PORÓWNANIE WYNIKÓW BADAŃ FIZYCZNEGO UKŁADU FALOWNIKA PRĄDU Z MODELEM IDEALNYM
|
|
- Agata Olejniczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Egieerig 213 Norbert MIELCZAREK* PORÓWNANIE WYNIKÓW BADAŃ FIZYCZNEGO UKŁADU FALOWNIKA PRĄDU Z MODELEM IDEALNYM Celem pracy jest sprawdzeie zbieżości wyików symulacyjych i aalityczych uproszczoego modelu jedofazowego falowika prądu z wyikami otrzymaymi w testach laboratoryjych układu fizyczego. Dodatkowym celem badań jest sprawdzeie czy wyzaczoe aalityczie a grucie teorii chaosu determiistyczego pukty, w których układ traci swoją stabilość są zgode z tymi obserwowaymi w układzie fizyczym. W pracy wykoao obliczeia aalitycze polegające a wyzaczeiu puktów bifurkacji układu, prowadzące do iestabilego zachowaia chaotyczego. Następie przeprowadzoo szereg symulacji dla parametru kotrolego będącego wzmocieie regulatora. Celowo wybrao model idealy przekształtika a przeprowadzoe symulacje skofrotowao z testami falowika fizyczego. 1. WSTĘP W czasach, gdy komputery zajdują się a każdym biurku iżyiera projektującego systemy sterowaia, programy symulacyje stały się powszechym arzędziem. Wielu iżyierów korzysta z tych programów, aby symulować działaie swojego produktu od fazy kocepcyjej do testów końcowych. Należy mieć przy tym świadomość różych makametów i ograiczeń wyikających z symulacji umeryczej: błędów zaokrągleń, błędów wyikających z zaimplemetowaych algorytmów. Ze względu a fakt, że istieje taka grupa układów, które ze względu a swoją złożoość lub zmieość struktury w czasie wymagają aalizy, jako układy chaotycze [1, 2]. Takie układy wymagają dokładych symulacji, gdyż są wrażliwe a waruki początkowe. Zastosowaie do badań symulacyjych programu MATLAB wiązało się z bardzo długimi czasami obliczeń. Także ograiczoa, iewielka liczba zaimplemetowaych algorytmów umeryczych metod całkowaia rówań dyamiki oraz brak arzędzi umeryczych do wyzaczaia wielkości charakteryzujących metody dyamiki ieliiowej (p. przekrojów Poicaré, wykładików Lapuowa itp.), przyczyiły się do opracowaia własego programu symulacyjego [3]. Wymagaiami stawiaymi opracowaemu oprogramowaiu były: możliwość kotroli dokładości obliczeń umeryczych, biblioteka metod * Politechika Pozańska.
2 48 Norbert Mielczarek używaych do badaia układów chaotyczych oraz większa szybkość obliczeń. W pracy przedstawioo wyiki symulacji umeryczych jedofazowego falowika prądu o strukturze mostka. Porówaie to zestawioo z obliczaiami aalityczymi oraz z badaiem układu fizyczego (rys. 1). 2. MODEL FALOWNIKA PRĄDU Badaia przeprowadzoo dla astępujących parametrów układu: L 5 mh, R 5, f s 2,5 khz, U z 2V. Przyjęto za parametr kotroly wzmocieie K, które jest zmieiae w zakresie K 2. Symulacje komputerowe przeprowadzoo za pomocą opracowaego programu ChaoPhS. Celem badań jest ie tylko weryfikacja poprawości obliczeń opisaego programu, ale rówież samego modelu matematyczego falowika a także możliwości uchwyceia zjawisk chaotyczych w układzie fizyczym jedofazowego falowika z prądowym sprzężeiem zwrotym sterowaego metodą modulacji PWM [4]. Model matematyczy został zbudoway w oparciu o model trazystorów jako łączików idealych. Rówaie stau badaego układu ma postać: Rys. 1. Schemat badaego falowika o strukturze mostka di R 1 i E v (1) dt L L przy czym zmiea jest zmieą dyskretą o wartości zależej od stau przewodzących zaworów: 1 t t1; t2 v (2) 1 t T; t1 t 2; 1 T Przy tych założeiach jest to układ o zmieej strukturze, która zależy od stau poszczególych zaworów ( T1 T4 ). Struktura pierwsza występuje przy
3 Porówaie wyików badań fizyczego układu falowika prądu z modelem przewodzących trazystorach T i T 1 4 ( T 2 i T 3 są wyłączoe). Druga struktura występuje, gdy załączoe są zawory T 2 i T 3, podczas gdy T i T 1 4 są wyłączoe. Czasy załączeń zaworów wyzaczae są a początku okresu sygału taktującego z wzorów: t1.5t 1 d, t2.5t 1 d (3) gdzie d jest współczyikiem wypełieia impulsu PWM o okresie T, tz. d td T.Względy czas wypełieia d zawiera się w przedziale d ; 1. Zależy o od różicy pomiędzy prądem zadaym I ref a prądem wyjściowym i (t) i jest zdefiioway jako: d ref. 5 K I i (4) gdzie K jest wzmocieiem w pętli ujemego sprzężeia zwrotego, atomiast i wartością prądu w chwili przyjścia impulsu taktującego. 3. PREZENTACJA WYNIKÓW BADAŃ W tej części porówao wyiki badań uzyskaych symulacyjie i aalityczie oraz wyiki z testów laboratoryjych układu fizyczego. Jako parametr kotroly, mający wpływ a tryb pracy układu przyjęto wzmocieie w pętli sprzężeia zwrotego K. Zmieiając tę wartość moża wprowadzać układ w sta chaosu determiistyczego, bądź pracować w trybie stabilym. W pracy [5] przeprowadzoo za pomocą odwzorowaia Poicaré aalizę stabilości, która pokazuje jak zmieia się sta pracy układu podczas zmiay parametru kotrolego K w zakresie K 2..2 K=.7 K=.629 K=.4 K=.2 K= plaszczyza zespoloa Rys. 2. Wartości włase odwzorowaia opisującego model przekształtika Na rysuku 2 pokazao zachowaie wartości własych odwzorowaia Poicaré [5] wyzaczoego dla wzoru (1) a płaszczyźie zespoloej dla badaego układu, przy zwiększaiu parametru K regulatora typu P. Przy
4 5 Norbert Mielczarek zwiększaiu K wartość własa przesuwa się z prawej stroy a lewą i przy wartości K, 629 wychodzi poza okrąg jedostkowy tracąc stabilość. Powoduje to pierwszą bifurkację w układzie i podwaja okres przebiegu prądu wyjściowego. Jest to pierwszy etap przejścia układu do pracy chaotyczej. Następie pokazao wyiki umeryczego rozwiązaia rówaia (1) opisującego baday przekształtik, które otrzymao w programie ChaoPhS oraz porówao je z pomiarami układu fizyczego. Rysuek 3 przedstawia diagram bifurkacji dla prądu wyjściowego i (t) dla wzmocieia K jako parametr. Tak jak wykazała wcześiej przeprowadzoa aaliza stabilości pierwsza bifurkacja pojawia się przy wartości K,629. Koleja bifurkacja występuje przy wartości K, 81. Dla większych wartości K układ zaczya zachowywać się w sposób chaotyczy. a) I I 1 I 2 I,63,81 K b) I 3 2,8 2,6 2,4 2,2 2 1,8 1,6 1,4 1,2 1,8,6,4 I 1 I 2,67,9,2,4,6,8 1 1,2 1,4 1,6 1,8 2 K Rys. 3. Diagramy bifurkacji dla prądu i (t) przy zmiaie wzmocieia K: a) wyiki symulacji; b) diagram otrzymay z testów układu fizyczego
5 Porówaie wyików badań fizyczego układu falowika prądu z modelem Na podstawie diagramu 3a moża stwierdzić zgodość obliczeń umeryczych z aalizą stabilości, która wykazała pojawiaie się pierwszej bifurkacji, gdy wartość własa odwzorowaia wychodzi poza okrąg jedostkowy (rys. 2). Z i t z okresem rówym okresowi T diagramu wyika, że mierząc wartość prądu modulacji PWM, dla K, 63 otrzymao za każdym razem wartość I aiesioą a diagram jako jede pukt. Po przekroczeiu wartości K, 63 wyikiem pomiaru prądu z okresem próbkowaia T są a przemia dwie wartości I 1 i I 2 (dwa pukty a diagramie). Następa bifurkacja przy K, 81 prowadzi do chaosu, to zaczy, że a diagramie pojawia się więcej puktów o wartościach ieprzewidywalych. Na rysuku 3 pokazao także wyiki otrzymae dla przekształtika fizyczego. Pomimo uproszczoego modelu umeryczego (rys. 3a), a rys. 3b widać dużą zbieżość wyików. Kształt diagramu, wartości prądu i dojście układu do stau chaotyczego podczas zwiększaia wzmocieia K odpowiadają wyikom obliczeń umeryczych dla modelu uproszczoego. Maksymala różica wartości wzmocień K zazaczoych a diagramie, dla których w układzie astępują bifurkacje jest rzędu 1%. Rozpatrywao dwa przypadki wartości prądu zadaego przemieą. W pierwszym przypadku fazie przyjęto, że prąd zaday I ref wartość stałą i I ref 3A. Na rysuku 4 porówao atraktory otrzymae a przekroju Poicaré dla pracy chaotyczej dla K 1 uzyskae symulacyjie (kolor czary) i z serii pomiarowej układu fizyczego (kolor czerwoy). Moża zauważyć podobieństwo kształtów atraktorów, lecz widocze są także różice wartości puktów tworzących te figury. Symulacja kolor czary Układ fizyczy kolor szary Rys. 4. Przekrój Poicaré dla prądu przekształtika dla K = 1 dla I ref 3A
6 52 Norbert Mielczarek Drugim rozpatrywaym przypadkiem zadaego prądu I ref jest przebieg siusoidaly o częstotliwości 5 Hz i amplitudzie 3A. Układ działa wówczas jak falowik prądu. a) t [s],21,22,23,24,25,26,27,28,29,3,26,24,22 i(t),2,18,16,14,12,1,8,6,4 b), f[hz] t [s] f[hz] Rys. 5. Przebiegi prądu oraz widmo częstotliwości a wyjściu przekształtika dla modelu symulacyjego (a) i układu fizyczego (b) dla pracy okresowej K =,2 Przebiegi prądów wyjściowych dla pracy stabilej (rys. 5) i chaotyczej (rys. 6) dla układu symulacyjego (a) i fizyczego (b) przedstawioo a kolejych
7 Porówaie wyików badań fizyczego układu falowika prądu z modelem rysukach. Pod przebiegami zamieszczoo także widmo częstotliwości dla tych przypadków. Dla pracy stabilej widmo to jest bardziej płaskie i oprócz częstotliwości modulowaej siusoidy występuje tylko składowa związaa z modulacją PWM, atomiast dla pracy chaotyczej występuje więcej składowych częstotliwości. a) t [s] -3,11,12,13,14,15,16,17,18,19,2,28,26,24,22 i(t),2,18,16,14,12,1,8,6 b),4,2 1 2 f [Hz] 3 f[hz] t [s] f[hz] Rys. 6. Przebiegi prądu oraz widmo częstotliwości a wyjściu przekształtika dla modelu symulacyjego(a) i układu fizyczego (b) dla pracy chaotyczej K = 1
8 54 Norbert Mielczarek 4. PODSUMOWANIE W pracy celowo porówao symulacje przeprowadzoe dla modelu układu idealego z testami falowika fizyczego [5]. Pokazae wyiki pomiarowe są bardzo zbieże z wyikami uzyskaymi dla modelu z zaworem idealym. Zaletą zastosowaia uproszczoego modelu jest szybszy czas obliczeń symulacyjych, łatwość wyprowadzeia odwzorowaia Poicaré i możliwość aalityczego badaia stabilości. Różice w fukcjoowaiu układu rzeczywistego w stosuku do idealego ajbardziej widocze są w kształcie atraktory (rys. 4) oraz wartości K, dla której pojawia się bifurkacja w układzie. Wartość ta różi się tylko o 6, 35 procet. Niezgodości te wyikają ze staów przejściowych pojawiających się podczas załączaia oraz wyłączaia zaworów eergoelektroiczych. Podczas stabilej pracy układu rozbieżości modelu idealego i rzeczywistego zmiejszają się. Pomimo uproszczoego modelu układu struktura atraktora uzyskaego w pomiarach układu fizyczego ie została zmieioa. LITERATURA [1] Schuster H. G.: Chaos determiistyczy. Wprowadzeie. PWN, Warszawa [2] Ott E.: Chaos w układach dyamiczych. WNT, Warszawa [3] Porada R, Mielczarek N.: Modelig of Chaotic Systems i Program ChaoPhS. CMS: Kraków 25. [4] Tuia H. (red.): Układy eergoelektroicze. Obliczaie, modelowaie, projektowaie. WNT, Warszawa, [5] Mielczarek N., Porada R.: Cotrol of power electroics devices usig time delayed feedback. CMS: Kraków 27. COMPARISON OF RESULTS OF LABORATORY TESTS OF CURRENT INVERTER WITH RESULTS OF IDEAL MODEL The aim of this paper is to verify covergece of simulatios ad aalytical results of simplified model of 1-phase curret iverter with results obtaied i laboratory tests of physical iverter. The secodary goal was to check, if aalytical appoited o the base of theory o determiistic chaos poits, where system loses its stability comply with those observes i physical iverter. I paper were used aalytical results cosistig o appoitig poits of bifurcatio of system coductig to ustable chaotic behaviors. The it was performed various simulatios for cotrol parameter that was a cotrol gai. Itetioally it was chose ideal model of coverter ad coducted simulatios was compared with tests of physical iverter.
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W CYFROWYCH UKŁADACH CZASU RZECZYWISTEGO
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Norbert MIELCZAREK* MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W CYFROWYCH UKŁADACH CZASU RZECZYWISTEGO W
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
2. Schemat ideowy układu pomiarowego
1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Struktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
MOTYWACJA. x x x e x x x , sin( ) 0, 4 tan ( ) 0
WYKŁAD 4 PODSTAWOWE METODY PRZYBLIŻONEGO ROZWIĄZYWANIA NIELINIOWYCH RÓWNAŃ ALGEBRAICZNYCH MOTYWACJA Wykład r 4 jest poświęcoy omówieiu elemetarych algorytmów wyzaczaia przybliżoych rozwiązań (pierwiastków)
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
W(s)= s 3 +7s 2 +10s+K
PRZYKŁAD (LINIE PIERWIASTKOWE) Tramitacja operatorowa otwartego układu regulacji z jedotkowym ujemym przęŝeiem zwrotym daa jet wzorem: G O K ( + )( + 5) a) Podaj obraz liii pierwiatkowych układu zamkiętego.
Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej
Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.
KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI
KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI Grupa: 1. 2. 3. 4. 5. LABORATORIUM ELEKTROENERGETYKI Data: Ocea: ĆWICZENIE 3 BADANIE WYŁĄCZNIKÓW RÓŻNICOWOPRĄDOWYCH 3.1. Cel ćwiczeia Celem ćwiczeia jest:
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI. Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE,
POLITECHNIKA ŚLĄSKA, WYDZIAŁ ELEKTRYCZNY, INSTYTUT ELEKTROTECHNIKI I INFORMATYKI Wykresy w Excelu TOMASZ ADRIKOWSKI GLIWICE, -- EXCEL Wykresy. Kolumę A, B wypełić serią daych: miesiąc, średia temperatura.
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
This series presents continuation of Zeszyty Naukowe Politechniki Poznańskiej Elektryka
This series presets cotiuatio of eszyty Naukowe Politechiki Pozańskiej Elektryka Editorial Board prof. dr hab. iż. RYSARD NAWROWSKI (Chairma), prof. dr hab. iż. JÓEF LORENC, dr hab. iż. BIGNIEW NADOLNY,
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA
MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 255-26, Gliwice 26 ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA RYSZARD KORYCKI DARIUSZ WITCZAK Katedra Mechaiki
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Prawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
Przetworniki analogowo-cyfrowe i cyfrowo- analogowe
Przetworiki aalogowo-cyfrowe i cyfrowo- aalogowe 14.1. PRZETWORNIKI C/A Przetworik cyfrowo-aalogowy (ag. Digital-to-Aalog Coverter) jest to układ przetwarzający dyskrety sygał cyfrowy a rówowaŝy mu sygał
Analiza MES w sterowaniu drganiami belki za pomocą elementów piezoelektrycznych
Symulacja w Badaiach i Rozwoju Vol. 3, No. 4/2012 Ja FREUNDLICH, Grzegorz HOFFMAN, Marek PIETRZAKOWSKI Politechika Warszawska, IPBM, ul. Narbutta 84, 02-524 Warszawa E-mail: jfr@simr.pw.edu.pl, ghoffma@simr.pw.edu.pl,
ELEKTROTECHNIKA I ELEKTRONIKA
NIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTT EKSPLOATACJI MASZYN I TRANSPORT ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E13 BADANIE ELEMENTÓW
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Michał KRYSTKOWIAK* Dominik MATECKI* MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO
BADANIE PRĄDNIC TACHOMETRYCZNYCH
Politechika Warszawska Istytut Maszy Elektryczych Laboratorium Maszy Elektryczych Malej Mocy BADANIE PRĄDNIC TACHOMETRYCZNYCH Warszawa 2003 1. STANOWISKO POMIAROWE. Badaia przeprowadza się a specjalym
Geometrycznie o liczbach
Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)
MATRIAŁY POMOCNICZ DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MDYCYNI (wyłączie do celów dydaktyczych zakaz rozpowszechiaia) 4. Drgaia brył prętów, membra i płyt. ****************************************************************
Metody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
ENERGOELEKTRONICZNE ŹRÓDŁO PRĄDU DLA ALTERNATYWNYCH ŹRÓDEŁ ENERGII
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 9 Electrical Engineering 7 DOI.8/j.897-737.7.9. Ryszard PORADA* Adam GULCZYŃSI* ENERGOELETRONICZNE ŹRÓDŁO PRĄDU DLA ALTERNATYWNYCH ŹRÓDEŁ ENERGII
MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W ŚRODOWISKU LABVIEW
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Michał KRYSTKOWIAK* MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W ŚRODOWISKU LABVIEW W artykule zaprezentowano
OBWODY LINIOWE PRĄDU STAŁEGO
Politechika Gdańska Wydział Elektrotechiki i Automatyki 1. Wstęp st. stacjoare I st. iżyierskie, Eergetyka Laboratorium Podstaw Elektrotechiki i Elektroiki Ćwiczeie r 1 OBWODY LINIOWE PRĄDU STAŁEGO Obwód
ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO
Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
L A B O R A T O R I U M T E C H N I K I C Y F R O W E J
Paweł OSTASZEWSKI 55566 25.11.2002 Piotr PAWLICKI 55567 L A B O R A T O R I U M T E C H N I K I C Y F R O W E J Ćwiczeie r 2 Temat: B A D A N I E P R Z E R Z U T N I K Ó W Treść ćwiczeia: Obserwacja a
OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 84 Electrical Engineering 2015 Damian BISEWSKI* Janusz ZARĘBSKI* OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU W pracy przedstawiono
Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości
Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Mikołaj KSIĄŻKIEWICZ* BADANIA SYMULACYJNE PROSTOWNIKA W pracy przedstawiono wyniki badań symulacyjnych prostownika
Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10.
Czy istieje ciąg (a ) taki, że (podać przykład lub dowieść, że ie istieje) : 576. a > 1 dla ieskończeie wielu, a > 0, szereg a jest zbieży. N 577. a = 1 2 dla ieskończeie wielu, a = 10. 578. a 2 = 1 N,
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI W UKŁADZIE FOC Z SILNIKIEM INDUKCYJNYM NA PRĘDKOŚĆ OBROTOWĄ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Wiktor HUDY* Kazimierz JARACZ* WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI
PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI
CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
I. Cel ćwiczenia. II. Program ćwiczenia SPRAWDZANIE LICZNIKÓW ENERGII ELEKTRYCZNEJ
Politechika Rzeszowska Zakład Metrologii i Systemów Diagostyczych Laboratorium Metrologii II SPRAWDZANIE LICZNIKÓW ENERGII ELEKTRYCZNEJ Grupa L.../Z... 1... kierowik Nr ćwicz. 9 2... 3... 4... Data Ocea
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
d d dt dt d c k B t (2) prądy w oczkach obwodu elektrycznego pole temperatury (4) c oraz dynamikę układu
Wojciech SZELĄG, Marci ANTCZAK, Mariusz BARAŃSKI, Piotr SZELĄG, Piotr SUJKA Politechika Pozańska, Istytut Elektrotechiki i Elektroiki Przemysłowej Numerycza metoda aalizy zjawisk sprzężoych w siliku o
Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe.
Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie
WYBRANE METODY REDUKCJI ODKSZTAŁCENIA PRĄDÓW I NAPIĘĆ POWODOWANYCH PRZEZ ODBIORNIKI NIELINIOWE
WYBRANE METODY REDUKCJI ODKSZTAŁCENIA PRĄDÓW I NAPIĘĆ POWODOWANYCH PRZEZ ODBIORNIKI NIELINIOWE mgr iż. Chamberli Stéphae Azebaze Mbovig Promotor: prof. dr hab. iż. Zbigiew Hazelka Kraków, 3.05.06 Pla Wykładu.
Politechnika Poznańska
Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)
BADANIA SYMULACYJNE STABILIZATORA PRĄDU
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Mikołaj KSIĄŻKIEWICZ* BADANIA SYMULACYJNE STABILIZATORA PRĄDU Praca przedstawia wyniki badań symulacyjnych stabilizatora
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD
POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 76 Electrical Egieerig 3 Jaub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Jausz KOWALSKI** PREZEACJA MODULACJI ASK W PROGRAMIE MACHCAD W artyule autorzy przedstawili
Przykładowe pytania na egzamin dyplomowy dla kierunku Automatyka i Robotyka
Przykładowe pytaia a egzami dyplomowy dla kieruku Automatyka i obotyka Aktualizacja: 13.12.2016 r. Przedmiot: Matematyka 1 (Algebra liiowa) 1. Wiemy że struktura (Gh) jest grupą z elemetem eutralym e.
Wprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu
dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu
1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767
Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego
doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut
WZORCOWANIE MOSTKÓW DO POMIARU BŁĘDÓW PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH ZA POMOCĄ SYSTEMU PRÓBKUJĄCEGO
PROBLEMS AD PROGRESS METROLOGY PPM 18 Conference Digest Grzegorz SADKOWSK Główny rząd Miar Samodzielne Laboratorium Elektryczności i Magnetyzmu WZORCOWAE MOSTKÓW DO POMAR BŁĘDÓW PRZEKŁADKÓW PRĄDOWYCH APĘCOWYCH
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
WYKŁAD 6 TRANZYSTORY POLOWE
WYKŁA 6 RANZYSORY POLOWE RANZYSORY POLOWE ZŁĄCZOWE (Juctio Field Effect rasistors) 55 razystor polowy złączowy zbudoway jest z półprzewodika (w tym przypadku typu p), w który wdyfudowao dwa obszary bramki
Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji
http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
PORÓWNANIE JAKOŚCI PRACY REGULATORÓW STANU I PID W UKŁADZIE KASKADOWYM DWÓCH ZBIORNIKÓW
Zeszyty Naukowe Wydziału Elektrotechiki i Automatyki Politechiki Gdańskiej Nr XX Semiarium ZASOSOWANE KOMPUERÓW W NAUCE ECHNCE Oddział Gdański PEiS Referat r PORÓWNANE JAKOŚC PRACY REGULAORÓW SANU PD W
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
STATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM W artykule przedstawiono badania przeprowadzone na modelu
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO ZASILACZA AWARYJNEGO UPS O STRUKTURZE TYPU VFI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 91 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.91.0011 Michał KRYSTKOWIAK* Łukasz CIEPLIŃSKI* MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie
Sprawozdanie z laboratorium proekologicznych źródeł energii
P O L I T E C H N I K A G D A Ń S K A Sprawozdaie z laboratorium proekologiczych źródeł eergii Temat: Wyzaczaie współczyika efektywości i sprawości pompy ciepła. Michał Stobiecki, Michał Ryms Grupa 5;
ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU
Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji
AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 2013 Łukasz NIEWIARA* Krzysztof ZAWIRSKI* AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ Zagadnienia
Zeszyty Problemowe Maszyny Elektryczne Nr 74/2006 69
Zeszyty Problemowe Maszyy Elektrycze Nr 74/6 69 Piotr Zietek Politechika Śląska, Gliwice PRĄDY ŁOŻYSKOWE I PRĄD UZIOMU W UKŁADACH NAPĘDOWYCH ZASILANYCH Z FALOWNIKÓW PWM BEARING CURRENTS AND LEAKAGE CURRENT
Zmiany Q wynikające z przyrostu zlewni
uch wody w korytach rzeczych Klasyfikacja ruchu. uch ieustaloy zmiey przepływ Q a długości rzeki i w czasie: ruch fal wezbraiowych ruch wody a długim odciku rzeki Q fala wezbraiowa obserwowaa w przekroju
Przejście światła przez pryzmat i z
I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych
WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Fraktale. Definicja ogólna. fraktala. w naturze. Samopodobieństwo. w naturze. Śnieżynka von Kocha
Defiicja ogóla fraktala Fraktale dr iż.. Piotr Steć Fraktalem azywamy obiekt, który wykazuje cechy dokładego lub statystyczego podobieństwa Fraktal jest obiektem, którego wymiar jest ułamkiem Słowo fraktal
STEROWANIE ENERGOELEKTRONICZNYM ŹRÓDŁEM PRĄDU Z ZASTOSOWANIEM DYSKRETNYCH REGULATORÓW UŁAMKOWYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 13 Ryszard PORADA* Adam GULCZYŃSKI* STEROWANIE ENERGOELEKTRONICZNYM ŹRÓDŁEM PRĄDU Z ZASTOSOWANIEM DYSKRETNYCH REGULATORÓW