla wykładu Temat: Metody ocey projektów iwestycyjych 5 FINANSOWE METODY OCENY PROJEKTÓW INWESTYCYJNYCH... 4 5.1. WPROWADZENIE...

Bardziej szczegółowo

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne

POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka

Bardziej szczegółowo

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r.

Warszawa, dnia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dnia 18 października 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dia 9 listopada 2012 r. Poz. 1229 ROZPORZĄDZENIE MINISTRA GOSPODARKI 1) z dia 18 paździerika 2012 r. w sprawie szczegółowego zakresu obowiązków uzyskaia

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych Iwetta Budzik-Nowodzińska SZACOWANIE WARTOŚCI DOCHODOWEJ PRZEDSIĘBIORSTWA STUDIUM PRZYPADKU Wprowadzeie Dochodowe metody wycey wartości przedsiębiorstw są postrzegae, jako ajbardziej efektywe sposoby określaia

Bardziej szczegółowo

Parametryczne Testy Istotności

Parametryczne Testy Istotności Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać

Bardziej szczegółowo

Analiza możliwości wykorzystania istniejącej infrastruktury urządzeń wodno-melioracyjnych na obszarze Nadleśnictwa Taczanów na potrzeby małej retencji

Analiza możliwości wykorzystania istniejącej infrastruktury urządzeń wodno-melioracyjnych na obszarze Nadleśnictwa Taczanów na potrzeby małej retencji Analiza możliwości wykorzystania istniejącej infrastruktury urządzeń wodno-melioracyjnych na obszarze Nadleśnictwa Taczanów na potrzeby małej retencji dr hab. Tomasz Kałuża Katedra Inżynierii Wodnej i

Bardziej szczegółowo

3.1. Charakterystyka próby oraz metodyka badań

3.1. Charakterystyka próby oraz metodyka badań Praktyka polskich przedsiębiorstw w zakresie zarządzaia majątkiem obrotowym 201 3. Praktyka polskich przedsiębiorstw w zakresie zarządzaia majątkiem obrotowym i jego wpływu a proces kreowaia wartości przedsiębiorstwa

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

Okresy i stopy zwrotu nakładów inwestycyjnych w ocenie efektywności inwestycji rzeczowych

Okresy i stopy zwrotu nakładów inwestycyjnych w ocenie efektywności inwestycji rzeczowych Ekoomia Meedżerska 2009, r 5, s. 45 62 Marek Łukasz Michalski* Okresy i stopy zwrotu akładów iwestycyjych w oceie efektywości iwestycji rzeczowych 1. Wprowadzeie Podstawowym celem przedsiębiorstwa, w długim

Bardziej szczegółowo

Czy można budować dom nad klifem?

Czy można budować dom nad klifem? Przyrodnicze uwarunkowania gospodarki przestrzennej [PUGP] Ćwiczenie 1 zagadnienia wprowadzające do informacji o środowisku przyrodniczym Zagadnienia wprowadzające czyli przypomnienie - po trochę o wszystkim

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Wykład 11 ( ). Przedziały ufności dla średniej

Wykład 11 ( ). Przedziały ufności dla średniej Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo

Klasyfikacja inwestycji materialnych ze względu na ich cel:

Klasyfikacja inwestycji materialnych ze względu na ich cel: Metodologia obliczeia powyższych wartości Klasyfikacja iwestycji materialych ze względu a ich cel: mające a celu odtworzeie środków trwałych lub ich wymiaę w celu obiżeia kosztów produkcji, rozwojowe:

Bardziej szczegółowo

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG

TRANSFORMACJA DO UKŁADU 2000 A PROBLEM ZGODNOŚCI Z PRG Tomasz ŚWIĘTOŃ 1 TRANSFORMACJA DO UKŁADU 2000 A ROBLEM ZGODNOŚCI Z RG Na mocy rozporządzeia Rady Miistrów w sprawie aństwowego Systemu Odiesień rzestrzeych już 31 grudia 2009 roku upływa termi wykoaia

Bardziej szczegółowo

Operat ochrony szaty roślinnej i grzybów. Plan ochrony dla Kozienickiego Parku Krajobrazowego Etap I Diagnoza stanu

Operat ochrony szaty roślinnej i grzybów. Plan ochrony dla Kozienickiego Parku Krajobrazowego Etap I Diagnoza stanu Operat ochrony szaty roślinnej i grzybów Plan ochrony dla Kozienickiego Parku Krajobrazowego Etap I Diagnoza stanu Zespół autorski Dr Bartosz Piwowarski zbiorowiska nieleśne, analiza florystyczna, opracowanie

Bardziej szczegółowo

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie

Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ Nr 573 Ekoomia XXXIX 2001 BŁAŻEJ PRUSAK Katedra Ekoomii i Zarządzaia Przedsiębiorstwem METODY OCENY PROJEKTÓW INWESTYCYJNYCH Celem artykułu jest przedstawieie metod

Bardziej szczegółowo

Zmiany w zarządzaniu jakością w polskich szpitalach

Zmiany w zarządzaniu jakością w polskich szpitalach Łopacińska Hygeia Public I, Tokarski Health 2014, Z, Deys 49(2): A. 343-347 Zmiay w zarządzaiu jakością w polskich szpitalach 343 Zmiay w zarządzaiu jakością w polskich szpitalach Quality maagemet chages

Bardziej szczegółowo

HODOWLA LASU. Może na początek ogólne wiadomości co to jest las

HODOWLA LASU. Może na początek ogólne wiadomości co to jest las HODOWLA LASU Może na początek ogólne wiadomości co to jest las Las- jest to zbiorowisko drzew i krzewów oraz zwierząt, które wraz ze swoistą glebą wzajemnie na siebie oddziaływają i tworzą specyficzny

Bardziej szczegółowo

dawniej Tom

dawniej Tom Poznańskie Towarzystwo Przyjaciół Nauk Wydział Nauk rolniczych i leśnych Forestry Letters dawniej Prace komisji nauk rolniczych i komisji nauk leśnych Tom 104 2013 Wpływ systemów wynagradzania na koszty

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 15(3) 2016,

Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 15(3) 2016, SCIENTIARUM POLONORUMACTA Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 15(3) 2016, 161 167 www.forestry.actapol.net FORESTRY AND WOOD TECHNOLOGY pissn 1644-0722 eissn 2450-7997 DOI: 10.17306/J.AFW.2016.3.18

Bardziej szczegółowo

OPIS ZADANIA. (każde zadanie jest opisywane oddzielnie) zastawka wzmocniona zastawka drewniano- kamienna

OPIS ZADANIA. (każde zadanie jest opisywane oddzielnie) zastawka wzmocniona zastawka drewniano- kamienna Załącznik nr 8 do SIWZ OPIS ZADANIA (każde zadanie jest opisywane oddzielnie) Nr i nazwa nadleśnictwa Kody obiektów oraz typy obiektów 10-34 Różańsko Nr zadania 10-34-04 10-34-04-1- zastawka wzmocniona

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Metody analizy długozasięgowej

Metody analizy długozasięgowej Copyright (c) 999-00 by Hugo Steihaus Ceter Metody aalizy długozasięgowej Adrzej Zacharewicz Warsztat aalizy zależości długotermiowej jest wciąż rozwijay i udoskoalay. Od czasów Hursta (95) i jego aalizy

Bardziej szczegółowo

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU

ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI, Piotr GRZEGORCZYK ALGORYTM OPTYMALIZACJI PARAMETRÓW EKSPLOATACYJNYCH ŚRODKÓW TRANSPORTU Streszczeie W artykule zaprezetowao algorytm wyzaczaia optymalych parametrów

Bardziej szczegółowo

Porównanie dwu populacji

Porównanie dwu populacji Porówaie dwu populacji Porówaie dwóch rozkładów ormalych Założeia:. X ~ N( m, σ ), X ~ N( m, σ ), σ σ. parametry rozkładów ie ą zae. X, X ą iezależe. Ocea różicy między średimi m m m m x x (,...) H 0 :

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Państwowe Gospodarstwo Leśne Lasy Państwowe WYNIKI AKTUALIZACJI

Państwowe Gospodarstwo Leśne Lasy Państwowe WYNIKI AKTUALIZACJI Państwowe Gospodarstwo Leśne Lasy Państwowe WYNIKI AKTUALIZACJI stanu powierzchni leśnej i zasobów drzewnych w lasach poza zarządem PGL Lasy Państwowe na dzień 1 stycznia 2018 roku Praca wykonana przez

Bardziej szczegółowo

Wp³yw wdro enia Zintegrowanego Systemu Informatycznego na przewagê konkurencyjn¹ Grupy LOTOS SA

Wp³yw wdro enia Zintegrowanego Systemu Informatycznego na przewagê konkurencyjn¹ Grupy LOTOS SA Wp³yw wdro eia Zitegrowaego Systemu Iformatyczego a przewagê kokurecyj¹ Grupy LOTOS SA Warszawa, 22 listopada 2004 r. Tadeusz Rogaczewski, Szef Biura Zarz¹dzaia Iformatyk¹ Warszawa, 22 listopada 2004 r.

Bardziej szczegółowo

ZASTOSOWANIE METODY ANALIZY STATYSTYCZNEJ RYNKU W SZACOWANIU WARTOŚCI TECHNICZNYCH ŚRODKÓW PRODUKCJI NA PRZYKŁADZIE CIĄGNIKA ROLNICZEGO

ZASTOSOWANIE METODY ANALIZY STATYSTYCZNEJ RYNKU W SZACOWANIU WARTOŚCI TECHNICZNYCH ŚRODKÓW PRODUKCJI NA PRZYKŁADZIE CIĄGNIKA ROLNICZEGO Inżynieria Rolnicza 6(94)/2007 ZASTOSOWANIE METODY ANALIZY STATYSTYCZNEJ RYNKU W SZACOWANIU WARTOŚCI TECHNICZNYCH ŚRODKÓW PRODUKCJI NA PRZYKŁADZIE CIĄGNIKA ROLNICZEGO Zbigniew Kowalczyk Katedra Inżynierii

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM

ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM Katarzya Zeug-Żebro Uiwersytet Ekoomiczy w Katowicach Katedra Matematyki katarzya.zeug-zebro@ue.katowice.pl ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM Wprowadzeie Zjawisko starzeia

Bardziej szczegółowo

1 Testy statystyczne. 2 Rodzaje testów

1 Testy statystyczne. 2 Rodzaje testów 1 Testy statystycze Podczas sprawdzaia hipotez statystyczych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ a odrzuceiu hipotezy zerowej (H 0 ), gdy jest oa prawdziwa, czyli

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Zakład Systemów Zasilania (Z-5) Opracowanie nr 292/Z5 z pracy statutowej pt.

Zakład Systemów Zasilania (Z-5) Opracowanie nr 292/Z5 z pracy statutowej pt. Zakład Systemów Zasilaia (Z-5) Opracowaie r 292/Z5 z pracy statutowej pt. Aaliza istiejących w Polsce regioalych różic wartości czyików wpływających a koszt eergii używaej w telekomuikacyjych systemach

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

WYBRANE METODY DOSTĘPU DO DANYCH

WYBRANE METODY DOSTĘPU DO DANYCH WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo

Bardziej szczegółowo