Metoda CPM/PERT. dr inż. Mariusz Makuchowski
|
|
- Tadeusz Kujawa
- 8 lat temu
- Przeglądów:
Transkrypt
1
2 PM - wstęp PM nazwa metody pochodzi od angielskiego ritical Path Method, jest techniką bazującą na grafowej reprezentacji projektu, używana jest dla deterministycznych danych.
3 PM - modele grafowe projektu Stosowane są dwa typy modeli grafowych: model ON (ang. activity on node) wierzchołki reprezentują operacje (zadania) do wykonania, łuki reprezentują zależności kolejnościowe pomiędzy danymi operacjami; model O (ang. activity on arrow) wierzchołki reprezentują stany wykonania projektu, łuki reprezentują operacje do wykonania.
4 PM - cele stosowania PM Główne cele stosowania PM to: wyliczenie czasu zakończenia projektu, wyznaczenie operacji niekrytycznych, dla których wyznacza się dopuszczalne opóźnienie, które nie będzie skutkowało opóźnieniem całego projektu, wyznaczenie operacji krytycznych, których każde nawet minimalne opóźnienie spowoduje opóźnienie projektu.
5 PM - obliczenia w przód i wstecz PM dokonuje obliczeń w dwóch fazach: obliczenia w przód, najwcześniejsze momenty rozpoczęcia operacji, S (ang. arly Start), najwcześniejsze momenty zakończenia operacji, (ang. arly inish). obliczenia wstecz. LS (ang. Late Start) najpóźniejsze momenty rozpoczęcia operacji, L (ang. Late inish) najpóźniejsze momenty zakończenia operacji.
6 PM - S,, LS, L S czas nazwa LS S jest najwcześniejszym możliwym momentem rozpoczęcia wykonywania operacji, jest najwcześniejszym możliwym momentem zakończenia wykonywania operacji, LS jest najpóźniejszym możliwym momentem rozpoczęcia wykonywania operacji, bez opóźnienia całego projektu, L jest najpóźniejszym możliwym momentem zakończenia wykonywania operacji, bez opóźnienia całego projektu. L
7 MP - przykład: dane czynność poprzednik czas trwania - - 5, 1 6, 4
8 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji
9 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 1 4 start koniec 5 6
10 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji.? 1 4 start koniec 5 6
11 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 0?? 1 4 start koniec 5 6
12 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 0?? 1 4 start koniec? 5? 6
13 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 0??? 1? 4 start koniec 0? 5 5? 6
14 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 0?? 5? 1 6? 4 start koniec 0? 5 5?? 6?
15 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 0?? 5? 1 6?? 4? start koniec 0? 5 5? 5? 6 11?
16 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 0?? 5? 1 6? 11? 4 15? start koniec 0? 5 5? 5? 6 11???
17 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 0?? 5? 1 6? 11? 4 15? start?? koniec 0? 5 5? 5? 6 11? 11? 13?
18 PM - obliczenia S, S = najpóźniejszy z wszystkich poprzedników = S + czas trwania operacji. 0?? 5? 1 6? 11? 4 15? start 15? 15? koniec 0? 5 5? 5? 6 11? 11? 13?
19 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji start ? koniec 15 15
20 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji start ? 15? koniec 15 15
21 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji. start ?? ? 15? koniec 15 15
22 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji. start ?? ? 15? ? 15? koniec 15 15
23 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji. start ?? ? 11? ? 15? ? 15? koniec 15 15
24 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji. start ?? ? 11? ? 11? ? 15? ? 15? koniec 15 15
25 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji. start 0?? ? 5? ? 11? ? 11? ? 15? ? 15? koniec 15 15
26 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji. start?? 0 8? 10? ? 5? ? 11? ? 11? ? 15? ? 15? koniec 15 15
27 PM - obliczenia LS, L L = najwcześniejszy z LS wszystkich następników LS = L - czas trwania operacji. start 0? 0? 0 8? 10? ? 5? ? 11? ? 11? ? 15? ? 15? koniec 15 15
28 PM - luz operacji o to jest całkowity luz, T (ang.total loat). Luz jest wartością o jaką można opóźnić rozpoczęcie wykonywania operacji albo wydłużyć jej czas trwania, przy jednoczesnym zachowaniu terminu zakończenia projektu. Jak wyznaczyć T? T = LS-S = L- o można powiedzieć o operacji dla której T=0? Operacja taka jest operacją krytyczną, jakiekolwiek opóźnienie tej operacji spowoduje wydłużenie całego projektu.
29 PM - ścieżka krytyczna: przykład start koniec 15 15
30 PM - ścieżka krytyczna: przykład start koniec
31 PM - ścieżka krytyczna: przykład start koniec
32 PM - ścieżka krytyczna: własności Własności ścieżki krytycznej: ścieżkę krytyczną tworzą operacje krytyczne (T=0), ścieżka krytyczna jest najdłuższą ścieżką w grafie, może istnieć wiele ścieżek krytycznych.
33 PRT - wstęp PRT nazwa metody PRT pochodzi od angielskiego Program valuation and Review Technique, jest techniką bazującą na metodzie PM, używana jest dla niedeterministycznych danych; pozwala wyznaczyć prawdopodobieństwo terminowego zakończenia projektu, pozwala wyznaczyć z zadanym prawdopodobieństwem czas trwania projektu.
34 PRT - dane ane projektu: dane są operacje wchodzące w skład projektu, dane są relacje kolejnościowe pomiędzy operacjami projektu, czas operacji podany jest jako trójka: a - optymistyczny, m - najbardziej prawdopodobny, b - pesymistyczny.
35 PRT - oczekiwany czas trwania operacji la każdej operacji wylicza się oczekiwany czas jej trwania oraz jego wariancję t oper = aoper +4moper +boper 6, σoper boper aoper = ( ). 6
36 PRT - użycie PM la wyliczonych oczekiwanych czasów trwania operacji stosujemy metodę PM otrzymując: µ oczekiwany czas realizacji projektu, σ wariancje czasu projektu, która jest sumą wariancji operacji ze ścieżki krytycznej, σ = Σ oper riticalpath (σ oper).
37 PRT - prawdopodobieństwo zakończenia projektu Wartość oczekiwana czasu projektu wynosi µ, a prawdopodobieństwo p(t < µ) zakończenia projektu w czasie nie większym niż µ wynosi 50%. Prawdopodobieństwo p(t < x) zakończenia projektu w terminie nie większym niż x wynosi: p(t < x) = Φ ( x µ ), σ gdzie Φ jest dystrybuantą standardowego rozkładu normalnego.
38 PRT - przykład Jakie jest prawdopodobieństwo realizacji projektu w czasie nieprzekraczającym 17 dni? Jaki czas przeznaczyć na wykonanie projektu aby prawdpodobieństwo realizacji projektu w terminie wynosiło 99%?
39 PRT - przykład: dane czynność poprzednik czas a czas m czas b czas t σ , 4 6 G H I, H 5 7 9
40 PRT - przykład: użycie PM G H I
41 PRT - przykład: czas t i σ czynność poprzednik czas a czas m czas b czas t σ , G H I, H
42 PRT - przykład: użycie PM σ = G σ = 0.44 σ = 0.11 σ = H σ = σ = σ = σ = I σ = 0.44
43 PRT - przykład: użycie PM G σ = 0.11 σ = σ = σ = H σ = σ = σ = σ = I σ = 0.44
44 PRT - przykład: użycie PM G σ = 0.11 σ = σ = σ = H σ = σ = σ = σ = I σ = 0.44
45 PRT - przykład: użycie PM Wyniku działania metody PM otrzymujemy: ścieżkę krytyczną, I, µ = t + t + t + t I = = 18, σ = σ +σ +σ +σi = = 1.10, σ = 1.05.
46 PRT - przykład: rozwiązanie Prawdopodobieństwo zakończenia projektu w ciągu 17 dni: p(t < 17) = Φ( 17 µ σ wynosi 17%. 1 ) = Φ( ) = Φ( 0.95) = % 17 18
47 PRT - przykład: rozwiązanie Projekt na 99% zakończy się: t = µ + σ Φ 1 (0.99) = = 0.45 nie później niż w połowie 1 dnia. 99%
48 ziękuję za uwagę
Metoda CPM/PERT. dr inø. Mariusz Makuchowski
PM - wstíp PM nazwa metody pochodzi od angielskiego ritical Path Method, jest technikπ bazujπcπ na grafowej reprezentacji projektu, uøywana jest dla deterministycznych danych. PM - modele grafowe projektu
Zarządzanie projektami. Tadeusz Trzaskalik
Zarządzanie projektami Tadeusz Trzaskalik 7.1. Wprowadzenie Słowa kluczowe Projekt Sieć czynności zynność bezpośrednio poprzedzająca Zdarzenie, zdarzenie początkowe, zdarzenie końcowe Właściwa numeracja
Harmonogramowanie przedsięwzięć
Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp
Planowanie przedsięwzięć
K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania
Przykład: budowa placu zabaw (metoda ścieżki krytycznej)
Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Firma budowlana Z&Z podjęła się zadania wystawienia placu zabaw dla dzieci w terminie nie przekraczającym 20 dni. Listę czynności do wykonania zawiera
BADANIA OPERACYJNE. dr Adam Sojda Pokój A405
BADANIA OPERACYJNE dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę
PROGRAMOWANIE SIECIOWE. METODY CPM i PERT
PROGRAMOWANIE SIECIOWE. METODY CPM i PERT Maciej Patan Programowanie sieciowe. 1 WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę logiczna
METODA PERT. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA PERT Maciej Patan Programowanie sieciowe. Metoda PERT 1 WPROWADZENIE PERT (ang. Program Evaluation and Review Technique) Metoda należy do sieci o strukturze logicznej zdeterminowanej Parametry opisujace
Zarządzanie czasem projektu
Zarządzanie czasem projektu Narzędzia i techniki szacowania czasu zadań Opinia ekspertów Szacowanie przez analogię (top-down estimating) stopień wiarygodności = f(podobieństwo zadań), = f(dostęp do wszystkich
t i L i T i
Planowanie oparte na budowaniu modelu struktury przedsięwzięcia za pomocą grafu nazywa sie planowaniem sieciowym. Stosuje się do planowania i kontroli realizacji założonych przedsięwzięć gospodarczych,
Modele sieciowe. Badania operacyjne Wykład 6. prof. Joanna Józefowska
Modele sieciowe Badania operacyjne Wykład 6 6-6- 6-6- Plan wykładu Zarządzanie złożonymi przedsięwzięciami Metoda ścieżki krytycznej Metoda PERT Projekty z ograniczonymi zasobami Modele z kontrolą czasu
Inżynieria oprogramowania. Część 8: Metoda szacowania ryzyka - PERT
UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI Opracował: mgr inż. Przemysław Pardel v1.01 2010 Inżynieria oprogramowania Część 8: Metoda szacowania ryzyka - PERT ZAGADNIENIA DO ZREALIZOWANIA (3H) PERT...
ANALIZA SIECIOWA PROJEKTÓW REALIZACJI
WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza
Zarządzanie projektami
Dr Adam Kucharski Spis treści Podstawowe pojęcia Metoda CPM 3 3 Przykład analizy metodą CPM 5 Podstawowe pojęcia Przedsięwzięcia złożone z wielu czynności spotykane są na każdym kroku. Jako przykład może
Ograniczenia projektu. Zakres (co?) Czas (na kiedy?) Budżet (za ile?)
Harmonogram Ograniczenia projektu Zakres (co?) Czas (na kiedy?) Budżet (za ile?) Pojęcia podstawowe Harmonogram: Daty wykonania działań Daty osiągnięcia kamieni milowych Działanie: Element składowy pakietu
Zasady sporządzania modelu sieciowego (Wykład 1)
Zasady sporządzania modelu sieciowego (Wykład 1) Metody planowania sieciowego są stosowane w budownictwie do planowania i kontroli dużych przedsięwzięć, w których z powodu wielu zależności istnieje konieczność
Analiza sieciowa projektów- metody: CPM, PERT. A. Kasperski, M. Kulej 1
Analiza sieciowa projektów- metody: CPM, PERT. A. Kasperski, M. Kulej 1 Określenie projektu Przez projekt rozumie się jednostkowy(najczęściej jednorazowy) proces złożony ze zbioru wzajemnie powiązanych
Szeregowanie zadań. Wykład nr 2. dr Hanna Furmańczyk. 12 października 2014
Wykład nr 2 12 października 2014 Złożoność problemów szeregowania zadań Problemy: wielomianowe NP-trudne otwarte Złożoność problemów szeregowania zadań Problemy: wielomianowe NP-trudne otwarte Jak sobie
ZARZĄDZANIE PROJEKTAMI METODA ŚCIEŻKI KRYTYCZNEJ HARMONOGRAM PROJEKTU
1 ZARZĄDZANIE PROJEKTAMI METODA ŚCIEŻKI KRYTYCZNEJ HARMONOGRAM PROJEKTU AUTOR: AGENDA LEKCJI 2 CPM wprowadzenie teoretyczne Przykład rozwiązania Zadanie do samodzielnego rozwiązania 3 Critical Path Method
Zarządzanie projektami. mgr inż. Michał Adamczak
Zarządzanie projektami mgr inż. Michał Adamczak Ćwiczenie 2 mgr inż. Michał Adamczak Agenda spotkania: 1. CPM wprowadzenie 2. Tabela czynności 3. Podstawowe elementy budowy diagramu sieciowego 4. Zasady
Rozdział 7 ZARZĄDZANIE PROJEKTAMI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 7 ZARZĄDZANIE PROJEKTAMI 7.2. Ćwiczenia komputerowe Ćwiczenie 7.1 Wykorzystując
WPŁYW TYPU ROZKŁADU CZASU TRWANIA CZYNNOŚCI NA WYNIKI ANALIZY RYZYKA W PLANOWANIU REALIZACJI PRZEDSIĘWZIĘĆ
Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje mgr inż. Wojciech Bogusz dr hab. inż. Mieczysław Połoński, prof. SGGW mgr inż. Kamil Pruszyński Szkoła Główna Gospodarstwa
Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4
Ćwiczenia laboratoryjne - 4 Projektowanie i harmonogramowanie produkcji metoda CPM-COST Ćw. L. 4 Metody analizy sieciowej 1) Deterministyczne czasy trwania czynności są określane jednoznacznie (jedna liczba)
LOGISTYKA DYSTRYBUCJI ćwiczenia 11 i 12 WYKORZYSTANIE METOD SIECIOWYCH W PROJEKTACH LOGISTYKI DYSTRYBUCJI. AUTOR: dr inż.
LOGISTYKA DYSTRYBUCJI ćwiczenia i WYKORZYSTANIE METOD SIECIOWYCH W PROJEKTACH LOGISTYKI DYSTRYBUCJI AUTOR: dr inż. ROMAN DOMAŃSKI Literatura Piotr Cyplik, Danuta Głowacka-Fertsch, Marek Fertsch Logistyka
Zastosowanie metody łańcucha krytycznego w procesie wdrażania zintegrowanego systemu zarządzania. mgr inż. K. Marek-Kołodziej
Zastosowanie metody łańcucha krytycznego w procesie wdrażania zintegrowanego systemu zarządzania mgr inż. K. Marek-Kołodziej Koncepcja metody łańcucha krytycznego Szacowanie czasu trwania zadań Eliminacja
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu
Wykład Zarządzanie projektami Zajęcia Zarządzanie czasem w projekcie Zarządzanie kosztami projektu dr Stanisław Gasik s.gasik@vistula.edu.pl www.sybena.pl/uv/014-wyklad-eko-zp-9-pl/wyklad.pdf Zarządzanie
Zapasy czasowe czynności
Zapasy czasowe czynności Na podstawie wyliczonych najwcześniejszych możliwych oraz najpóźniejszych dopuszczalnych momentów zajścia zdarzeń, można wyznaczyć zapasy czasu dla poszczególnych czynności przedsięwzięcia.
g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.
TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności
Zarządzanie projektami. Zarządzanie czasem w projekcie
Zarządzanie projektami Zarządzanie czasem w projekcie Zarządzanie czasem w projekcie PROJECT TIME MANAGEMENT Zarządzanie czasem - elementy 1. Zarządzanie harmonogramem 2. Określanie działań (określanie
Każde zadanie (ang. task) ma wyróżnione dwa stany:
fie skierowanym (rys 1). Pomiędzy zadaniami rzeczywistymi modelującymi określone działania i stany w realizacji przedsięwzięcia definiuje się zależności, wprowadzając do modelu zadania pozorne. Zadania
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
METODA ŚCIEŻKI KRYTYCZNEJ STUDIUM PRZYPADKU
METODA ŚCIEŻKI KRYTYCZNEJ STUDIUM PRZYPADKU Celina BARTNICKA Streszczenie: W dzisiejszych czasach przedsiębiorstwa pracują w bardzo szybko zmieniających się warunkach, więc aby osiągnąć sukces, stawia
SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec
SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
ZARZĄDZANIE PROJEKTEM NA PRZYKŁADZIE PRZEDSIĘWZIĘCIA ODLEWNICZEGO
1/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 ZARZĄDZANIE PROJEKTEM NA PRZYKŁADZIE PRZEDSIĘWZIĘCIA ODLEWNICZEGO
Zarządzanie projektów
Zarządzanie projektów Zarządzanie projektów Część 1 Organizacja Kursu Wykład - interaktywna prezentacja (ok. 95% czasu) Test (ok.. 5% czasu) Opracowanie indywidualne lub grupowe związane z zaliczeniem
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
Rachunek Prawdopodobieństwa MAP1181 Wydział Matematyki, Matematyka Stosowana Projekt - Czas dojazdu autobusem Opracowanie: Klaudia Karpińska
Zadanie Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Projekt - Czas dojazdu autobusem Opracowanie: Klaudia Karpińska Z pracy do domu możemy dojechać autobusem jednej z trzech
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
RISK-AWARE PROJECT SCHEDULING
RISK-AWARE PROJECT SCHEDULING Z WYKORZYSTANIEM UCT KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb
M1 M2 M3 Jednostka produkcyjna W1 6h 3h 10h h/1000szt 2zł W2 8h 4h 5h h/100szt 25zł Max. czas pracy maszyn:
Zad. Programowanie liniowe Jakiś zakład produkcyjny, ma 3 różne maszyny i produkuje różne produkty. Każdy z produktów wymaga pewnych czasów każdej z 3ch maszyn (podane w tabelce niżej). Ile jakiego produktu
x x 0.5. x Przykłady do zadania 4.1 :
Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Zarządzanie projektami. mgr inż. Michał Adamczak
Zarządzanie projektami mgr inż. Michał Adamczak mgr inż. Michał Adamczak Wyższa Szkoła Logistyki Katedra Systemów Logistycznych ul. Szyperska 3/5 michal.adamczak@wsl.com.pl 2010-10-05 2 mgr inż. Michał
Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny
Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
LABORATORIUM 6 ESTYMACJA cz. 2
LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
SYSTEMY WSPOMAGANIA DECYZJI
POLITECHNIKA RZESZOWSKA IM. IGNACEGO ŁUKASIEWICZA WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD INFORMATYKI SYSTEMY WSPOMAGANIA DECYZJI MATERIAŁY DYDAKTYCZNE DO LABORATORIUM LABORATORIUM VII Metoda ścieżki
Analiza czasowo-kosztowa
Analiza czasowo-kosztowa Aspekt ekonomiczny: należy rozpatrzyć techniczne możliwości skrócenia terminu wykonania całego przedsięwzięcia, w taki sposób aby koszty związane z jego realizacją były jak najniższe.
Proces rozproszony. Plan wykładu. Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński. Proces rozproszony. Zbiór stanów globalnych (1)
Proces rozproszony Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński Pan wykładu Proces rozproszony Wykonanie procesu, historia procesu Stan osiągany Reacja poprzedzania zdarzeń Diagramy przestrzenno-czasowe
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 11 Anna Skowrońska-Szmer lato 2016/2017 Powtórzenie materiału 2 Zadanie 1 Wykład 1 Eksperyment polega na pojedynczym rzucie symetryczną kostką. Przestrzeń zdarzeń
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
MODELOWANIE MATEMATYCZNE SIECI DOSTAW
Piotr KISIELEWSKI, Kamil WIJAS MODELOWANIE MATEMATYCZNE SIECI DOSTAW W artykule przedstawiono na wybranych przykładach zagadnienie matematycznego modelowania sieci dostaw. WSTĘP Celem artykułu jest przedstawienie
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Sieć (graf skierowany)
Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B),(A, D),(A, C),(B, C),...,} Ścieżki i cykle Ciag wierzchołków
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Estymacja przedziałowa. Przedział ufności
Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział
Microsoft Project laboratorium zarządzania projektami
Microsoft Project laboratorium zarządzania projektami Jędrzej Wieczorkowski Katedra Informatyki Gospodarczej Szkoła Główna Handlowa jedrzej.wieczorkowski@sgh.waw.pl Przykładowa literatura nt. MS Project
Badania operacyjne egzamin
Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
ORGANIZACJA I ZARZĄDZANIE
P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Planowanie przedsięwzięcia metodą CPM Instrukcja do ćwiczeń
ALGORYTMY WYZNACZANIA ŚCIEŻKI KRYTYCZNEJ I ZAPASÓW CZASU W SIECIACH JEDNOPUNKTOWYCH O ROZSZERZONYCH TYPACH RELACJI MIEDZY ZADANIAMI
1 Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 ALGORYTMY WYZNACZANIA ŚCIEŻKI KRYTYCZNEJ I ZAPASÓW CZASU W SIECIACH JEDNOPUNKTOWYCH O ROZSZERZONYCH
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
RISK-AWARE PROJECT SCHEDULING
RISK-AWARE PROJECT SCHEDULING PROUCT - GRASP KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania
RISK-AWARE PROJECT SCHEDULING
RISK-AWARE PROJECT SCHEDULING SIMPLEUCT CZ. 2 KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
ŚCIEŻKA KRYTYCZNA. W ścieżkach krytycznych kolejne zadanie nie może się rozpocząć, dopóki poprzednie się nie zakończy.
ŚCIEŻKA KRYTYCZNA Ciąg następujących po sobie zadań w ramach projektu trwających najdłużej ze wszystkich możliwych ciągów, mających taką własność, że opóźnienie któregokolwiek z nich opóźni zakończenie
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Porównanie dwóch rozkładów normalnych
Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Ocena µ 1 µ 2 oraz σ 2 1/σ 2 2. Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1,
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Zarządzanie projektami
Zarządzanie projektami Wykład 2 Wyznaczanie zakresu projektu Planowanie projektu Uruchamianie realizacji projektu Monitorowanie i kontrola postępów prac Zamykanie projektu Wyznaczanie zakresu projektu
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Dokładne i graniczne rozkłady statystyk z próby
Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Weryfikacja hipotez statystycznych testy t Studenta
Weryfikacja hipotez statystycznych testy t Studenta JERZY STEFANOWSKI Marek Kubiak Instytut Informatyki Politechnika Poznańska Standardowy schemat postępowania (znane σ) Założenia: X ma rozkład normalny
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę