Sieć (graf skierowany)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sieć (graf skierowany)"

Transkrypt

1 Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B),(A, D),(A, C),(B, C),...,}

2 Ścieżki i cykle Ciag wierzchołków w sieci G = (V, A) połaczonych odpowiednio skierowanymi łukami nazywamy ścieżka w G. Cyklem nazywamy ścieżkę złożona z niepowtarzajacych się wierzchołków, za wyjatkiem pierwszego i ostatniego, rozpoczynajac a się i kończac a w tym samym wierzchołku. Ścieżka A, C, F i cykl B, E, D, B.

3 Sieć acykliczna Sieć nazywamy acykliczna jeżeli nie zawiera żadnego cyklu. W takiej sieci można ponumerować wierzchołki w ten sposób, że dla każdego łuku (i, j) A zachodzi i < j. Jest to tzw. uporzadkowanie topologiczne wierzchołków.

4 Sieć (graf nieskierowany) W niektórych zastosowaniach sieć jest nieskierowana. Wówczas krawędź {i, j}, łacz ac a dwa wierzchołki i oraz j, interpretujemy jako parę łuków (i, j) i (j, i).

5 Przepływ w sieci o minimalnym koszcie Fabryka, ulokowana w mieście 1, ma wysłać 5 jednostek towaru do dwóch sklepów. Sklep 1 znajduje się w mieście 4 i zamówił 2 jednostki towaru a sklep 2 znajduje się w mieście 5 i zamówił 3 jednostki towaru. Mapa połaczeń między fabryka a sklepami jest zadana w postaci sieci G = (V, A). Każdy łuk (i, j) A ma dwa parametry: koszt c ij transportu 1 sztuki towaru po (i, j) oraz pojemność u ij oznaczajac a maksymalna liczbę jednostek towaru, jaka może być przewożona po (i, j). Jaki jest najtańszy plan transportu towaru z fabryki to sklepów?

6 Model liniowy i rozwiazanie min z = 5x x x x x x x x 45 x 12 + x 13 x 31 = 5 x 24 + x 23 x 12 = 0 x 34 + x 35 x 23 x 13 = 0 x 45 x 24 x 34 = 2 x 35 x 45 = 3 0 x 12 9, 0 x 13 4, 0 x 31 3, 0 x 23 6, 0 x x 34 4, 0 x 35 9, 0 x 45 7

7 Ogólne sformułowanie problemu Zadana jest sieć G = (V, A). Dla każdego łuku (i, j) A sa zadane koszt c ij i pojemność u ij 0. Dla każdego wierzchołka i V zadana jest liczba b(i) oznaczajaca podaż/popyt w tym wierzchołku. Jeżeli b(i) > 0, to i jest dostawca; jeżeli b(i) < 0, to i jest odbiorca; jeżeli b(i) = 0, to i jest wierzchołkiem pośrednim. Niech x ij 0 będzie zmienna oznaczajac a przepływ po łuku (i, j) A. min z = (i,j) A c ij x ij {j:(i,j) A} x ij {j:(j,i) A} x ji = b(i) i N 0 x ij u ij (i, j) A Zakładamy, że i V b(i) = 0, czyli problem jest zbilansowany.

8 Model w AMPL set V; set A within V cross V; param c{a}; param u{a} >=0; param b{v}; var x{a}>=0; minimize koszt: c1{i in V}: c2{(i,j) in A}: sum{(i,j) in A} c[i,j]*x[i,j]; sum{(i,j) in A} x[i,j]- sum{(j,i) in A} x[j,i]=b[i]; x[i,j]<=u[i,j];

9 Model w AMPL param N:=1,2,3,4,5; param: A: c u := 1, , , , , , , ,5 3 7 param b:=

10 Własności problemu Jeżeli podaż/popyt w wierzchołkach oraz pojemności łuków sa całkowite, to każde bazowe rozwiazanie dopuszczalne tego problemu jest całkowitoliczbowe. Zatem, jeżeli problem ma optymalne rozwiazanie, to algorytm sympleksowy zwróci optymalne rozwiazani całkowitoliczbowe. Dla problemy najtańszego przepływu opracowano specjalna wersję algorytmu sympleks, zwana sieciowym algorytmem sympleksowym. Algorytm ten nie wykonuje operacji dzielenia (zobacz literatura).

11 Problem najkrótszej ścieżki Niech G = (V, A) będzie zadana siecia. Dla każdego łuku (i, j) A zadany jest nieujemny koszt przejazdu c ij 0. Należy wyznaczyć najtańsza (najkrótsza) ścieżkę między zadana para wierzchołków s i t w G. Ścieżka jest najkrótsza ścieżka między wierzchołkami 1 i 5. Jej koszt wynosi 3.

12 Model liniowy min z = 5x x x x x x x x 45 x 12 + x 13 x 31 = 1 x 24 + x 23 x 12 = 0 x 34 + x 35 x 23 x 13 = 0 x 45 x 24 x 34 = 0 x 35 x 45 = 1 x ij 0,(i, j) A

13 Drzewo najkrótszych ścieżek Najkrótsze ścieżki od wierzchołka s do każdego wierzchołka sieci można zadać w postaci drzewa najkrótszych ścieżek. Unikalna ścieżka od s = 1 do j w drzewie jest najkrótsza ścieżka od s do j w sieci. Drzewo można przedstawić za pomoca jednej tablicy pred[1..n]. W przykładzie pred = [0, 3, 1, 2, 3].

14 Algorytm Dijkstry Jeżeli wszystkie koszty połaczeń sa nieujemne, to drzewo najkrótszych ścieżek w zadanej sieci można wyznaczyć efektywnie z pomoca algorytmu Dijkstry. W każdym kroku algorytm wyznacza podział wierzchołków na dwa rozłaczne podzbiory: S i S. Do S należa wierzchołki, do których najkrótsza ścieżka od s jest już znana a do S należa pozostałe wierzchołki. Algorytm sukcesywnie dodaje kolejne wierzchołki do S dopóki S = V.

15 Przykład Inicjalizacja: S =, S = {1, 2, 3, 4, 5, 6}

16 Przykład Wybierz wierzchołek i S o najmniejszej wartości d(i) i przenieś go do S. Wykonaj aktualizację następników i. S = {1}, S = {2, 3, 4, 5, 6}.

17 Przykład Wybierz wierzchołek i S o najmniejszej wartości d(i) i przenieś go do S. Wykonaj aktualizację następników i. S = {1, 2}, S = {3, 4, 5, 6}

18 Przykład Wybierz wierzchołek i S o najmniejszej wartości d(i) i przenieś go do S. Wykonaj aktualizację następników i. S = {1, 2, 4}, S = {3, 5, 6}

19 Przykład Wybierz wierzchołek i S o najmniejszej wartości d(i) i przenieś go do S. Wykonaj aktualizację następników i. S = {1, 2, 4, 3}, S = {5, 6}

20 Przykład Wybierz wierzchołek i S o najmniejszej wartości d(i) i przenieś go do S. Wykonaj aktualizację następników i. S = {1, 2, 4, 3, 6}, S = {6}

21 Example Wybierz wierzchołek i S o najmniejszej wartości d(i) i przenieś go do S. Wykonaj aktualizację następników i. S = {1, 2, 4, 3, 6, 5}, S =

22 Przykład Drzewo najkrótszych ścieżek od wierzchołka 1:

23 Algorytm Dijkstry Liczba elementarnych operacji w algorytmie Dijkstry jest proporcjonalna do V 2, czyli do kwadratu liczby wierzchołków w sieci. Jest to więc algorytm efektywny, za pomoca którego można rozwiazywać problemy o dużych rozmiarach. Algorytm Dijkstry nie jest poprawny, jeżeli w sieci występuja ujemne koszty. W takim przypadku należy zastosować inne algorytmy (literatura).

24 Rozpatrzmy pewien projekt opisany w poniższej tabeli: Czynność Bezpośredni poprzednik Czas trwania A (Szkolenie pracowników) - 2 B (Zakup materiałów) - 5 C (Produkcja części 1) A,B 6 D (Produkcja części 2) A,B 2 E (Testowanie części 2) D 1 F (Połaczenie części 1 i 2) C,E 5 1 Jaki jest czas trwania tego projektu? 2 Które czynności sa krytyczne, tj. wydłużenie czasu trwania których czynności spowoduje wydłużenie czasu trwania całego projektu?

25 Sieć czynności A(2) 3 C(6) F(5) D(2) E(1) B(5) 2 4 Projekt można przedstawić w postaci sieci, której łuki reprezentuja czynności a wierzchołki zdarzenia oznaczajace momenty rozpoczęcia oraz zakończenia odpowiednich czynności. Łuki kreskowane oznaczaja czynności fikcyjne, wymuszajace porzadek wykonywania czynności. Otrzymana sieć musi być acykliczna (dlaczego?). Zatem wierzchołki można ponumerować za pomoca uporzadkowania topologicznego.

26 Sieć czynności Niech ET(i) oznacza najwcześniejszy możliwy czas zajścia zdarzenia i N: ET(1) = 0 ET(i) = max {j: (j,i) A} (ET(j)+t ji ) i = 2,...,n (0,) 1 A(2) (5,) 3 0 C(6) (11,) (16,) 5 F(5) 6 D(2) E(1) B(5) (5,) 2 4 (7,) Najwcześniejszy moment zajścia zdarzenia 6 wynosi 16. Zatem czas trwania projektu wynosi 16 i jest to długość najdłuższej ścieżki w sieci czynności.

27 Sieć czynności Niech LT(i) oznacza najpóźniejszy możliwy czas zajścia zdarzenia i N, który nie spowoduje wydłużenia czasu trwania projektu. LT(n) = ET(n) LT(i) = min {j: (i,j) A} (LT(j) t ij ) i = n 1,...,1 (0,0) 1 A(2) (5,5) 3 0 C(6) (11,11) (16,16) 5 F(5) 6 D(2) E(1) B(5) (5,5) 2 4 (7,10)

28 Sieć czynności Wielkość TF(i, j) = LT(j) ET(i) t ij nazywamy całkowitym zapasem czynności(i, j). Czynności dla których TF(i, j) = 0 nazywamy krytycznymi. Jeżeli projekt ma się zakończyć terminowo, to momenty rozpoczęcia czynności krytycznych nie moga być opóźnione a ich czasy trwania nie moga być wydłużone. Czynności krytyczne tworza ścieżkę krytyczna w sieci. (0,0) 1 A(2) 3 0 B(5) (5,5) (11,11) (16,16) C(6) F(5) D(2) 3 3 E(1) 2 4 (5,5) (7,10) Czynności B, C i F sa krytyczne. Tworz a one ścieżkę krytyczna w sieci.

29 Diagram Gantta Diagram Gantta dla projektu: B C D E A F 16

30 Analiza kosztowa projektu Przypuśćmy, że chcemy skrócić czas trwania projektu do T. Jednostkowy koszt skrócenia czynności (i, j) wynosi c ij, ale czas trwania (i, j) nie może być krótszy niż t ij. Czas trwania których czynności należy skrócić aby osiagn ać założony czas trwania projektu przy możliwie najmniejszym koszcie? Rozwiazanie uzyskujemy za pomoca następujacego modelu liniowego: min c 13 δ 13 + c 12 δ c 56 δ 56 ET 1 = 0 ET 2 ET δ 12 ET 3 ET δ 13 ET 3 ET 2 ET 4 ET δ 34 ET 5 ET δ 45 ET 5 ET δ 35 ET 6 ET δ 56 ET 6 T 0 δ 13 2 t 13,...,0 δ 56 5 t 56

31 Problem maksymalnego przepływu Niech G = (N, A) będzie zadana siecia. Dla każdego łuku (i, j) A jest zadana pojemność u ij 0. Należy wyznaczyć maksymalny przepływ od zadanego źródła s do zadanego ujścia t w G. Przykładowa sieć ze źródłem s = 1 and ujściem t = 5 oraz maksymalnym przepływem o wartości 13.

32 Model liniowy max z = x 12 + x 13 x 31 x 24 + x 23 x 12 = 0 x 31 + x 34 + x 35 x 23 x 13 = 0 x 45 x 24 x 34 = 0 0 x 12 9, 0 x 13 4,...,0 x 45 7

33 Minimalny przekrój Podział wierzchołków sieci na dwa rozłaczne zbiory S i S taki, że s S, t S nazywamy przekrojem. Pojemnościa przekroju nazywamy sumę pojemności łuków (i, j) takich, że i S, j S. Minimalnym przekrojem nazywamy przekrój o najmniejszej pojemności. Przykładowy przekrój, gdzie S = {1, 3} i S = {2, 4, 5}. (1, 2),(3, 4),(3, 5) i pojemność przekroju wynosi 22. Odpowiednimi łukami sa

34 - minimalny przekrój Wartość maksymalnego przepływu w sieci jest równa pojemności minimalnego przekroju w tej sieci. Wartość maksymalnego przepływu = pojemność minimalnego przekroju = 13

35 Zastosowania W punktach A 1, A 2, A 3 znajduja się pompy wodne, dostarczajace odpowiednio 15, 5 i 10 litrów wody na godzinę. Woda jest dostarczana do punktów B 1, B 2, które potrzebuja 10 i 15 litrów wody na godzinę. System rur jest zadany w postaci sieci, której łuki reprezentuja rury o zadanych przepustowościach (w litrach na godzinę). Czy jest możliwe spełnienie zapotrzebowania odbiorców na wodę? Jeżeli nie, to które elementy wodociagu należy zmodernizować?

36 Zastosowania Rozwiazanie: Nie jest możliwe spełnienie zapotrzebowania na wodę obu punktów. Zielone rury należa do minimalnego przekroju. Powinny być zmodernizowane w pierwszej kolejności.

37 Zastosowania Układ komunikacyjny pewnego miasta składa się z dróg i skrzyżowań. Każda droga i skrzyżowanie posiada pewna przepustowość oznaczajac a liczbę samochodów, które moga przejechać przez ta drogę lub skrzyżowanie w ciagu 1 minuty. Ile samochodów może przejechać przez ten układ w ciagu 1 minuty? Które elementy tego systemu sa najsłabsze i powinny być zmodernizowane w pierwszej kolejności?

38 Zastosowania Rozwiazanie: W ciagu 1 minuty 27 samochodów może przejechać przez ten system. Należy w pierwszej kolejności zmodernizować fragmenty s A1 is B1 B2.

39 Zastosowania G = (N, A) modeluje sieć energetyczna, w której łuki reprezentuja linie wysokiego napięcia. W wierzchołku 1 znajduje się elektrownia, która dostarcza prad do miejsca 8. Jaka jest minimalna liczba linii, które musza ulec awarii, żeby prad nie był dostarczany do miejsca 8?

40 Zastosowania Rozwiazanie: Wszystkie łuki maja przepustowość równa 1 i szukamy minimalnego przekroju w G. Usunięcie łuków z przekroju rozłacza wierzchołki 1 i 8. W tym przypadku co najmniej trzy linie musza ulec awarii.

41 Sieć rezydualna Niech x będzie przepływem w sieci G. Konstruujemy sieć rezydualna G(x) następujaco: 1 Dla każdego łuku (i, j) A tworzymy dwa łuki: (i, j) z pojemnościa r ij = u ij x ij (j, i) z pojemnościa r ji = x ij 2 Usuwamy wszystkie łuki o pojemności 0.

42 Sieć rezydualna Jeżeli w sieci rezydualnej G(x) istnieje ścieżka od s do t, to jest możliwe zwiększenie przepływu od s do t wzdłuż tej ścieżki. Przepływ może być zwiększony o wartość równa minimalnej przepustowości łuku na tej ścieżce.

43 Sieć rezydualna Przepływ x jest maksymalny w G = (N, A) wtedy i tylko wtedy, gdy w odpowiedniej sieci rezydualnej G(x) nie istnieje ścieżka od s do t. Ponadto, jeżeli S jest zbiorem wierzchołków osiagalnych z s a S jest zbiorem wierzchołków nieosiagalnych z s w G(x), to zbiory te tworza minimalny przekrój w G.

44 Algorytm Fulkersona - Forda Rozpoczynamy od przepływu równego 0. Wówczas sieci G i G(x) sa takie same. Wyznaczamy ścieżkę w G(x) i przesyłamy 2 jednostki przepływu wzdłuż tej ścieżki.

45 Algorytm Fulkersona - Forda Wyznaczamy ścieżkę w sieci rezydualnej i przesyłamy 3 jednostki przepływu wzdłuż tej ścieżki.

46 Przykład Wyznaczamy ścieżkę w sieci rezydualnej i przesyłamy 1 jednostkę przepływu wzdłuż tej ścieżki.

47 Przykład Nie istnieje ścieżka od s do t w sieci rezydualnej. Zatem przepływ o wartości 6 jest maksymalny. Minimalny przekrój odpowiada podziałowi S = {1} i S = {2, 3, 4}.

Sieć (graf skierowany)

Sieć (graf skierowany) Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

BADANIA OPERACYJNE. dr Adam Sojda Pokój A405

BADANIA OPERACYJNE. dr Adam Sojda  Pokój A405 BADANIA OPERACYJNE dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w

zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1 A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b

Bardziej szczegółowo

DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku

DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku DWA ZDANIA O TEORII GRAFÓW Krawędź skierowana Grafy a routing Każdą sieć przedstawić składającego przedstawiają E, inaczej węzłami). komunikacyjną można w postaci grafu G się z węzłów V (które węzły sieci)

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Zagadnienie najkrótszej drogi w sieci

Zagadnienie najkrótszej drogi w sieci L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy

Bardziej szczegółowo

Przykłady problemów optymalizacyjnych

Przykłady problemów optymalizacyjnych Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

5. Najkrótsze ścieżki

5. Najkrótsze ścieżki p. Definicja 5. Najkrótsze ścieżki 5.1 Odległości w grafach: definicje i własności (Długość ścieżki). Długościa ścieżki nazywamy liczbę krawędzi występujacych w tej ścieżce. Bardziej formalnie, jeżeli

Bardziej szczegółowo

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11} Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

Zagadnienia optymalizacji na grafach

Zagadnienia optymalizacji na grafach dr inż. Adam Kasperski, dr M. Kulej BO- Optymalizacja na sieciach 1 Zagadnienia optymalizacji na grafach Podstawowe pojęcia z teorii grafów i sieci Graf nieskierowany(symetryczny) G = (V, E) składa się

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

t i L i T i

t i L i T i Planowanie oparte na budowaniu modelu struktury przedsięwzięcia za pomocą grafu nazywa sie planowaniem sieciowym. Stosuje się do planowania i kontroli realizacji założonych przedsięwzięć gospodarczych,

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Grafem skierowanym. Typowe zastosowania grafów skierowanych obejmują wiele dziedzin:

Grafem skierowanym. Typowe zastosowania grafów skierowanych obejmują wiele dziedzin: Grafem skierowanym D (inaczej digrafem) nazywamy parę(v, A), gdzie V jest skończonym zbiorem wierzchołków, A jest zbiorem par uporządkowanych(u, v) o elementach ze zbioru V. Elementy zbioru A nazywamy

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Zarządzanie projektami

Zarządzanie projektami Dr Adam Kucharski Spis treści Podstawowe pojęcia Metoda CPM 3 3 Przykład analizy metodą CPM 5 Podstawowe pojęcia Przedsięwzięcia złożone z wielu czynności spotykane są na każdym kroku. Jako przykład może

Bardziej szczegółowo

Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2.

Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Przykład Elementy analizy wrażliwości Firma JCo wytwarza dwa wyroby na dwóch maszynach. Jednostka wyrobu 1 wymaga 2 godzin pracy na maszynie 1 i 1 godziny pracy na maszynie 2. Dla wyrobu 2 czasy te wynosza

Bardziej szczegółowo

Egzamin, AISDI, I termin, 18 czerwca 2015 r.

Egzamin, AISDI, I termin, 18 czerwca 2015 r. Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział

Bardziej szczegółowo

ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST

ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE W metodach CPM i PERT zwraca się uwagę jedynie na analizę ilościowa Równie ważne zagadnienie aspekt ekonomiczny

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza

Bardziej szczegółowo

Wieloetapowe zagadnienia transportowe

Wieloetapowe zagadnienia transportowe Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Zarządzanie projektami. Tadeusz Trzaskalik

Zarządzanie projektami. Tadeusz Trzaskalik Zarządzanie projektami Tadeusz Trzaskalik 7.1. Wprowadzenie Słowa kluczowe Projekt Sieć czynności zynność bezpośrednio poprzedzająca Zdarzenie, zdarzenie początkowe, zdarzenie końcowe Właściwa numeracja

Bardziej szczegółowo

Zapasy czasowe czynności

Zapasy czasowe czynności Zapasy czasowe czynności Na podstawie wyliczonych najwcześniejszych możliwych oraz najpóźniejszych dopuszczalnych momentów zajścia zdarzeń, można wyznaczyć zapasy czasu dla poszczególnych czynności przedsięwzięcia.

Bardziej szczegółowo

PROGRAMOWANIE SIECIOWE. METODY CPM i PERT

PROGRAMOWANIE SIECIOWE. METODY CPM i PERT PROGRAMOWANIE SIECIOWE. METODY CPM i PERT Maciej Patan Programowanie sieciowe. 1 WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę logiczna

Bardziej szczegółowo

Analiza czasowo-kosztowa

Analiza czasowo-kosztowa Analiza czasowo-kosztowa Aspekt ekonomiczny: należy rozpatrzyć techniczne możliwości skrócenia terminu wykonania całego przedsięwzięcia, w taki sposób aby koszty związane z jego realizacją były jak najniższe.

Bardziej szczegółowo

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany , 1 2 3, czas zamortyzowany zajęcia 3. Wojciech Śmietanka, Tomasz Kulczyński, Błażej Osiński rozpinajace, 1 2 3 rozpinajace Mamy graf nieskierowany, ważony, wagi większe od 0. Chcemy wybrać taki podzbiór

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Analiza sieciowa projektów- metody: CPM, PERT. A. Kasperski, M. Kulej 1

Analiza sieciowa projektów- metody: CPM, PERT. A. Kasperski, M. Kulej 1 Analiza sieciowa projektów- metody: CPM, PERT. A. Kasperski, M. Kulej 1 Określenie projektu Przez projekt rozumie się jednostkowy(najczęściej jednorazowy) proces złożony ze zbioru wzajemnie powiązanych

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Metoda CPM/PERT. dr inż. Mariusz Makuchowski

Metoda CPM/PERT. dr inż. Mariusz Makuchowski PM - wstęp PM nazwa metody pochodzi od angielskiego ritical Path Method, jest techniką bazującą na grafowej reprezentacji projektu, używana jest dla deterministycznych danych. PM - modele grafowe projektu

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Przykład planowania sieci publicznego transportu zbiorowego

Przykład planowania sieci publicznego transportu zbiorowego TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy

Bardziej szczegółowo

) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n

) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n PDczęść4 8. Zagadnienia załadunku 8.1 Klasyczne zagadnienia załadunku (ozn. N = {1, 2,..., n} Binarny problem ( (Z v(z =max c j x j : a j x j b; x j binarne (j N zakładamy, że wszystkie dane sa całkowitoliczbowe;

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Temat: Algorytmy zachłanne

Temat: Algorytmy zachłanne Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.

Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny. Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu Wykład Zarządzanie projektami Zajęcia Zarządzanie czasem w projekcie Zarządzanie kosztami projektu dr Stanisław Gasik s.gasik@vistula.edu.pl www.sybena.pl/uv/014-wyklad-eko-zp-9-pl/wyklad.pdf Zarządzanie

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

M1 M2 M3 Jednostka produkcyjna W1 6h 3h 10h h/1000szt 2zł W2 8h 4h 5h h/100szt 25zł Max. czas pracy maszyn:

M1 M2 M3 Jednostka produkcyjna W1 6h 3h 10h h/1000szt 2zł W2 8h 4h 5h h/100szt 25zł Max. czas pracy maszyn: Zad. Programowanie liniowe Jakiś zakład produkcyjny, ma 3 różne maszyny i produkuje różne produkty. Każdy z produktów wymaga pewnych czasów każdej z 3ch maszyn (podane w tabelce niżej). Ile jakiego produktu

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na

Bardziej szczegółowo

Przykład: budowa placu zabaw (metoda ścieżki krytycznej)

Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Firma budowlana Z&Z podjęła się zadania wystawienia placu zabaw dla dzieci w terminie nie przekraczającym 20 dni. Listę czynności do wykonania zawiera

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe

BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór

Bardziej szczegółowo

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

Luty 2001 Algorytmy (4) 2000/2001

Luty 2001 Algorytmy (4) 2000/2001 Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

AiSD zadanie trzecie

AiSD zadanie trzecie AiSD zadanie trzecie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 5 czerwca 2008 1 Wstęp Celem postawionym przez zadanie trzecie było tzw. sortowanie topologiczne. Jest to typ sortowania

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Programowanie Dynamiczne dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 14 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo