ABC matematyki dla początkujących fizyków. Elementy analizy wektorowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "ABC matematyki dla początkujących fizyków. Elementy analizy wektorowej"

Transkrypt

1 AB matematyki dla początkujących fizyków Elementy analizy wektorowej polewektoroweipoleskalarne różniczkowaniefunkcjiwektorowej operatornabla gradient, dywergencja,rotacja gradient,laplasjanwukładziesferycznym strumieńpolawektorowego krążenie twierdzenieostrogradskiego-gaussa twierdzenietokes a natężeniepolawektorowego ipotencjał Pole wektorowe i pole skalarne Jeśli w przestrzeni każdemu punktowi x, y, z przypisany jest wektor fx,y,z) to mamy do czynienia z polemwektorowymwektor fmożemynazwaćnatężeniem pola Linie styczne do wektorów pola nazywane są liniami pola Podobnie, jeśli punktom x, y, z przypiszemy funkcję skalarnąfx,y,z)tomówimyopoluskalarnym Przykładami pierwszego jest pole prędkości v cząstek wodywrzece,czypolesiłygrawitacji Fr)Przykładem pola skalarnego jest temperatura powietrza Tx, y, z) w różnych punktach atmosfery Powierzchnia ekwiskalarna to miejsce geometryczne punktówwktórychfunkcjaskalarnafx,y,z)nataką samą wartośćnp powierzchnie na której temperatura wynosiwszędzie0 o )Równaniepowierzchniekwiskalarnej:fx,y,z)=const 2 Różniczkowanie funkcji wektorowej Funkcja jednej zmiennej W przypadku wektorowej funkcji jednej zmiennej, np t, o składowych f x t), f y t), f z t),obliczeniepochodnejwektoraft) sprowadza się do obliczeniu pochodnych poszczególnych składowych ) d f= dt dfx dt,df y dt,df z dt Różniczka dfjestwektoremokreślającymprzyrostwektora f, df= ft+dt) ft)wyrażasięonprzezróżniczki poszczególnych składowych df=df x,df y,df z )=df x î+df y ĵ+df zˆk Przykład: Rozpatrzmy promień wodzący poruszającego się punktu czyli funkcję wektorową rt) = xt),yt),zt)) Pochodna: dr dt = dx dtî+dy dtĵ+dz dtˆk Różniczka:dr=dx,dy,dz)=dxî+dyĵ+dzˆk Funkcja wektorowa wielu zmiennych Wiele takich funkcji spotykamy opisując zjawiska fizyczne zęsto będzie to zależność od położeniawspółrzędne x,y,z) i czasu t) Na przykład: wektor prędkości cząstek wody w rzece zależy zarówno od położenia jak i od czasu Mamy więc funkcję wektorową vx,y,z,t) = v x x,y,z,t),v y x,y,z,t),v z x,y,z,t) ) zasemzamiastvx,y,z,t)piszesięskrótowovr,t) Współrzędne przestrzenne nie muszą być współrzędnymi układu kartezjańskiego, można stosować każdy inny Zarówno funkcje skalarne jak i wektorowe można różniczkować po dowolnej zmiennejtraktując pozostałe zmienne jako stałe) jest to wtedy tzw pochodna cząstkowa Przykładowo, pochodną składowej x-owej wektoraprędkościv x x,y,z,t)pozmiennejzzapiszemytak: v x z Pochodna cząstkowa całego wektora v po zmiennej z: ) v z = vx z,v y z,v z z Podobnie oblicza się v x, v y 3 Operatornabla Określamy go tak, że w zapisie matematycznym jest symbolicznym wektorem o trzech składowych, w związku z czym stosują sie do niego wszystkie reguły algebry wektorów, min mnożenia W układzie kartezjańskim wektor nabla wyraża się tak: ) = x, y,, z

2 =î x +ĵ y +ˆk z Takioperatorjakkażdyoperator)samwsobieniema sensu, nabiera realnego sensu dopiero wtedy jeśli podziała na jakąś funkcjęskalarną lub wektorową) Należy przy tym pamiętać aby stawiać operator po lewej stronie obiektu na który ma działać Podnosząc do kwadratu operator, ) czyli mnożąc ) skalarniewektory = x, y, z x, y, z,uzyskujemy inny ważny operator zwany operatorem Laplace a,lublaplasjanem,oznaczanymsymbolem 2 lub W układzie kartezjańskim: 2 = 2 x y z 2 Laplasjan jest jak widać operatorem skalarnym Działając operatorem nabla na funkcję zmiennych położenia x, y, zformalnie mnożąc funkcję przez wektor ) uzyskujemy trzy użyteczne funkcje: fx,y,z) gradientfunkcjiskalarnejf fx,y,z) dywergencjafunkcjiwektorowej f fx,y,z) rotacjafunkcjiwektorowej f 4 Gradientfunkcji Wektor mnożony przez skalar jest dalej wektorem, a więc gradient funkcji, który obliczamy mnożąc wektor przez funkcję skalarną fx, y, z) jest wektorem Zgodnie z regułą mnożenia wektora przez skalar gradient funkcji przedstawia się następująco f= î x +ĵ y +ˆk y ) f=î f x +ĵf f +ˆk y y Zamiastpisowni fczęstopiszesiegradf ) Zapamiętaj: gradfx,y,z)= f x,f y,f z Jeśli funkcja zależy tylko od jednej zmiennej kartezjańskiej, np x, to wtedy gradient jest wyrażony przez zwykłą pochodną: gradfx)= df dxî Własności gradientu )Każdazpochodnychcząstkowych f x i wewzorzena gradientmówiotymjakszybkozmieniasięfunkcjaf w danym kierunku, wektor gradf jest wypadkową tych zmian i pokazuje kierunek, w którym funkcja zmienia się najsilniej 2) Wektor gradf jest prostopadły do powierzchni ekwiskalarnej Uzasadnić to można następująco Rozpatrzmy powierzchnię będącą miejscem geometrycznym punktów, w których funkcja fx,y,z) ma taką samą wartość nazwijmy tę powierzchnię powierzchnią ekwiskalarną) Równanie tej powierzchni: fx, y, z)=const Przyrost funkcji f wynosi zero jeśli będziemy się przemieszczać po tej powierzchni o dr w dowolnym kierunku Matematycznie: weźmy różniczkę z obu stron równania:dfx,y,z))=dconst),codaje f x dx+f y dy+f z dz=0 Powyższe wyrażenie jest, jak widać, iloczynem skalarnymgradientu f iwektoradx,dy,dz)czyliprzemieszczenia dr wektora wodzącego r Z zerowania iloczynu skalarnego wnioskujemy o prostopadłości wektorówgradf idr,atozkoleiimplikujeprostopadłość gradf do powierzchni ekwiskalarnej Przykłady: )Ilewynosigradr),gdzier = x 2 +y 2 +z 2 jest długością promienia wodzącego? Obliczmy x-ową składową gradientu: x x2 +y 2 +z 2 x = = x x 2 +y 2 +z 2 r Pozostałe składowe będą wyglądać podobnie, czyli gradr)= r x,y,z)=r r =ˆr Wykonując obliczenie w układzie sferycznym patrz rozdz7,strona3)tenwynikuzyskujesięodrazu: gradr)= d dr r)û r= û r = r r 2)Obliczyćgrad r) kładowa x-owa: x x 2 +y 2 +z 2= x = x x2 +y 2 +z 23 r 3 Zatemgrad ) r = rx,y,z)= 3 r 2ˆr Podobnie jak w poprzednim przykładzie taki wynik można było otrzymać prościej, obliczając gradient w układziesferycznym:grad r )= dr d r)ûr = rû 2 r = r r 2 r 3) Gradient temperatury w atmosferze Przypuśćmy, że temperatura T nad powierzchnią Ziemi zmienia się tylko wkierunkupionowymnpmaleje)t=tz)gradient temperaturygradtz)=0,0, dt dz )jestwięcwektorem o kierunku pionowymprostopadłym do powierzchni ekwiskalarnej, którą jest powierzchnia Ziemi), a jego wartość dt dz podajeoilestopnizmieniasiętemperatura przy wzniesieniu się o jednostkową wysokość 5 Dywergencja funkcji wektorowej Jeśli funkcję wektorową fx,y,z) o składowych f x x,y,z),f y x,y,z),f z x,y,z)pomnożymyskalarnie przez wektor to otrzymamy w wyniku funkcję skalarną,zwanądywergencjąfunkcji f: fx,y,z)= f x x +f y y +f z z div f= fx x +fy y +fz z Przykład: Obliczyć dywergencję wektora wodzącego r Wektorrmaskładower x =x, r y =y, r z =z,czyli divr= x x +y y +z z =3 2

3 6 Rotacja funkcji wektorowej Mnożenie wektorowe operatora nabla i funkcji wektorowej fx,y,z)dajewwynikuwektorfunkcjęwektorową)nazywanyrotacjąwektora fzgodniezregułami mnożenia wektorowego obliczamy ją następująco: rotfx,y,z)= î ĵ ˆk x y f x f y f z z rotf= ) fz y fy z,fx z fz x,fy x fx y 7 Gradient, dywergencja, rotacja, laplasjan w niekartezjańskich układach współrzędnych Pomocny jest tekst: układy współrzędnychpdf W przypadku rozpatrywania pól cechujących się symetriąnp sferyczną, cylindryczną) układ kartezjański nie jest wygodnym układem W układach współrzędnych innych niż kartezjański wzory na gradient, dywergencję, rotację i laplasjan różnią się od podanych powyżej Wyrażają się one poprzez pochodne cząstkowe względem zmiennych właściwych dla danego układui przez odpowiednie wektory bazowe układu, jeśli dotyczy to gradientu i rotacji) Wzory te niezostanąpodanetutajleczłatwojeodszukaćwpodręcznikach lub internecie Warte są jednak przytoczenia wzory dla gradientu pola skalarnego i operatora Laplace alaplasjanu) w układzie sferycznym Oto one: Układ sferyczny Gradient,poleskalarnefr,θ,ϕ) v d α d v α dcosα Rozpatrzmy strugę wody przepływającą przez pewną powierzchnię Ilośćobjętość) wody przepływającej w sekundzie przez wybrany element powierzchni d wynosidφ=v djeślielementdjestprostopadły dokierunkuprzepływuv sjestdrogąprzebytąw s),adφ=v d cosαjeślipowierzchniajestnachylona pod kątem αpatrz rysunek) Wprowadzimy wektor d, który jest wektorem o długości d i prostopadłym do powierzchni wypływuzwrot na zewnątrz powierzchni) Wtedy elementarny strumień wypływającej przez d wody wyrazimy w postaci iloczynu skalarnego dφ=v d, a całkowity strumień wypływający przez powierzchnię wyrazi się poprzez całkę po całej powierzchni Φ= v d Prawa strona wyrażenia jest całką powierzchniową ałkę powierzchniową wyraża się na ogół dwoma symbolamicałkowania, jako że powierzchnia jest tworem dwuwymiarowym, choć często można spotkać i pojedyńczysymbol Powyższa definicja strumienia dotyczy oczywiście każdegoinnegopolawektorowego F,ogólnie: gradf= f f f rûr+ r θûθ+ rsinθ ϕûϕ W szczególności, gdy funkcja f zależy tylko od r: gradfr)= df drûr Laplasjan 2 = r 2 r 2 ) + r r r 2 sinθ sinθ ) + θ θ r 2 sin 2 θ 8 trumień wektora pola 2 ϕ 2 Zaczniemy od poglądowego przykładu dla wektorowego pola prędkości v cząstek płynącej cieczy 3 Φ F = F d d F d Pole bezźródłowe Rozpatrzmy pole wektorowe F Jeśli weźmiemy powierzchnię zamkniętą, a wewnątrz niej nie ma ani źródeł ani absorbentów polanp w wyżej omówionym przykładzie nie ma dodatkowego źródła wody w obszarze zamkniętym powierzchnią ) to tyle samo wpływa do wewnątrz powierzchni, ile z niej wypływa na zewnątrz, a więc całkowity strumień jest równy zero Φ= F d=0

4 cooznaczakółkonasymbolucałki patrzprzypis ) Takie pole nazywamy bezźródłowym Zwróć uwagę, że strumień może być zarówno dodatni, jak i ujemny, w zależności od znaku iloczynu skalarnego podcałką,czyliwzależnościodtegoczypolewpływa dowewnątrzpowierzchniφ<0),czyzniejwypływa Φ>0) 9 Krążenie wektora pola KrążeniempolawektorowegoFpokonturzezamknię- tym nazywamy całkę krążenie = F dr Taka całka po konturze nosi nazwę całki krzywoliniowej Wyrażenie pod znakiem całki jest iloczynem skalarnym wektorapola Fiwektora dr,przedstawiającegoelementarne przemieszczenie wzdłuż krzywej dr F F dr Ażeby dać fizyczny przykład spotykaliśmy się z taką całką przy okazji obliczania pracy wykonanej na drodze niekonieczniezamkniętej)przezsiłypolafprzy czym, jeśli kontur był krzywą zamkniętą, a rozpatrywane pole sił było polem zachowawczym, to wykonana praca po drodze zamkniętej wynosiła zero F dr=0 Takiepole Fktóregokrążeniepodowolnejkrzywejzamkniętej jest równe zero nazywamy polem bezwirowym 0 Twierdzenie Ostrogradskiego-Gaussa To twierdzenie pozwala zamienić całkę po dowolnej powierzchni zamkniętej na całkę po objętości V ograniczonej tą powierzchnią: F d= V div FdV Kółkonasymbolucałkioznacza,żeobszarcałkowania jest obszarem zamkniętym, np w tym przypadku jest to zamknięta powierzchnia Podobnie jest, jeśli całkowania dokonuje sie po krzywej zamkniętej Lewa strona równości przedstawia całkowity strumień polaf przepływającyprzezwszczególnymprzypadku, w sytuacji gdy wewnątrz dowolnie wybranej zamkniętej powierzchni nie ma źródel lub absorbentów pola to, jak już była mowa, strumienie wpływający i wypływający są równe co do wartości ale przeciwne co do znaku i w efekcie strumień wypadkowy jest równy zerotoimplikujezerowaniecałki divfdvdlakaż- degoobszaruv,cojestmożliwewtedyitylkowtedy gdy funkcja podcałkowa jest równa zero Tak więc warunek div F=0 stanowi kryterium pola bezźródłowego Twierdzenietokes a Twierdzenie tokes a pozwala zamienić całkę po krzywej zamkniętej na całkę po powierzchni ograniczonej tą krzywą: F dr= V rot F d To twierdzenie jest prawdziwe dla każdej powierzchni,którejbrzegiemjestkrzywaniemusitobyćpowierzchnia płaska, wyobraź sobie, że jest to błonka rozpięta na ramce, dowolnie wybrzuszona) W szczególnym przypadku gdy pole jest zachowawcze, lewastronaprzedstawiającapracęwektorafpokrzy- wej zamkniętej) jest równa zero To znów implikuje zero- waniecałki rotf d dla każdego obszaru całkowania ograniczonego konturem, a to jest możliwe wtedy itylkowtedygdyfunkcjapodcałkowarot Fjestrówna zero Tak więc zerowanie rotacji wektora pola rot F=0 jest warunkiem koniecznym i wystarczającym zachowawczościpola F 2 Natężenie pola wektorowego i potencjał skalarny Jeślirozpatrujemydowolnepolewektorowe Fx,y,z)to wektor Fprzypisanydopunktux,y,z)=rnazywamy natężeniem pola w tym punkcie Załóżmy,żepoleFr)jestpolemzachowawczymTakie założenie jest równoważne stwierdzeniu, że praca wektorafprzyprzemieszczeniupomiędzydwomapunktamiaibczyli B Fdr,patrzrys)niezależyodtego A po jakiej drodze realizowane jest to przemieszczenie 4

5 y A r o pole F r W przypadku pola zachowawczegoi tylko wtedy) można dobrać takie pole skalarne ϕr), którego gradient ze znakiem ujemnym jest w każdym punkcie r równy natężeniupola Fr)Funkcjęskalarnąϕr)nazywamy potencjałempola Fr) B x Znajdź samodzielnie wzór na potencjał, jeśli przyjąć zero potencjału na powierzchni Ziemi Będzie się on różnił od otrzymanego powyżej, ale różnica potencjałów w dwóchpunktachr ir 2 będzietakasamawobuprzypadkachpokaż!) 2) Znaleźć pole sił, któremu odpowiada potencjał ϕr)= 2 kr2 kjeststałą) Mamy do czynienia z symetrią sferyczną, wygodnie jest liczyć w układzie sferycznym F = ϕ = r 2 kr2 û r )= krû r = kr 3) Uzasadnij, że dla pola sił tarcia nie istnieje potencjał Fr)= gradϕr) Uzasadnienie: ObliczmycałkęzfunkcjiFr)podowolnejdrodzepo- międzypunktamir o ir r r r Fdr= gradϕ dr= ϕ x dx+ϕ y dy+ϕ z dz) r o r o r o Wyrażenie w nawiasie pod całką jest różniczką zupełną funkcji ϕr), mamy więc r r Fdr= dϕr)= ϕr)+ϕr o ) r o r o r Przepiszmy: ϕr)=ϕr o ) Fdr r o Potencjał ϕ dla danego pola zachowawczego zależy tylko odpunktupoczątkowegoikońcowegoponieważϕr o ) jest stałą całkowania, można ją dobrać w sposób dowolny,jesttokwestiaumowywjakimpunkcier o przyjmiemypotencjałrównyzero,ϕr o )=0częstozero potencjałuprzyjmujesięwnieskończonościr o )) Wtedy ϕr)= Fdr r o Przykłady ) Znajdź potencjał pola grawitacyjnego Fr) = G mmz r û 2 r nadpowierzchniąziemi 2 Przyjmiemyzero potencjału w nieskończoności Potencjał w odległości r odśrodkaziemidlar>r Z,zastanówsiędlaczego?), cotrzebabyzmienićabydostaćrezultatdlar<r Z?): ϕr)= r r G mmz r 2 û r ) dr Powykonaniuobliczeńzwróćuwagę,żeû r dr=dr) otrzymujemyϕr)= G mmz r Tęwielkośćnazywamy zwyczajowoenergiąpotencjalnąioznaczamye p r)fizycznie jest to praca jaką wykonamy aby równoważąc siłęgrawitacjidziałającsiłą F)przemieścićciałoo masiemz dopunktur 2 ziemskie pole grawitacyjne jest przykładem pola centralnego:wektorpola Fzależytylkoododległościrod centrum pola, nie zależy od kierunku 5

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

opracował Maciej Grzesiak Analiza wektorowa

opracował Maciej Grzesiak Analiza wektorowa opracował Maciej Grzesiak Analiza wektorowa 1. Funkcje wektorowe 1.1. Funkcje wektorowe na płaszczyźnie Wektor r = x i + y j nazywamy wektorem wodzącym punktu (x, y). Jeśli x oraz y są funkcjami czasu,

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

1. Podstawy matematyki

1. Podstawy matematyki 1. Podstawy matematyki 1.1. Pola Pole wiąże wielkość fizyczną z położeniem punktu w przestrzeni W przypadku, gdy pole jest zależne od czasu, możemy je zapisać jako. Najprostszym przykładem pola jest pole

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy Podstawy elektromagnetyzmu Wykład 1 Rachunek wektorowy Co to jest,,pole? Matematyka: odwzorowanie Rn Rm które przypisuje każdemu punktowi wartość (skalarną lub wektorową). Fizyka: Własność przestrzeni

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne.

W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne. Elementy teorii pola - Wydział Chemiczny - 1 Wielkości fizyczne można klasyfikować na podstawie różnych kryteriów. Istnieją wielkości, które przy wyznaczonej jednostce miary są w zupełności określone przez

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

SIMR 2012/2013, Analiza 2, wykład 14,

SIMR 2012/2013, Analiza 2, wykład 14, IMR 2012/2013, Analiza 2, wykład 14, 2012-06-03 Całka powierzchniowa efinicja gładkiego płata powierzchni Gładkim płatem powierzchni nazywamy zbiór : = {(x, y, z) : z = g(x, y), (x, y) }, gdzie R 2 jest

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Bardziej formalnie, wektor to wielkość, której współrzędne zmieniają się w określony sposób przy obrót prostokątnego układu współrzędnych.

Bardziej formalnie, wektor to wielkość, której współrzędne zmieniają się w określony sposób przy obrót prostokątnego układu współrzędnych. Rachunek wektorowy (fragmenty z Wikipedii) Zastosowanie wektorów w matematycznym opisie pola elektromagnetycznego umożliwia przedstawienie równań w postaci bardzo zwięzłej i niezależnej od przyjętego układu

Bardziej szczegółowo

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)

Bardziej szczegółowo

[ A i ' ]=[ D ][ A i ] (2.3)

[ A i ' ]=[ D ][ A i ] (2.3) . WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy

Bardziej szczegółowo

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

opracował Maciej Grzesiak Całki krzywoliniowe

opracował Maciej Grzesiak Całki krzywoliniowe opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Rozdział 6. Równania Maxwella. 6.1 Pierwsza para

Rozdział 6. Równania Maxwella. 6.1 Pierwsza para Rozdział 6 Równania Maxwella Podstawą elektrodynamiki klasycznej są równania Maxwella, które wiążą pola elektryczne E i magnetyczne B ze sobą oraz z ładunkami i prądami elektrycznymi. Pola E i B są funkcjami

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 2: lektrostatyka cz. 2. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Dygresja matematyczna - operatory Operator przyporządkowuje np. polu skalarnemu odpowiednie

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA Księgarnia PWN: Grigorij M. Fichtenholz Rachunek różniczkowy i całkowy. T. 3 Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA 1. Całki krzywoliniowe pierwszego rodzaju 543. Definicja całki krzywoliniowej

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany

Bardziej szczegółowo

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony Dowód: Niech M będzie jak w założeniach twierdzenia. Weźmy skończony atlas O i, ϕ i ) na M zgodny z orientacją. Zbiór indeksów I może być skończony, gdyż rozmaitość M jest zwarta. Õi, ϕ i ) oznaczać będzie

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Reinhard Kulessa II semestr r. akademickiego 2006/2007 Literatura E.M. Purcell, Berkeley Physics Course, Elektryczność i Magnetyzm David J. Griffiths:, "Podstawy Eelektrodynamiki",

Bardziej szczegółowo

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011 Wykład 11 i 12 Matematyka 3, semestr zimowy 2011/2012 15 i 18 listopada 2011 Zanim przejdziemy do formułowaniu lematu Poincaré musimy zdefiniować pojęcie transportu formy. Dyskutowaliśmy już wcześniej

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

PDE. czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu. Zbigniew Koza. Wydział Fizyki i Astronomii Wrocław, 2016

PDE. czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu. Zbigniew Koza. Wydział Fizyki i Astronomii Wrocław, 2016 PDE czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 WSTĘP Motywacja Dotychczas zajmowaliśmy się równaniami

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Całki krzywoliniowe wiadomości wstępne

Całki krzywoliniowe wiadomości wstępne Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Matematyka 2 Rok akademicki: 2012/2013 Kod: JFM-1-201-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia Forma

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Teoria Pola Elektromagnetycznego

Teoria Pola Elektromagnetycznego Teoria Pola Elektromagnetycznego Wykład 3 Pole elektryczne w środowisku przewodzącym 19.05.2006 Stefan Filipowicz 3.1. Prąd i gęstość prądu przewodzenia Jeżeli w przewodniku istnieje pole elektryczne,

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Analiza na rozmaitościach Calculus on Manifolds. Matematyka Poziom kwalifikacji: II stopnia

Analiza na rozmaitościach Calculus on Manifolds. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: Liczba godzin/tydzień: Liczba punktów: wykład, ćwiczenia W, C 5 ECTS PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1 POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład 9 lato 2016/17 1 Definicja wektora indukcji pola magnetycznego F q( v) Jednostką indukcji pola jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

Wykład 7: Pola skalarne i wektorowe Katarzyna Weron

Wykład 7: Pola skalarne i wektorowe Katarzyna Weron Wykład 7: Pola skalarne i wektorowe Katarzyna Weron WPPT, Matematyka Stosowana Zwykła pochodna Pytanie: Mam funkcję jednej zmiennej f(x). O czym mówi pochodna df? dx Odpowiedź: Jak szybko zmienia się f(x),

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Wybrane elementy analizy wektorowej, teorii pola, teorii potencjału i ich zastosowania w elektrodynamice

Wybrane elementy analizy wektorowej, teorii pola, teorii potencjału i ich zastosowania w elektrodynamice Antonina Orlicz-wiłło Wybrane elementy analizy wektorowej, teorii pola, teorii potencjału i ich zastosowania w elektrodynamice b D R r a r a r a L L r Wydawnictwo Politechniki Gdańskiej PRZEWODNICZĄCY

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. A Nazwa w języku angielskim Mathematical Analysis. A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne

Bardziej szczegółowo