Grafy i macierze. Tomasz LENARCIK, Kraków. Zacznijmy od przykładu. Załóżmy, że ξ jest liczbą algebraiczną spełniającą równanie postaci
|
|
- Teodor Damian Janicki
- 7 lat temu
- Przeglądów:
Transkrypt
1 Jest to tekst związany z odczytem wygłoszonym na XLVI Szkole Matematyki Poglądowej, Podejście niestandardowe, Warszawa Miedzeszyn, styczeń 0. Grafy i macierze Tomasz LENARCIK, Kraków Streszczenie Zdarza się, że na pytania dotyczące grafów prościej jest odpowiedzieć, gdy wyrazi się je w języku algebry liniowej. Wydaje się natomiast, że rzadziej (o ile w ogóle) ma miejsce sytuacja odwrotna. Okazuje się jednak, że pewne twierdzenia dotyczące macierzy mają zupełnie przekonującą interpretację w języku grafów i co więcej można je w tym języku stosunkowo łatwo dowodzić. Aby przekonać się o tym na własnej skórze, zaprezentujemy teorio grafowy dowód twierdzenia Cayley a Hamiltona.. Wstęp Zacznijmy od przykładu. Załóżmy, że ξ jest liczbą algebraiczną spełniającą równanie postaci 0 = f(ξ) = ξ n + a ξ n a n ξ + a n, gdzie f Q[X] jest pewnym wielomianem nierozkładalnym. Wiadomo, że w takiej sytuacji najmniejsze ciało zawierające ξ, tj. Q(ξ), jest n-wymiarową przestrzenią wektorową nad Q. Przykładowo, możemy wziąć bazę (), ξ, ξ,..., ξ n. Zauważmy teraz, że macierz odwzorowania liniowego Q(ξ) x ξx Q(ξ). wyrażona w bazie () ma następującą postać: A = a a a a n Łatwo sprawdzić, że jej wielomian charakterystyczny jest równy p A (X) = ( ) n f(x). Ponieważ A reprezentuje odwzorowanie (liniowe) mnożenia przez ξ, oraz f(ξ) = 0, to również 0 = f(a) = p A (A). Czyli A jest pierwiastkiem swojego wielomianu charakterystycznego. Oczywiście macierz A ma bardzo szczególną postać, ale naturalnie narzuca się pytanie czy nie jest to przypadkiem ogólna własność macierzy. Pozytywnej odpowiedzi udziela następujące twierdzenie: Twierdzenie (Cayley Hamilton). Niech A będzie macierzą kwadratową o współczynnikach w (dowolnym!) pierścieniu R i niech p A R[X] będzie jej wielomianem charakterystycznym. Wówczas p A (A) = 0. Twierdzenie to ma wiele klasycznych dowodów, zwykle czysto algebraicznych. Odchodząc zatem od standardów, chcielibyśmy zaprezentować Czytelnikowi dowód (zob. []), który dla odmiany jest dość mocno osadzony w teorii grafów. Przypomnijmy, że w ogólnej sytuacji wielomian charakterystyczny macierzy B = [b ij ] i,j=...n jest dany wzorem: b X b b n b b X b n p(x) := det(b X Id) = b n b n b nn X Proszę zwrócić uwagę, że zmienna X pełni tutaj rolę skalara; w szczególności jeżeli weźmiemy jakąś inną macierz C to wcale nie musi zachodzić równość p(c) = det(b C). 5
2 . Definicje i oznaczenia Definicja. Grafem (skierowanym) będziemy nazywali parę G = (V, E), gdzie V jest dowolnym zbiorem skończonym natomiast E jest relacją na V, czyli E V V. Powiemy, że wierzchołki v, v są połączone krawędzią (od v do v ) jeśli (v, v ) E. Jeśli dodatkowo określono odwzorowanie ω : E R \ {0} to mówimy, że mamy do czynienia z grafem ważonym. Przyjmujemy konwencję, że jeżeli graf nie ma wag zadanych w sposób jawny, to i tak traktujemy go jako graf ważony, w którym każda krawędź ma wagę. Z pewnych względów wygodnie będzie nam zakładać, że elementy zbioru V zostały w pewien sposób uporządkowane. Dla uproszczenia notacji przyjmijmy po prostu, że V = {,,..., n}. Dzięki temu, z dowolnym grafem ważonym rozpiętym na wierzchołkach V możemy skojarzyć tzw. macierz sąsiedztwa A M(n n; R) określoną w taki sposób, że wartość w i-tym wierszu i w j-tej kolumnie jest równa wadze krawędzi (j, i), gdy ta należy do grafu, oraz zero w przeciwnym przypadku. - - macierz sąsiedztwa Rys.. Graf ważony i odpowiadająca mu macierz sąsiedztwa. Odwrotnie, każdej macierzy A M(n n; R) możemy na tej samej zasadzie przypisać pewien graf ważony. Co więcej, operacje te są wzajemnie odwrotne. Definicja. Drogą (lub ścieżką) w grafie G = (V, E) będziemy nazywali taki ciąg krawędzi (dopuszczamy ciąg pusty!) e,..., e k E, że koniec e i pokrywa się z początkiem e i+ dla i =,..., k. Liczbę k nazywamy długością drogi. Każda niepusta droga ma wierzchołek początkowy i wierzchołek końcowy. Drogę (niepustą), która rozpoczyna się i kończy w tym samym wierzchołku nazywamy pętlą. Jeżeli P = (e,..., e k ) jest drogą w grafie ważonym (G, E, ω), to definiujemy łączną wagę drogi jako ω(d) = ω(e ) ω(e k ) R. Podobnie, jeśli H = (V H, E H ) jest podgrafem G, to definiujemy wagę H jako ω(h) = e E H ω(e). Przyjmujemy również konwencję, że ω( ) =. Dalej będziemy pisali po prostu graf mając na myśli graf skierowany. Dzięki temu, że zażądaliśmy aby wagi krawędzi były niezerowe. 6
3 Niech G będzie grafem, oraz A jego macierzą sąsiedztwa. 4 Prosta indukcja pozwala sprawdzić następującą własność: () (A k ) ij = liczba dróg o długości k od wierzchołka j do wierzchołka i. Ogólnie, tj. dla dowolnego grafu ważonego, mamy następujący fakt: Fakt. Jeżeli G jest grafem ważonym i A jego macierzą sąsiedztwa, to dla każdego k mamy (A k ) ij = suma wag wszystkich dróg długości k zaczynających się w j-tym wierzchołku a kończących się w i-tym. Uwaga. Ponieważ pojawiają się tutaj potęgi macierzy, to intuicja podpowiada, że przy badaniu pewnych własności grafu istotną rolę muszą odegrać wartości własne i postać Jordana macierzy sąsiedztwa. Z dowolną permutacją σ zbioru V = {,..., n} możemy skojarzyć odwzorowanie liniowe σ mieszające wektory bazy kanonicznej w ten sposób, że e i e σ(i). Przyporządkowanie to pozwala widzieć S n jako podgrupę GL n (K) gdzie K jest dowolnym ciałem. σ = ( ) σ = Z drugiej strony każdej permutacji odpowiada graf (skierowany!), z którym możemy skojarzyć macierz sąsiedztwa. Nie budzi zaskoczenia, że jest to ta sama macierz, która reprezentuje σ jako element GL n (K). W dalszym ciągu będziemy mówili po prostu o macierzy P = P (σ) skojarzonej z permutacją σ. Mamy następujące własności (i) Zachodzą wzory trp = liczba punktów stałych σ, detp = sgnσ. (ii) Jeżeli σ rozpada się na k-cykli, tak że i-ty cykl ma n i elementów, to wielomian charakterystyczny P wyraża się wzorem p(λ) = ( ) n (λ n ) (λ n k ). (iii) Rozkład na cykle odpowiada rozkładowi na podprzestrzenie niezmiennicze względem działania σ, a wektory własne związane z n i -elementowym cyklem są postaci (, ξ, ξ,..., ξ ni ) gdzie ξ jest dowolnym pierwiastkiem stopnia n i z jedynki. 5 4 Przypomnijmy, że wagi krawędzi są domyślnie równe, czyli w tym wypadku w macierzy sąsiedztwa występują zera i jedynki. 5 W szczególności, jeżeli pracujemy nad ciałem charakterystyki zero, bądź wszystkie n i są względnie pierwsze z charakterystyką to macierz P jest diagonalizowalna (bo wtedy, w algebraicznym domknięciu jest dokładnie n i różnych pierwiastków stopnia n i z jedynki). Podkreślmy jeszcze, że założenie o charakterystyce jest istotne. Przykładowo, dla K = Z/ mamy ( ) ( ) ( ) ( ) 0 0 = czyli postać Jordana nie jest diagonalna! 7
4 . Obliczanie wielomianu charakterystycznego Opiszemy teraz w języku grafów procedurę obliczania wyznacznika, dzięki czemu będziemy w stanie wyrazić w dogodny sposób współczynniki wielomianu charakterystycznego. Przypomnijmy, że ogólnie dla A = (a ij ) M(n n; R) mamy deta = σ S n (sgnσ)a σ() a nσ(n) otrzymujemy stąd natychmiast następujący fakt: Fakt. Niech G będzie grafem ważonym o n wierzchołkach, a A skojarzoną z nim macierzą sąsiedztwa. Wówczas () deta = σ sgnσ ω(σ) = ( ) n σ ( ) c(σ) ω(σ), gdzie sumowanie przebiega po wszystkich podgrafach G, które są grafami permutacji rozpiętymi na n wierzchołkach, oraz c(σ) oznacza liczbę cykli w σ. Druga równość wynika z faktu, że liczba nieparzystych cykli permutacji przystaje do n modulo. Przykład. Wykorzystując wzór () sprawdźmy, że wyznacznik macierzy przedstawionej na rysunku jest równy 7. Mamy dokładnie dwa podgrafy, które są grafami permutacji: - - macierz sąsiedztwa sgn σ ω(σ ) = ( ) ( ) ( ) = - - macierz sąsiedztwa sgn σ ω(σ ) = (+) ( ) ( ) = 9 Ze wzoru () dostajemy: det(a + λi) = ( ) n n i=0 ( ) i #σ=n i ( ) c(σ) ω(σ) λ i gdzie drugie sumowanie przebiega po wszystkich podgrafach G, które są grafami permutacji rozpiętymi na n i wierzchołkach. Porządkując wyrazy w powyższej sumie otrzymujemy zatem Fakt 4. Niech G będzie grafem ważonym o n wierzchołkach i A skojarzoną macierzą sąsiedztwa. Wówczas n (4) det(a λi) = ( ) n ( ) c(σ) ω(σ) λ i. i=0 #σ=n i 8
5 4. Dowód twierdzenia Cayley a Hamiltona (5) Mamy już wszystkie niezbędne narzędzia, przejdźmy zatem do dowodu głównego twierdzenia. Weźmy dowolną macierz A i niech G będzie skojarzonym grafem ważonym. Dla uproszczenia oznaczmy p := p A. Chcemy pokazać, że p(a) jest macierzą zerową. Ze wzoru (4) mamy n p(a) ij = ( ) n ( ) c(σ) ω(σ) (A k ) ij. k=0 #σ=n k Przypomnijmy, że (A k ) ij = #P =k ω(p ) gdzie sumowanie przebiega po wszystkich drogach w grafie G zaczynających się j i kończących w i. Wystarczy zatem sprawdzić, że zeruje się następujące wyrażenie: n ( ) c(σ) ω(σ) ω(p ) = ( ) c(σ) ω(σ)ω(p ), k=0 #σ=n k #P =k #P +#σ=n przy czym ostatnie sumowanie przebiega po wszystkich takich parach P, σ, że P jest drogą łączącą wierzchołek j z wierzchołkiem i, σ jest podgrafem G, który jest jednocześnie grafem pewnej permutacji oraz łączna liczba krawędzi w P i σ wynosi n. 6 Pokażemy, że składniki w (5) można pogrupować w pary sumujące się do zera. Weźmy zatem P, σ i załóżmy najpierw, że P i σ nie mają wspólnych wierzchołków. Z zasady szufladkowej Dirichleta wynika, że istnieje wierzchołek, przez który P przechodzi (co najmniej) dwukrotnie. 7 Idąc wzdłuż drogi P weźmy ostatni taki wierzchołek i oznaczmy przez P pętlę jaką zatacza w nim droga P. Ponieważ każdy następny wierzchołek jest już odwiedzany jednokrotnie, to pętla P nie ma samoprzecięć. Możemy zatem utworzyć nową permutację, którą oznaczymy przez σ P, 8 dodając do σ cykl reprezentowany przez P oraz nową drogę, ozn. P \ P, poprzez usunięcie z P pętli P. Zauważmy wreszcie, że ( ) c(σ) ω(σ)ω(p ) + ( ) c(σ P ) ω(σ P )ω(p \ P ) = 0. iv iii vi v i ii Rozważmy teraz sytuację odwrotną, tj. załóżmy, że droga P i permutacja σ mają wspólne wierzchołki. Weźmy zatem ostatni z nich (licząc wzdłuż drogi) i niech C będzie cyklem permutacji σ, do którego ten wierzchołek należy. 9 Następnie rozszerzmy drogę P o pętlę C i rozważmy nową permutację σ \ C. Podobnie jak wcześniej obserwujemy, że ( ) c(σ) ω(σ)ω(p ) + ( ) c(σ\c) ω(σ \ C)ω(P C) = 0. Dla zakończenia dowodu pozostaje zauważyć, że operacje opisane powyżej są wzajemnie odwrotne, dzięki czemu mamy gwarancję, że składniki sumy (5) rzeczywiście zostaną połączone w pary. 6 Zwróćmy uwagę, że niektóre krawędzie w P mogą być liczone wielokrotnie. 7 Zauważmy, że jeżeli k = #P, to P odwiedza k + wierzchołków. 8 Oczywiście nie jest to zapis formalnie poprawny. 9 Może to być nawet cykl jednoelementowy! 9
6 5. Ciąg dalszy Zainteresowanego Czytelnika zachęcamy do udowodnienia jeszcze jednego twierdzenia dotyczącego macierzy. Twierdzenie 5 (Amistur Levitzki). Niech A,..., A n będą macierzami n n, o współczynnikach w pierścieniu R. Wówczas σ S n A σ() A σ(n) = 0. Choć na pierwszy rzut oka może się to wydać zaskakujące, istnieje dowód w podobnym duchu jak zaprezentowany tutaj dowód twierdzenia Cayley a-hamiltona. Warto wykorzystać następujący fakt: Twierdzenie 6 (Swan). Niech G = (V, E) będzie takim grafem, że k := E V. Załóżmy dodatkowo, że krawędzie grafu ponumerowano liczbami od od k. Z każdą drogą Eulera P możemy dzięki temu skojarzyć permutację σ(p ) S k. Wówczas dla dowolnych (niekoniecznie różnych) wierzchołków v, v V liczba dróg Eulera P od v do v, dla których sgnσ(p ) =, jest równa liczbie dróg Eulera P od v do v, dla których sgnσ(p ) =. Dowód. Zob. []. Literatura [] R. A. Brualdi, D. Cvetković, A combinatorial approach to matrix theory and its applications, CRC Press (009) [] I. N. Ponomarenko, Graph Algebras and the Graph Isomorphism Problem, Applicable Algebra in Engineering, Vol. 5 (994), pp [] R. G. Swan, An Application of Graph Theory to Algebra, Proc. of the AMS, Vol. 4, No. (Jun., 96), pp
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25
MIMUW 5 Wyznaczniki 25 5 Wyznaczniki Wyznacznik macierzy kwadratowych jest funkcją det : K m n K, (m = 1, 2, ) przypisującą każdej macierzy kwadratowej skalar, liniowo ze względu na każdy wiersz osobno
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Macierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
Matematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
1 Podobieństwo macierzy
GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
G. Wybrane elementy teorii grafów
Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów
Skończone rozszerzenia ciał
Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
0.1 Pierścienie wielomianów
0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
MACIERZE I WYZNACZNIKI
Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1
Zestaw zadań 14: Wektory i wartości własne. ) =
Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Algebry skończonego typu i formy kwadratowe
Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Pierścień wielomianów jednej zmiennej
Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
R k v = 0}. k N. V 0 = ker R k 0
Definicja 1 Niech R End(V ). Podprzestrzeń W przestrzeni V nazywamy podprzestrzenią niezmienniczą odwzorowania R jeśli Rw W, dla każdego w W ; równoważnie: R(W ) W. Jeśli W jest różna od przestrzeni {0}
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
3 Przestrzenie liniowe
MIMUW 3 Przestrzenie liniowe 8 3 Przestrzenie liniowe 31 Przestrzenie liniowe Dla dowolnego ciała K, analogicznie jak to robiliśmy dla R, wprowadza się operację dodawania wektorów kolumn z K n i mnożenia
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Algebra. Jakub Maksymiuk. lato 2018/19
Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem
Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...
Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Maciej Grzesiak. Wielomiany
Maciej Grzesiak Wielomiany 1 Pojęcia podstawowe Wielomian definiuje się w szkole średniej jako funkcję postaci f(x) = a 0 + a 1 x + a 2 x + + a n x n Dogodniejsza z punktu widzenia algebry jest następująca