PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
|
|
- Edyta Wilk
- 9 lat temu
- Przeglądów:
Transkrypt
1 Miejsce na nakl ejkê z ko dem szko³y dys leks ja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2009 r. Czas pra cy 180 mi nut In strukc ja dla zdaj¹cego 1. Sp raw dÿ, czy ar kusz eg zam ina cyj ny za wiera 13 stron (za dan ia 1 11). Ewent ual ny brak zg³oœ prze wodn icz¹cemu ze spo³u nad zor uj¹cego eg zam in. 2. Roz wi¹za nia za dañ i od pow iedzi za mie œæ w miej scu na to prze znac zonym. 3. W roz wi¹za niach za dañ przed staw tok ro zum owa nia pro wadz¹cy do ostat eczne go wy niku. 4. Pisz czy teln ie. U y waj d³ugop isu/pióra tyl ko z czar nym tu szem/atram entem. 5. Nie u ywaj ko rekt ora, a b³êdne za pisy pr zek reœl. 6. Pam iêtaj, e za pisy w brud nop isie nie pod leg aj¹ ocen ie. 7. Obok ka d ego za dan ia poda na jest maksymalna liczba punktów, któr¹ mo e sz uzys kaæ za jego po prawne roz wi¹za nie. 8. Mo esz ko rzystaæ z ze stawu wz orów ma tem aty cznych, cyr kla i li nijki oraz kal kul ato ra. Za rozwi¹zanie wszystkich zadañ mo na otrzymaæ ³¹cznie 50 punktów yczymy po wod zenia! zdaj¹cy przed rozpoczêciem pracy PESEL ZDAJ CEGO KOD ZDAJ CEGO
2 2 Pr óbny egzamin maturalny z matematyki Za dan ie 1. (3 pkt) Z cyfr 0, 1, 2, 3, 4 uk³ada my wszyst kie mo liwe licz by trzy cyf rowe o ró n ych cy frach. Ze zbio - ru ta kich liczb lo suj emy jedn¹ li czbê. Ob licz pr awdopodobieñstwo zda rzen ia A wy brana licz - ba trzy cyf rowa ma tê w³asno œæ, e cy fry: se tek, dzie si¹tek oraz jedn oœci (w poda nej kole jnoœci) tworz¹ ci¹g arytm ety czny. Nr czynnoœci Maks. liczba pkt 1 1 1
3 Pr óbny egzamin maturalny z matematyki 3 Za dan ie 2. (6 pkt) Roz wi¹ gra ficzn ie uk³ad rów nañ x 6x 7 2 y y y 1 x Nr czynnoœci Maks. liczba pkt
4 4 Pr óbny egzamin maturalny z matematyki Za dan ie 3. (6 pkt) Jedn¹ z pod staw tra pezu wpi san ego w okr¹g jest œre dni ca okr êgu. Sto sun ek ob wodu tra pezu do sumy d³ugo œci jego pod staw jest rów ny 3 : 2. Ob licz co sin us k¹ta ostrego przy pod staw ie trapezu. Nr czynnoœci Maks. liczba pkt
5 Pr óbny egzamin maturalny z matematyki 5 Za dan ie 4. (3 pkt) Udow odnij, e jeœli do datn ie licz by a i b spe³niaj¹ wa run ek a 2 + b 2 = 23ab, to log 5 (a + b) = log 5 ab + 1. Nr czynnoœci Maks. liczba pkt 1 2
6 6 Pr óbny egzamin maturalny z matematyki Za dan ie 5. (6 pkt) Wy znacz ró wnanie ta kiej pro stej prze chodz¹cej przez punkt A( 4, 6), która wraz z osiami uk³adu wspó³rzêdn ych ogran icza trójk¹t o polu równym 2. Nr czynnoœci Maks. liczba pkt
7 Pr óbny egzamin maturalny z matematyki 7 Za dan ie 6. (4 pkt) W pro stok¹tnym uk³adzie wspó³rzêdnych za znacz zb iór tych wszyst kich punktów p³asz czyz ny o wspó³rzê dnych (a, b), dla któ rych funk cja f (x) = ax 2 jest funk cj¹ ho mog rafi czn¹, ma lej¹c¹ x b w ka dym z prze dzia³ów: (, 2), (2, + ). Nr czynnoœci Maks. liczba pkt 1 2 1
8 8 Pr óbny egzamin maturalny z matematyki Za dan ie 7. (4 pkt) Roz wi¹ nie równoœæ: x( x 1) ( x 1)( x 2) ( x 2)( x 3) ( x 3)( x 4) ( x 4) ( x 5) Nr czynnoœci Maks. liczba pkt
9 Pr óbny egzamin maturalny z matematyki 9 Za dan ie 8. (5 pkt) Na pisz wzór i na rys uj wy kres funk cji y = g(m), która ka d ej licz bie rze czyw ist ej m przypo - rz¹dkow uje naj mniejsz¹ war toœæ funk cji kwa drat owej f (x) = x 2 + (m 2 4)x + 2 w prze dziale 1, 1. Nr czynnoœci Maks. liczba pkt 1 2 2
10 10 Pr óbny egzamin maturalny z matematyki Za dan ie 9. (4 pkt) Dla ja kich wa rtoœci pa ram etru k resz ta z dzie len ia wie lom ianu W(x) = x 5 + (k 3 + 3k 2 )x 3 2(k 2 + 2k)x k przez dwu mian x 1 jest nie wiê ksza od ( 2)? Nr czynnoœci Maks. liczba pkt 1 2 1
11 Pr óbny egzamin maturalny z matematyki 11 Za dan ie 10. (4 pkt) Wy znacz x tak, aby ci¹g ( 25 2, x 4, ) by³ ci¹giem geo met rycznym. Nr czynnoœci Maks. liczba pkt 1 1 2
12 12 Pr óbny egzamin maturalny z matematyki Za dan ie 11. (5 pkt) Gra nias tos³up pra wid³owy tró jk¹tny prz eciêto p³asz czyzn¹, prze chodz¹c¹ przez œrodek ciê koœci górnej pod stawy i kra wêdÿ dol nej pod stawy, pod k¹tem 45 do dol nej pod stawy. Pole otrzym ane go prze kroju wy nosi 5 6. Ob licz ob jêtoœæ tego graniastos³upa. Nr czynnoœci Maks. liczba pkt
13 Pr óbny egzamin maturalny z matematyki 13 BRUDNOPIS
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na nakl ejkê z ko dem szko³y dys leks ja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2010 r. Czas pra cy 180 mi nut In strukc ja dla zdaj¹cego 1. Sp raw dÿ, czy ar
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na nakl ejkê z ko dem szko³y dys leks ja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Przed matur¹ MAJ 2009 r. Czas pra cy 120 mi nut In strukc ja dla zdaj¹cego 1. Sp raw dÿ, czy ar
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Przed matur¹ MAJ 2011 r. Czas pracy 180 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJ CY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATUR MAJ 2012 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na nakl ejkê z ko dem szko³y dys leks ja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Przed matur¹ MAJ 2010 r. Czas pra cy 170 mi nut In strukc ja dla pisz¹cego 1. SprawdŸ, czy arkusz
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja
ARKUSZ PRÓBNEJ MATURY Z OPERONEM CHEMIA
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM CHEMIA Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 120 minut 1. Spraw dê, czy ar kusz eg za mi na cyj ny za wie ra 11 stron (zadania
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od
EGZAMIN MATURALNY Z MATEMATYKI
pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas
MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut
Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera
Czas pracy 170 minut
ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
Rozwiązywanie umów o pracę
Ryszard Sadlik Rozwiązywanie umów o pracę instruktaż, wzory, przykłady Ośrodek Doradztwa i Doskonalenia Kadr Sp. z o.o. Gdańsk 2012 Wstęp...7 Rozdział I Wy po wie dze nie umo wy o pra cę za war tej na
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 150 minut ARKUSZ II STYCZE ROK 2005 Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 10
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem (Wpisuje zdaj cy przed rozpocz ciem pracy) KOD ZDAJ CEGO MMA-RG1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 00 Instrukcja dla
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. pobrano z
Uk ad graficzny CKE 010 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 0 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-052 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 13 stron.
ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.
2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja MMA-P1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2007 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale
EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-062 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14 stron
ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem (Wpisuje zdaj¹cy przed rozpoczêciem pracy) KOD ZDAJ CEGO MMA-R1A1P-021 EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdaj¹cego POZIOM ROZSZERZONY Czas pracy 150 minut 1. Proszê
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.
MATEMATYKA POZIOM PODSTAWOWY PRZYK ADOWY ZESTAW ZADA NR 1. Miejsce na naklejk z kodem szko y OKE ÓD CKE MARZEC ROK Czas pracy 120 minut
Miejsce na naklejk z kodem szko y OKE ÓD CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 1 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkê z kodem szko³y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Przed matur¹ MAJ 2011 r. Czas pracy 170 minut Instrukcja dla pisz¹cego 1. SprawdŸ, czy arkusz zawiera
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
MATERIA DIAGNOSTYCZNY Z MATEMATYKI
dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY Czas pracy 120 minut GRUDZIE ROK 2007 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
pobrano z (A1) Czas GRUDZIE
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdaj cego (poziom rozszerzony) Czas pracy 120 minut 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak
PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII
dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego (poziom rozszerzony) Czas pracy 120 minut 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak
EGZAMIN MATURALNY Z J ZYKA ROSYJSKIEGO
Miejsce na naklejk z kodem szko y dysleksja MJR-P1_1P-072 EGZAMIN MATURALNY Z J ZYKA ROSYJSKIEGO MAJ ROK 2007 POZIOM PODSTAWOWY Instrukcja dla zdaj cego Czas pracy 120 minut 1. Sprawd, czy arkusz egzaminacyjny
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 UZUPE NIA ZESPÓ NADZORUJ CY KOD UCZNIA PESEL miejsce na naklejk z kodem
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu
ARKUSZ EGZAMINACYJNY Z MATEMATYKI
dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 12 stron (zadania
ARKUSZ PRÓBNEJ MATURY Z OPERONEM JĘZYK NIEMIECKI
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM JĘZYK NIEMIECKI POZIOM ROZSZERZONY CZĘŚĆ I LISTOPAD 2010 Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy ar kusz eg za mi
nie zdałeś naszej próbnej matury z matematyki?
Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY Czas pracy 180 minut LISTOPAD ROK 008 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny KE 00 KO WPISUJE ZJ Y PESEL Miejsce na naklejk z kodem EGZMIN MTURLNY Z MTEMTYKI
Kluczpunktowaniaarkusza Kibicujmy!
Kluczpunktowaniaarkusza Kibicujmy! KLUCZODPOWIEDZIDOZADAŃZAMKNIĘTYCH zadania 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. Poprawna odpowiedź D B A D C D D C B C C B D B B C B
Kluczpunktowaniaarkusza Kibicujmy!
Kluczpunktowaniaarkusza Kibicujmy! KLUCZODPOWIEDZIDOZADAŃZAMKNIĘTYCH zadania 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. Poprawna odpowiedź D B A D C D D C B C C B D B B C B
Zmiany pozycji techniki
ROZDZIAŁ 3 Zmiany pozycji techniki Jak zmieniać pozycje chorego w łóżku W celu zapewnienia choremu komfortu oraz w celu zapobieżenia odleżynom konieczne jest m.in. stosowanie zmian pozycji ciała chorego
Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk
Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
ZASADY REKRUTACJI KANDYDATÓW DO XVIII LICEUM OGÓLNOKSZTAŁCĄCEGO IM. JANA ZAMOYSKIEGO NA ROK SZKOLNY 2016/2017
XVIIILO.4310.5.2016 XVIII LO im. Jana Zamoyskiego ZASADY REKRUTACJI KANDYDATÓW DO XVIII LICEUM OGÓLNOKSZTAŁCĄCEGO IM. JANA ZAMOYSKIEGO NA ROK SZKOLNY 2016/2017 I. Podstawa prawna 1. Ustawa z dnia 7 września
Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu
Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na
Egzamin na tłumacza przysięgłego: kryteria oceny
Egzamin na tłumacza przysięgłego: kryteria oceny Każdy z czterech tekstów na egzaminie oceniany jest w oparciu o następujące kryteria: 1) wierność tłumaczenia (10 punktów) 2) terminologia i frazeologia
Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY
Rewolucja dziewczyn na informatyce
Rewolucja dziewczyn na informatyce Wro ku aka de mic kim 2017/18 od no to wa no w Pol sce naj więk szy w hi sto rii przy rost licz by stu den tek kie run ków in for ma tycz nych o 1179 w ska li kra ju
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D
Procedura uzyskiwania awansu zawodowego na stopień nauczyciela mianowanego przez nauczycieli szkół i placówek
Data publikacji : 10.01.2011 Procedura uzyskiwania awansu zawodowego na stopień nauczyciela mianowanego przez nauczycieli szkół i placówek Procedura uzyskiwania awansu zawodowego na stopień nauczyciela
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY Czas pracy 120 minut LISTOPAD ROK 2008 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny
Regulamin rekrutacji do klas pierwszych Technikum Elektronicznego nr 1
Regulamin rekrutacji do klas pierwszych Technikum Elektronicznego nr 1 Podstawy prawne: 1. Ustawa o systemie oświaty z dnia 7 września 1991 r. (Dz. U. z 2015 r., poz.2156 ze zm.) 2. Rozporządzenie Ministra
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
PORADNIK NOWEGO SŁUCHACZA CENTRUM NAUKI I BIZNESU ŻAK W KWIDZYNIE
PORADNIK NOWEGO SŁUCHACZA CENTRUM NAUKI I BIZNESU ŻAK W KWIDZYNIE MIEJSCE PROWADZENIA ZAJĘĆ SPOŁECZNE LICEUM OGÓLNOKSZTAŁCĄCE W KWIDZYNIE ul. Hallera 5 Rysunek 1 - Trasa sekretariat-szkoła Rysunek 2 -
EGZAMIN MATURALNY Z INFORMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MIN-R1_1P-082 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2008 POZIOM ROZSZERZONY CZ I Czas pracy 90 minut Instrukcja
PL 205289 B1 20.09.2004 BUP 19/04. Sosna Edward,Bielsko-Biała,PL 31.03.2010 WUP 03/10 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289 (13) B1 (21) Numer zgłoszenia: 359196 (51) Int.Cl. B62D 63/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 17.03.2003
PRAWO ODRĘBNEJ WŁASNOŚCI LOKALU
PRAWO SPÓŁDZIELCZE I MIESZKANIOWE... Część 6, rozdział 1, punkt 4.1, str. 1 6.1.4. PRAWO ODRĘBNEJ WŁASNOŚCI LOKALU 6.1.4.1. Usta no wie nie od ręb nej wła sno ści Z człon kiem spół dziel ni ubie ga ją
1. Rozwiązać układ równań { x 2 = 2y 1
Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM ROZSZERZONY Czas pracy 180 minut 1. Sprawdê, czy arkusz egzaminacyjny zawiera 13
ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJ CEGO KWALIFIKACJE ZAWODOWE CZERWIEC 201
Zawód: technik geodeta Symbol cyfrowy zawodu: 311[10] Numer zadania: 6 Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu 311[10]-06-1 2 Czas trwania egzaminu: 240 minut ARKUSZ
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach
ARKUSZ PRÓBNEJ MATURY Z OPERONEM CHEMIA
dysleksja Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM CHEMIA POZIOM PODSTAWOWY LISTOPAD ROK 2008 Instrukcja dla zdajàcego Czas pracy 120 minut 1. Spraw dê, czy ar kusz eg za mi na cyj ny