Równania różniczkowe zwyczajne analityczne metody rozwiazywania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Równania różniczkowe zwyczajne analityczne metody rozwiazywania"

Transkrypt

1 Równania różniczkowe zwyczajne analityczne meto rozwiazywania Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8

2 Plan Określenia podstawowe 1 Wstęp Określenia podstawowe 2 Równania różniczkowe rzędu pierwszego w postaci normalnej 3 o stałych współczynnikach

3 Definicja Określenia podstawowe Równanie różniczkowe zwyczajne zwiazek między pewna nieznana funkcja i jej pochodnymi d 2 y(t) 2 + t y(t) + 3y 2 (t) = exp(t) du(t) + u(t) = cos(t) dx(t) = y(t) (t) = x(t)

4 Definicja Określenia podstawowe Równanie różniczkowe zwyczajne zwiazek między pewna nieznana funkcja i jej pochodnymi d 2 y(t) 2 + t y(t) + 3y 2 (t) = exp(t) du(t) + u(t) = cos(t) dx(t) = y(t) (t) = x(t)

5 Rzad Określenia podstawowe Rzad równania rzad najwyższej pochodnej. 1 2 d 2 y + y = 0 jest drugiego rzędu 2 = y 2 jest pierwszego rzędu

6 Rzad Określenia podstawowe Rzad równania rzad najwyższej pochodnej. 1 2 d 2 y + y = 0 jest drugiego rzędu 2 = y 2 jest pierwszego rzędu

7 Rozwiazanie Określenia podstawowe Rozwiazanie szczególne każda funkcja y = f (t), która spełnia dane równanie. 1 y = cos(t) jest rozwiazaniem szczególnym d2 y 2 + y = 0. 2 Dla dowolnej stałej c, y = 2 + c exp( x) jest rozwiazaniem + y = 2. 3 Dla dowolnej stałej a, y = cosh(ax)/a jest rozwiazaniem ( ) y d2 y = 0.

8 Rozwiazanie Określenia podstawowe Rozwiazanie szczególne każda funkcja y = f (t), która spełnia dane równanie. 1 y = cos(t) jest rozwiazaniem szczególnym d2 y 2 + y = 0. 2 Dla dowolnej stałej c, y = 2 + c exp( x) jest rozwiazaniem + y = 2. 3 Dla dowolnej stałej a, y = cosh(ax)/a jest rozwiazaniem ( ) y d2 y = 0.

9 Dygresja Określenia podstawowe Sinus hiperboliczny sinh(x) Cosinus hiperboliczny cosh(x) exp(x) exp( x) 2 exp(x) + exp( x) 2 Własności d sinh(x) = cosh(x) dx cosh d cosh(x) = sinh(x) dx 2 (x) sinh 2 (x) = 1

10 Rozwiazanie c.d. Określenia podstawowe Rozwiazanie ogólne rozwiazanie zawierajace pewna liczbę stałych w taki sposób, że dowolne rozwiazanie można otrzymać podstawiajac pod te stałe odpowiednie wartości liczbowe. 1 y = cos(t) nie jest rozwiazaniem ogólnym d2 y + y = 0, bo 2 y = sin(t) jest innym rozwiazaniem. 2 y = 2 + c exp( t) jest rozwiazaniem ogólnym + y = 2. 3 y = cosh(at)/a nie jest rozwiazaniem ogólnym ( ) y d2 y = 0; rozwiazaniem ogólnym jest y = cosh(at + b)/a

11 Rozwiazanie c.d. Określenia podstawowe Rozwiazanie ogólne rozwiazanie zawierajace pewna liczbę stałych w taki sposób, że dowolne rozwiazanie można otrzymać podstawiajac pod te stałe odpowiednie wartości liczbowe. 1 y = cos(t) nie jest rozwiazaniem ogólnym d2 y + y = 0, bo 2 y = sin(t) jest innym rozwiazaniem. 2 y = 2 + c exp( t) jest rozwiazaniem ogólnym + y = 2. 3 y = cosh(at)/a nie jest rozwiazaniem ogólnym ( ) y d2 y = 0; rozwiazaniem ogólnym jest y = cosh(at + b)/a

12 Określenia podstawowe Rozwiazanie w postaci uwikłanej y 2 + t 2 = 1 definiuje rozwiazanie szczególne równania y = t z wyjatkiem punktów ( 1, 0) i (1, 0) (dlaczego?) exp(y) + ty = c definiuje rozwiazanie ogólne równania ( exp(y) + t) + y = 0

13 Plan 1 Wstęp Określenia podstawowe 2 Równania różniczkowe rzędu pierwszego w postaci normalnej 3 o stałych współczynnikach

14 Równania o rozdzielonych zmiennych Równanie różniczkowe w postaci normalnej równanie rozwiazane względem najwyższej pochodnej. d n y n = f ( t, y,, d2 y 2,..., dn 1 y n 1 Równanie z rozdzielonymi zmiennymi = a(t)b(y) Sposób rozwiazania: Rozdzielamy zmienne, tzn. = a(t) b(y) i całkujemy obie strony aby otrzymać rozwiazanie w postaci uwikłanej. )

15 Równania o rozdzielonych zmiennych Przykład 1 = y 2 exp( t) Zakładajac y 0 mamy y 2 = exp( t) Całkujac otrzymujemy y 2 = skad y 1 = exp( t) + c i dalej y = exp( t) 1 exp( t) c Ponieważ y = 0 jest rozwiazaniem, które nie jest w ten sposób uwzględnione, nie jest to rozwiazanie ogólne.

16 Równania o rozdzielonych zmiennych Przykład 1 = y 2 exp( t) Zakładajac y 0 mamy y 2 = exp( t) Całkujac otrzymujemy y 2 = skad y 1 = exp( t) + c i dalej y = exp( t) 1 exp( t) c Ponieważ y = 0 jest rozwiazaniem, które nie jest w ten sposób uwzględnione, nie jest to rozwiazanie ogólne.

17 Równania o rozdzielonych zmiennych Przykład 1 = y 2 exp( t) Zakładajac y 0 mamy y 2 = exp( t) Całkujac otrzymujemy y 2 = skad y 1 = exp( t) + c i dalej y = exp( t) 1 exp( t) c Ponieważ y = 0 jest rozwiazaniem, które nie jest w ten sposób uwzględnione, nie jest to rozwiazanie ogólne.

18 Równania o rozdzielonych zmiennych Przykład 1 = y 2 exp( t) Zakładajac y 0 mamy y 2 = exp( t) Całkujac otrzymujemy y 2 = skad y 1 = exp( t) + c i dalej y = exp( t) 1 exp( t) c Ponieważ y = 0 jest rozwiazaniem, które nie jest w ten sposób uwzględnione, nie jest to rozwiazanie ogólne.

19 Równania o rozdzielonych zmiennych Przykład 1 = y 2 exp( t) Zakładajac y 0 mamy y 2 = exp( t) Całkujac otrzymujemy y 2 = skad y 1 = exp( t) + c i dalej y = exp( t) 1 exp( t) c Ponieważ y = 0 jest rozwiazaniem, które nie jest w ten sposób uwzględnione, nie jest to rozwiazanie ogólne.

20 Równania o rozdzielonych zmiennych Przykład 2 Szukamy rozwiazania równania = ty 3 sin(t) spełniajacego warunek poczatkowy y(0) = 1. Po rozdzieleniu zmiennych mamy y 3 = t sin(t) Całka ogólna ma postać 1 1 = t cos(t) sin(t) + c 2 y 2 Z warunku poczatkowego wynika c = 1/2, skad y = 1 2t cos(t) 2 sin(t) + 1

21 Plan 1 Wstęp Określenia podstawowe 2 Równania różniczkowe rzędu pierwszego w postaci normalnej 3 o stałych współczynnikach

22 Równania liniowe Rozważmy najpierw równanie jednorodne: Otrzymujemy + a(t)y = 0 y = a(t) ln(ky) = a(t) (ky > 0) ( ) y = c exp a(t) (c = 1 k )

23 Równania liniowe Rozważmy najpierw równanie jednorodne: Otrzymujemy + a(t)y = 0 y = a(t) ln(ky) = a(t) (ky > 0) ( ) y = c exp a(t) (c = 1 k )

24 Równania liniowe Rozważmy najpierw równanie jednorodne: Otrzymujemy + a(t)y = 0 y = a(t) ln(ky) = a(t) (ky > 0) ( ) y = c exp a(t) (c = 1 k )

25 Równania liniowe Rozważmy najpierw równanie jednorodne: Otrzymujemy + a(t)y = 0 y = a(t) ln(ky) = a(t) (ky > 0) ( ) y = c exp a(t) (c = 1 k )

26 Równania liniowe niejednorodne Przykła równań jednorodnych: Równania niejednorodne + y = 0 y = c exp( t) + 2ty = 0 y = c exp( t2 ) + a(t)y = b(t) rozwiazujemy metoda uzmienniania stałej w rozwiazaniu równania jednorodnego, tzn. przyjmuje się ( ) y = c(t) exp a(t)

27 Równania liniowe niejednorodne Przykła równań jednorodnych: Równania niejednorodne + y = 0 y = c exp( t) + 2ty = 0 y = c exp( t2 ) + a(t)y = b(t) rozwiazujemy metoda uzmienniania stałej w rozwiazaniu równania jednorodnego, tzn. przyjmuje się ( ) y = c(t) exp a(t)

28 Równania liniowe niejednorodne Przykład 1 Rozważmy równanie + y = 2 Równanie jednorodne ma rozwiazanie y = c exp( t), więc dla równania niejednorodnego spróbujmy rozwiazania postaci y(t) = c(t) exp( t) (t) = dc(t) exp( t) c(t) exp( t) Podstawiajac to do równania niejednorodnego mamy skad czyli dc(t) = 2 exp(t) c(t) = 2 exp(t) + k y(t) = 2 + k exp( t)

29 Równania liniowe niejednorodne Przykład 1 Rozważmy równanie + y = 2 Równanie jednorodne ma rozwiazanie y = c exp( t), więc dla równania niejednorodnego spróbujmy rozwiazania postaci y(t) = c(t) exp( t) (t) = dc(t) exp( t) c(t) exp( t) Podstawiajac to do równania niejednorodnego mamy skad czyli dc(t) = 2 exp(t) c(t) = 2 exp(t) + k y(t) = 2 + k exp( t)

30 Równania liniowe niejednorodne Przykład 2 Rozważmy równanie + ty = 2 Równanie jednorodne ma rozwiazanie y = c exp( t 2 ), więc dla równania niejednorodnego spróbujmy rozwiazania postaci y(t) = c(t) exp( t 2 ) Podstawiajac je do równania niejednorodnego mamy skad dc(t) = t 3 exp(t 2 ) c(t) = t 3 exp(t 2 ) = 1 2 exp(t2 )(t 2 1) + k czyli y(t) = 1 2 (t2 1) + k exp( t 2 ).

31 Plan o stałych współczynnikach 1 Wstęp Określenia podstawowe 2 Równania różniczkowe rzędu pierwszego w postaci normalnej 3 o stałych współczynnikach

32 Równanie jednorodne o stałych współczynnikach d 2 y 2 + b + cy = 0 rozwiazuje się podstawiajac y = exp(λt), co prowadzi do ( ) exp(λt) λ 2 + bλ + c = 0 Ponieważ zawsze y = exp(λt) 0, musimy mieć λ 2 + bλ + c = 0 1 > 0 y = c 1 exp(λ 1 t) + c 2 exp(λ 2 t) 2 = 0 y = c 1 exp(λ 1 t) + c 2 t exp(λ 1 t) 3 < 0 λ 1,2 = p ± jω y = c 1 exp(pt) cos(ωt) + c 2 exp(pt) sin(ωt) Przykład: / + y = 0.

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Równania różniczkowe zwyczajne zadania z odpowiedziami

Równania różniczkowe zwyczajne zadania z odpowiedziami Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

Równania różniczkowe metody numeryczne

Równania różniczkowe metody numeryczne Instytut Sterowania i Systemów Informatycznyc Universytet Zielonogórski Wykład 9 Metoda Eulera Rozważmy równanie różniczkowe dy(t) = f (t, y(t)), y(t 0 ) = y 0 którego rozwiazanie ccemy wyznaczyć w przedziale

Bardziej szczegółowo

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1

Temat wykładu: Równania różniczkowe. Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Temat wykładu: Równania różniczkowe Anna Rajfura, Matematyka na kierunku Biologia w SGGW 1 Zagadnienia 1. Terminologia i oznaczenia 2. Definicje 3. Przykłady Anna Rajfura, Matematyka na kierunku Biologia

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

Dariusz Uciński. Wykład 4

Dariusz Uciński. Wykład 4 Umiejętność modelowania Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wykład 4 Plan 1 2 Istotne pytania o przebiegu y(t) 1 Co dzieje się dla dużych t? 2 Co dzieje się dla małych

Bardziej szczegółowo

Równania różniczkowe zwyczajne Zadania z odpowiedziami

Równania różniczkowe zwyczajne Zadania z odpowiedziami Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

13. Równania różniczkowe - rozwiązywanie

13. Równania różniczkowe - rozwiązywanie 13. Równania różniczkowe - rozwiązywanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - rozwiązywanie 1 / 45

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu

Równania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Plan Model wzrostu populacji 1 Część 1: Równania pierwszego rzędu, jedna zmienna Model wzrostu populacji 2 Model skoku

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Wprowadzenie do technik analitycznych Metoda najmniejszych kwadratów

Wprowadzenie do technik analitycznych Metoda najmniejszych kwadratów Wprowadzenie do technik analitycznych Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wykład 2 Korelacja i regresja Przykład: Temperatura latem średnia liczba napojów sprzedawanych

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10

Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10 Matematyka A kolokwium, 7 maja, godz 8: : Poprawiłem: godz :, 4 września r 3 p Rozwiazać x t x t xt = x t x t xt = 6 + t cos3t + 36te 3t 7e 3t Pierwiastkami równania charakterystycznego = λ λ = λ + 3λ

Bardziej szczegółowo

Wyprowadzenie wzoru na krzywą łańcuchową

Wyprowadzenie wzoru na krzywą łańcuchową Wyprowadzenie wzoru na krzywą łańcuchową Daniel Pęcak 16 sierpnia 9 1 Wstęp Być może zastanawiałeś się kiedyś drogi czytelniku nad kształtem, jaki kształt przyjmuje zwisający swobodnie łańcuch lub sznur

Bardziej szczegółowo

1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami.

1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami. Polecam korzystanie również z poniższych podręczników. 1. Edward Kącki, Lucjan Siewierski Wybrane działy matematyki wyższej z ćwiczeniami. 2. Izydor Dziubiński, Lucjan Siewierski Matematyka dla wyższych

Bardziej szczegółowo

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2) Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędu pierwszego. Małgorzata Wyrwas

Równania różniczkowe. Równania różniczkowe zwyczajne rzędu pierwszego. Małgorzata Wyrwas Równania różniczkowe Równania różniczkowe zwyczajne rzędu pierwszego Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/49 Równania różniczkowe

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 2 - Modelowanie w dziedzinie częstotliwości Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 64 Plan wykładu Transformata Laplace

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równania różniczkowe zwyczajne rzędun,n 2 Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/38 Równania różniczkowe zwyczajne

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne Maciej Burnecki strona główna Spis treści I Równania pierwszego rzędu 3 o rozdzielonych zmiennych 4 Zadania.. 5 jednorodne 6 Zadania.. 7 liniowe 7 Zadania.. 8 Bernoulliego

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie. P. F. Góra Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Jeszcze o równaniach liniowych Rozważmy skalarne, jednorodne równanie

Bardziej szczegółowo

Modelowanie układów dynamicznych

Modelowanie układów dynamicznych Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Wykład Ćwiczeni a 15 30

Wykład Ćwiczeni a 15 30 Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA AiR Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Matematyka 3 2 Kod modułu kształcenia 04-ASTR1-MatIII60-2Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów Astronomia

Bardziej szczegółowo

EGZAMIN Z ANALIZY II R

EGZAMIN Z ANALIZY II R EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Analiza wymiarowa i równania różnicowe

Analiza wymiarowa i równania różnicowe Część 1: i równania różnicowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Plan Część 1: 1 Część 1: 2 Część 1: Układ SI (Système International d Unités) Siedem jednostek

Bardziej szczegółowo

Rozwiązanie równania oscylatora harmonicznego

Rozwiązanie równania oscylatora harmonicznego Rozwiązanie równania oscylatora harmonicznego Motywacją do zebrania różnych sposobów rozwiązania równania oscylatora harmonicznego: m d2 x(t) dt 2 = kx(t) (1) jest notorycznie zadawane przez studentów

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Analiza i modelowanie systemów. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status przedmiotu AiR I Stacjonarne/Niestacjonarne

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

AiRZ-0008 Matematyka Mathematics

AiRZ-0008 Matematyka Mathematics . KARTA MODUŁU / KARTA PRZEDMIOTU AiRZ-0008 Matematyka Mathematics Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

numeryczne rozwiązywanie równań całkowych r i

numeryczne rozwiązywanie równań całkowych r i numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

Procesy stochastyczne 2.

Procesy stochastyczne 2. Procesy stochastyczne 2. Listy zadań 1-3. Autor: dr hab.a. Jurlewicz WPPT Matematyka, studia drugiego stopnia, I rok, rok akad. 211/12 1 Lista 1: Własność braku pamięci. Procesy o przyrostach niezależnych,

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)

3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1) Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne ODE: ordinary differential equations Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 RÓWNANIA RÓŻNICZKOWE JEDNEJ ZMIENNEJ Motywacja Rozwiązania równań z 1, 2 lub

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - matematyczne modelowanie układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp Obiekty (procesy) rzeczywiste, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż

Bardziej szczegółowo

Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska

Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Dr Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Definicja Funkcja f ze zbioru X w zbiór Y nazywamy relację, która każdemu elementowi x X przyporzadkowuje dokładnie jeden element y Y.

Bardziej szczegółowo

Analiza matematyczna 3

Analiza matematyczna 3 Analiza matematyczna 3 Pochodna funkcji pierwsza pochodna: x'[t] x [t] Derivative[][x][t] x (t) D[x[t], t] x (t) 7. pochodna: Derivative[7][x][t] x (7) (t) D[x[t], {t, 7}] x (7) (t) pochodne funkcji wielu

Bardziej szczegółowo

Laboratorium Techniki Obliczeniowej i Symulacyjnej

Laboratorium Techniki Obliczeniowej i Symulacyjnej Laboratorium Techniki Obliczeniowej i Symulacyjnej Ćwiczenie 6. Rozwiązywanie równań różniczkowych w środowisku MATLAB. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo