Akademia Górniczo-Hutnicza Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów i Związków Wielkocząsteczkowych
|
|
- Marcin Skrzypczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Akademia Górniczo-Hutnicza Wydział nżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów i Związków Wielkocząsteczkowych nstrukcja do ćwiczeń laboratoryjnych Kierunek studiów: Technologia chemiczna Specjalność: Analityka i kontrola jakości Laboratorium: Analiza strukturalna materiałów Ćwiczenie 6: Zastosowanie różnych technik pomiarowych w spektroskopowej analizie strukturalnej materiałów Prowadzący: dr inż. Magdalena Król 2018/2019
2 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wybranymi technikami pomiarowymi spektroskopii w podczerwieni, interpretacją widm uzyskanych za pomocą tej metody oraz z praktycznymi jej zastosowaniami do identyfikacji i określania struktury związków chemicznych. Ćwiczenie polega na pomiarze z wykorzystaniem różnych technik pomiarowych (technika absorpcyjna, odbiciowa), prostej obróbce i interpretacji widm trzech materiałów wskazanych przez prowadzącego zajęcia. 2. Wprowadzenie teoretyczne / obowiązujący zakres materiału 2.1. Podstawy metody Spektroskopia w podczerwieni (ang. R nfrared Spectroscopy) jest jedną z najczęściej stosowanych technik spektroskopowych w chemii organicznej i nieorganicznej. Polega ona na pomiarze absorpcji promieniowania podczerwonego o różnej długości fali przez badaną próbkę znajdującą się na drodze wiązki. Spektroskopia w podczerwieni bada absorpcję promieniowania podczerwonego przez cząsteczki związków chemicznych. Podstawową zaletą tej metody jest możliwość szybkiej analizy rodzaju grup funkcyjnych obecnych w analizowanej próbce. Spektroskopia R umożliwia badania substancji stałych (kryształy, proszki), cieczy i gazów. Promieniowanie podczerwone jest częścią widma promieniowania elektromagnetycznego o długościach fal w zakresie 0, μm (w zakresie liczb falowych cm 1 ). Od strony krótszych długości fal graniczy z promieniowaniem widzialnym, a od strony większych długości fal z promieniowaniem mikrofalowym. Podany obszar umownie podzielić można na trzy zakresy: bliską (NR near infrared), środkową (właściwą) (MR mid infrared) i daleką (FR far infrared) podczerwień (Tabela 1). Tabela 1. Zakresy widma promieniowania podczerwonego. Zakres podczerwieni Liczba falowa [cm 1 ] Energia [kj/mol] Detekcja NR nadtony MR drgania cząsteczek FR ,4 drgania sieci krystalicznej Na energię kinetyczną cząsteczki składa się kilka składowych, wśród których wymienić należy energię oscylacyjnego i rotacyjnego ruchu cząsteczki. Pierwsza z nich dotyczy sprężystego drgania atomów połączonych wiązaniami chemicznymi wokół położenia równowagi, druga natomiast przejawia się wirowaniem molekuły wokół własnej osi. 2
3 Oddziaływanie promieniowania podczerwonego z cząsteczkami jest możliwe tylko wtedy, gdy spełnione są tak zwane reguły wyboru: Fotony promieniowania muszą mieć energię równą różnicy energii wibracyjnych poziomów energetycznych ΔE osc = hν. Przejście zachodzi tylko wówczas, gdy kwantowa liczba oscylacji ν zmienia się o 1, 2, 3. Przejścia między stanami kwantowymi są widoczne tylko dla takich oscylatorów, w których w czasie drgania zmieni się moment dipolowy molekuły. Aby doszło do zmiany energii oscylacyjnej i/lub rotacyjnej (cząsteczka musi absorbować promieniowanie o odpowiedniej długości fali z zakresu promieniowania podczerwonego. Wiedząc, że każdy atom ma trzy stopnie swobody, można policzyć, że cząsteczka zbudowana N atomów posiada 3N stopni swobody, z których trzy stopnie swobody stanowią translacje, a trzy kolejne ruch obrotowy. Pozostałe 3N 6 stopni swobody (dla cząsteczki liniowej 3N 5, ponieważ w tym przypadku tylko dwa stopnie swobody opisują rotacje) opisują ruchy oscylacyjne i odpowiadające im drgania normalne. W trakcie drgania normalnego wszystkie atomy w cząsteczce ulegają jednoczesnemu wychyleniu zgodnemu w fazie i z jednakową częstością, lecz z różnymi amplitudami. W zależności od tego czy podczas takiego drgania ma miejsce odpowiednio zmiana długości wiązań, czy kątów między wiązaniami, wyróżnić można drgania rozciągające (ν ang. stretching) i zginające (deformacyjne) (δ ang. bending). Drgania rozciągające dzielimy na symetryczne i asymetryczne (ν s i ν as ), natomiast na drgania zginające składają się drgania deformacyjne w płaszczyźnie (ang. in plane): nożycowe (δ s ang. scissoring) i wahadłowe (ρ ang. rocking); oraz deformacyjne poza płaszczyzną (ang. out of plane): skręcające (τ ang. twisting) i wachlarzowe (ω ang. wagging). Rysunek 1. Drgania normalne tetraedrycznej cząsteczki. 3
4 2.2. Techniki pomiarowe Techniki pomiarowe w spektroskopii podczerwieni podzielić można, ze względu na rodzaj zjawiska jakie wykorzystane jakie towarzyszy oddziaływaniu promieniowania elektromagnetycznego z badaną próbką, przy czym największe zastosowanie znalazły techniki transmisyjne i odbiciowe (refleksyjne). W technikach transmisyjnych widmo oscylacyjne uzyskiwane jest przez pomiar intensywności promieniowania po przejściu przez próbkę. Ze względu na małą przezroczystość materiałów w zakresie średniej podczerwieni, stosowanie tej metody wymaga wcześniejszego przygotowania próbki. Pomiary widm transmisyjne gazów i cieczy wykonuje się przy użyciu kuwet wykonanych z materiałów przezroczystych dla podczerwieni (w przypadku środkowej podczerwieni są to najczęściej halogenki metali alkalicznych KBr, NaCl). Widma ciał stałych można mierzyć wykonując pastylki z materiałów przeźroczystych dla podczerwieni (np. KBr), w zawiesinie Nujolu (ciekła parafina), bądź w formie warstw na płytkach krzemowych. Cienkie folie można mierzyć bezpośrednio przez usytuowanie ich na drodze wiązki promieniowania podczewronego. Rysunek 2. Uproszczony schemat oddziaływania promieniowania elektromagnetycznego z próbką. W technikach transmisyjnych miarą absorpcji promieniowania o określonej liczbie falowej ( ) przez próbkę może być transmitancja (T) lub absorbancja (A), które są związane ze sobą następującymi zależnościami: T (1) 0 A log 0 log T (2) 4
5 gdzie: 0 intensywność wiązki padającej na próbkę; intensywność wiązki po przejściu przez próbkę. Absorbancja może być dodatkowo wykorzystana do ilościowego opisu absorpcji jej wielkość jest wprost proporcjonalna do ilości absorbujących cząsteczek zgodnie z prawem Lamberta-Beera. Techniki refleksyjne pozwalają otrzymać widma w podczerwieni poprzez pomiar promieniowania odbitego od próbki. Do pomiaru promieniowania odbitego służą różne układy optyczne stosowane w formie przystawek do spektrometrów. Różne typy odbicia zilustrowano na rysunku 2 (dolny rząd). W technikach refleksyjnych stosowanymi miarami absorpcji są reflektancja (R) i ujemny logarytm z reflektancji ( log R ). Wielkości te są związane ze sobą następującymi zależnościami: R (3) 0 gdzie: 0 log R log (4) 0 intensywność wiązki padającej na próbkę; intensywność wiązki po odbiciu od próbki Odbicie zwierciadlane (SR) Odbicie zwierciadlane to takie odbicie (rozumiane jako zmiana kierunku rozchodzenia się fali na granicy dwóch ośrodków powodująca, że pozostaje ona w ośrodku, w którym się rozchodzi), które podlega prawu odbicia, czyli dla którego kąt odbicia jest równy kątowi padania. Może ono mieć miejsce na gładkiej, np. metalizowanej powierzchni lub np. na lustrze wody. W technice odbicia zwierciadlanego (SR ang. specular reflectance) promieniowanie po dotarciu do próbki odbija się od niej i dzięki systemowi zwierciadeł trafia do detektora Odbicie rozproszone (DRFT) Odbicie rozproszone (DRFT ang. diffuse reflectance infrared fourier transformed spectroscopy) to taki rodzaj odbicia, dla którego kąt odbicia jest różny od kąta padania. Odbicie rozproszone zachodzi, gdy nierówności na powierzchni są duże w porównaniu do 5
6 długości fali (np. przy badaniach proszków czy matowych powierzchni, w tym większości próbek ceramicznych). Promieniowanie padające na próbkę może przenikać w głąb próbki, gdzie ulega wielokrotnemu odbiciu od kolejnych warstw atomów i częściowemu osłabieniu, a następnie upuszcza próbkę pod kątem innym niż kąt padania. ntensywność promieniowania odbitego w sposób rozproszony mierzy się za pomocą lustra sferycznego kierujących promieniowanie odbite od próbki we wszystkich kierunkach do detektora Osłabione całkowite wewnętrzne odbicie (ATR) Całkowite wewnętrzne odbicie to zjawisko fizyczne występujące na granicy ośrodków o różnych współczynnikach załamania światła i polega na tym, że fala padająca na granicę od strony ośrodka o wyższym współczynniku załamania pod kątem większym niż kąt graniczny, nie przechodzi do drugiego ośrodka, lecz ulega całkowitemu odbiciu. Metoda osłabionego całkowitego wewnętrznego odbicia (ATR ang. attenuated total reflection) wykorzystuje właśnie to zjawisko wiązka promieniowania podczerwonego wprowadzana jest do materiału o dużym współczynniku załamania światła (np. diament, german, selenek cynku) i pada na jego wewnętrzną powierzchnię, czyli powierzchnię styku z próbką. Promieniowanie ulega odbiciu, ale jego część może zostać zaabsorbowana przez próbkę znajdującą się po drugiej stronie nterpretacja widma R Wynikiem pomiaru w podczerwieni jest widmo analizowanego materiału, czyli wykres zależności absorbancji/transmitancji/reflektanci (w zależności od stosowanej techniki pomiarowej) od liczby falowej wyrażonej w [cm 1 ]. Liczba falowa określa liczbę drgań przypadającą na jednostkę długości drogi promieniowania i jest wprost proporcjonalna do częstotliwości (jak również energii) promieniowania. gdzie: 1 (5) liczba falowa [cm 1 ]; λ długość fali. Jednym ze sposobów interpretacji widm w podczerwieni jest porównywanie widma badanej substancji z widmami substancji wzorcowych, które zgromadzone są w formie bibliotek zaimplementowanych w oprogramowaniu obsługującym spektrometry (np. OPUS), lub dostępne w nternecie w postaci baz danych, np.: 6
7 nnym ze sposobów jest przypisanie pasm drganiom konkretnych grup funkcyjnych. Dokonuje się tego w oparciu o znajomość składu chemicznego substancji i tak zwane tablice korelacji. Dana grupa funkcyjna (ugrupowanie kilku atomów połączonych ze sobą wiązaniami chemicznymi np., grupa karbonylowa C=O, hydroksylowa OH) występująca w różnych związkach daje pasmo przy podobnych wartościach liczb falowych. Tablice korelacji to zestawienia grup funkcyjnych, które są dla nich charakterystyczne. Literatura: 1. Z. Kęcki, Podstawy spektroskopii molekularnej, Wydawnictwo Naukowe PWN, Warszawa 1972, str , 56 80, 84 92, M. Handke, C. Paluszkiewicz, Metody i Techniki Pomiarowe w Spektroskopii Oscylacyjnej, Wydawnictwo Akapit, Kraków W. Szczepaniak, Metody instrumentalne w analizie chemicznej, Wydawnictwo Naukowe PWN, Warszawa A. Cygański, Metody spektroskopowe w chemii analitycznej, Wydawnictwo Naukowe PWN, Warszawa Przebieg ćwiczenia 1) Pomiar widm trzech próbek wskazanych przez prowadzącego trzema różnymi technikami. 2) Przypisanie pasm na widmach drganiom odpowiednich grup funkcyjnych. 3) dentyfikacja materiałów na podstawie widm. 4) Prosta korekta widm (np. linia bazowa, wygładzenie szumów). 5) Porównanie widm otrzymanych obiema technikami Procedura pomiaru widma techniką absorpcyjną FT-R W przypadku próbek proszkowych: odważyć 400 mg bromku potasu; Przenieść KBr do pastylkarki i sprasować przy użyciu prasy hydraulicznej (9 ton); umieścić pastylkę w spektrometrze i zmierzyć tło; utarzeć w moździerzu około 1 mg próbki; 7
8 dodać 400 mg bromku potasu, wymieszać i sprasować; umieścić pastylkę w spektrometrze i zmierzyć widmo badanej próbki. W przypadku cienkich folii: zmierzyć widmo pustej komory pomiarowej jako tło; umieścić folię na drodze wiązki promieniowania; zmierzyć widmo badanej próbki Procedura pomiaru widma techniką odbiciową płytkę pomiarową przetrzeć acetonem; zogniskować wiązkę pa powierzchni próbki, tak, aby sygnał odbierany przez detektor był jak największy; zmierzyć widmo tła; zogniskować wiązkę na powierzchni próbki; zmierzyć widmo próbki Procedura pomiaru widma techniką ATR dokładnie wyczyścić acetonem kryształ przystawki ATR, opuścić mostek (nie dokręcać!); zmierzyć widmo tła; umieścić próbkę na krysztale, opuścić i zablokować mostek przystawki, dokręcić śrubę mostka do momentu, gdy dalsze obracanie nie będzie zwiększało siły przyciskania próbki do kryształu; zmierzyć widmo próbki; usunąć próbkę z kryształu, dokładnie wyczyścić acetonem kryształ, sprawdzić czystość kryształu wykonując pomiar bez nakładania nowej próbki na kryształ kryształ jest czysty, jeśli na widmie nie widać żadnych pasm. 4. Opracowanie wyników Każdy Zespół przygotowuje osobne sprawozdanie w formie pisemnej według poniższych wytycznych. 1) Przedstawić w formie krótkiego opisu (maksymalnie jedna strona A4) przebieg wykonywanego ćwiczenia. 8
9 2) Opisać badane materiały. 3) Wskazać urządzenia i parametry pomiarowe oraz opisać procedury obróbki widm (o ile była stosowana). 4) Sporządzić wykresy widm trzech badanych substancji różnymi technikami. 5) Dla każdego widma sporządzić tabelę według wzoru zmieszczonego poniżej (tabala 2), w której należy zamieścić najważniejsze pasma z widm substancji wraz z przypisanymi im drganiami. Tabela 2. Przypisania pasm dla poszczególnych pomiarów. Lp. 1 Liczba falowa [cm 1 ] Opis pasma Przypisanie 2 3 6) Omówić i wyjaśnić różnice w widmach otrzymanych techniką transmisyjną i technikami odbiciowymi. 7) Porównując parametry zebrane w sporządzonych tabelach wyciągnąć wnioski, na temat możliwości wykorzystania spektroskopii w podczerwieni w analizie struktury ciał stałych. Zastanowić się, jakie są wady i zalety poszczególnych metod. 9
10 5. Dodatki Tabela 3. Niektóre charakterystyczne liczby falowe pasm pochodzących od drgań często spotykanych wiązań w związkach organicznych. Liczba falowa [cm 1 ] Opis pasma Wiązanie i rodzaj drgania Klasa związków s, sh ν O H, wolne OH alkohole, fenole s, b ν O H, wiązanie wodorowe alkohole, fenole m ν N H aminy i amidy i -rzędowe m ν O H kwasy karboksylowe n, s ν C C H, C H alkiny (terminalne) s ν C H związki aromatyczne m ν =C H alkeny m ν C H alkany m ν H C=O, C H aldehydy v ν C N nitryle w ν C C alkiny s ν C=O związki karbonylowe, kwasy karboksylowe, estry, aldehydy, ketony m ν C=C alkeny m δ N H aminy -rzędowe m ν C C (w pierścieniu) związki aromatyczne s475 s ν as N O związki nitrylowe m ν C C (w pierścieniu) związki aromatyczne m δ C H alkany m ρ C H alkany m ν s N O związki nitrylowe s ν C N aminy aromatyczne s ν C O alkohole, kwasy karboksylowe, estry, etery m ω C H halogenki alkilowe m ν C N aminy alifatyczne s δ =C H alkeny m δ O H kwasy karboksylowe s, b ω N H aminy i -rzędowe s δ C H związki aromatyczne 10
11 Rysunek 3. Schemat postępowania przy identyfikacji polimerów na podstawie widm R.
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
Ćw. 10 Techniki spektroskopii w podczerwieni w analizie ciał stałych
Ćw. 10 Techniki spektroskopii w podczerwieni w analizie ciał stałych Podstawy Analizy nstrumentalnej dla studentów roku Ochrony Środowiska na Wydziale Chemii UJ prowadzący dr hab. Joanna Łojewska (pok.
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem
Spektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
Jak analizować widmo IR?
Jak analizować widmo IR? Literatura: W. Zieliński, A. Rajca, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. WNT. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spektroskopowe
Spektroskopia w podczerwieni
Spektroskopia w podczerwieni Metody badań strukturalnych ciała stałego dr inż. Magdalena Król Co to jest spektroskopia? Spektroskopia jest to nauka zajmująca się oddziaływaniem fali elektromagnetycznej
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil
Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na
Stałe siłowe. Spektroskopia w podczerwieni. Spektrofotometria w podczerwieni otrzymywanie widm
Spektroskopia w podczerwieni Spektrofotometria w podczerwieni otrzymywanie widm absorpcyjnych substancji o różnych stanach skupienia. Powiązanie widm ze strukturą pozwala na identyfikację związku. Widmo
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Widma w podczerwieni (IR)
Spektroskopowe metody identyfikacji związków organicznych Widma w podczerwieni (IR) dr 2 Widmo w podczerwieni Liczba drgań zależy od liczby atomów w cząsteczce: cząsteczka nieliniowa o n atomach ma 3n-6
Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej. dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB
Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie Promieniowanie
spektroskopia IR i Ramana
spektroskopia IR i Ramana oscylacje (wibracje) 3N-6 lub 3N-5 drgań normalnych nie wszystkie drgania obserwuje się w IR - nieaktywne w IR gdy nie zmienia się moment dipolowy - pasma niektórych drgań mają
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
IR I 11. IDENTYFIKACJA GRUP FUNKCYJNYCH W WIDMACH IR
IR I 11. IDENTYFIKACJA GRUP FUNKCYJNYCH W WIDMACH IR Celem ćwiczenia jest zapoznanie się z techniką wykonywania widm związków w postaci pastylek wykonanych z bromku potasu oraz interpretacja otrzymanych
IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni
IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu
Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)
Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Całkowite wewnętrzne odbicie n 2 θ θ n 1 n > n 1 2 Kiedy promień pada na granicę ośrodków pod kątem większym od kąta
Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)
POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA
SPEKTROSKOPIA W PODCZERWIENI
SPEKTROSKOPIA W PODCZERWIENI Rys. 1 Zakres widma elektromagnetycznego. Obszar widma elektromagnetycznego o liczbie falowej (odwrotność długości fali) od ok. 14000 do 200cm-1 między obszarem widzialnym
SPEKTROSKOPIA W PODCZERWIENI
SPEKTROSKOPIA W PODCZERWIENI Obszar widma elektromagnetycznego ( od ok. 14000 do 200cm-1 ) między obszarem widzialnym a mikrofalowym nazywamy podczerwienią (IR). W określeniu struktury związków organicznych
Spektroskopia w podczerwieni
Spektroskopia w podczerwieni Podstawy teoretyczne spektroskopii w podczerwieni Podstawowe pojęcia związane ze spektroskopią oscylacyjną Interpretacja widm Budowa spektrometru FTIR Podstawowe techniki pomiarowe
Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego
Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,
Spektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego
KARTA PRACY DO ZADANIA 1. Pomiar widma aminokwasu na spektrometrze FTIR, model 6700.
KARTA PRACY D ZADANIA 1 Pomiar widma aminokwasu na spektrometrze FTIR, model 6700. Wykonaj zadanie zgodnie z instrukcją nr 1 i wypełnij tabelę (w odpowiednich komórkach wstaw "X"). ZAKRES SPEKTRALNY ZMIERZNEG
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy
Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
Analiza instrumentalna Wykład nr 3
Analiza instrumentalna Wykład nr 3 KT2_2 brak zajęć lab. w dniu 18.10.2012 SPEKTROSKOPIA IR SPKTROSKOPIA RAMANA WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi.
SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA
SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA Beata Rozum Seminarium Analityczne MS Spektrum 2013 Porównania laboratoryjne, akredytacja, typowe problemy w laboratoriach SPEKTROSKOPIA Oddziaływanie
Kilka wskazówek ułatwiających analizę widm w podczerwieni
Kilka wskazówek ułatwiających analizę widm w podczerwieni Opracowanie wg dostępnej literatury spektroskopowej: Dr Alina T. Dubis e-mail: alina@uwb.edu.pl Instytut Chemii Uniwersytet w Białymstoku Al. J.
m 1, m 2 - masy atomów tworzących wiązanie. Im
Dr inż. Grażyna Żukowska Wykorzystanie metod spektroskopii oscylacyjnej do analizy materiałów organicznych i nieorganicznych 1. Informacje podstawowe Spektroskopia Ramana i spektroskopia w podczerwieni
PROBLEMATYKA: Techniki zbierania widm w analizie ciał stałych. Analiza jakościowa i ilościowa na podstawie widm FT-IR
PROBLEMATYKA: Techniki zbierania widm w analizie ciał stałych. Analiza jakościowa i ilościowa na podstawie widm FT-IR TEMAT ĆWICZENIA: ANALIZA WYBRANYCH TWORZYW SZTUCZNYCH ZA POMOCĄ TECHNIK SPEKTROSKOPII
SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ
SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku
Metody spektroskopowe:
Katedra Chemii Analitycznej Metody spektroskopowe: Absorpcyjna Spektrometria Atomowa Fotometria Płomieniowa Gdańsk, 2010 Opracowała: mgr inż. Monika Kosikowska 1 1. Wprowadzenie Spektroskopia to dziedzina
Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp
Ćwiczenie 31 Metodyka poprawnych i dokładnych pomiarów widm absorbancji w zakresie UV-VIS. Wpływ monochromatyczności promieniowania i innych parametrów pomiarowych na kształt widm absorpcji i wartości
Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego pomiędzy promieniowaniem widzialnym a mikrofalowym.
Próby identyfikacji białego cukru buraczanego i trzcinowego dr inż. Maciej Wojtczak Promieniowanie podczerwone Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego
Ćwiczenie 5. Spektroskopia w podczerwieni w badaniu struktury biomakromolekuł
Ćwiczenie 5. Spektroskopia w podczerwieni w badaniu struktury biomakromolekuł Metody spektroskopowe polegają na obserwacji oddziaływania promieniowania elektromagnetycznego z materią. Można je podzielić
Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna.
Ćwiczenie 1 Metodyka poprawnych i dokładnych pomiarów absorbancji, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla wybranych długości
Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.
1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań
Ćwiczenie 30. Zagadnienia: spektroskopia absorpcyjna w zakresie UV-VIS, prawa absorpcji, budowa i. Wstęp
Ćwiczenie 30 Metodyka poprawnych i dokładnych pomiarów absorbancji w zakresie UV- VS, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla
PRACOWNIA APARATUROWA Chemia I rok II stopień 2018/19 ZASTOSOWANIE SPEKTROSKOPII FT-IR W ANALIZIE JAKOŚCIOWEJ I ILOŚCIOWEJ
PRACOWNIA APARATUROWA Chemia I rok II stopień 2018/19 ZASTOSOWANIE SPEKTROSKOPII FT-IR W ANALIZIE JAKOŚCIOWEJ I ILOŚCIOWEJ W trakcie zajęć realizowane będą dwa ćwiczenia Ćwiczenie 1 Analiza jakościowa
Spektroskopia ramanowska w badaniach powierzchni
Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
Ćwiczenie O 13 -O 16 BADANIE ABSORPCJI ŚWIATŁA W MATERII Instrukcja dla studenta
Ćwiczenie O 13 -O 16 BADANE ABSORPCJ ŚWATŁA W MATER nstrukcja dla studenta. WSTĘP Światło jest falą elektromagnetyczną jak i strumieniem fotonów, których energia jest w bezpośredni sposób związana z częstością
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym
Raport z pomiarów FT-IR
Jacek Bagniuk Raport z pomiarów FT-IR Przeprowadzono pomiary widm in-situ total reflection (TR) FT-IR w dwóch punktach obrazu XXXXXXXXX XXXXXXXX oraz wykonano osiem pomiarów widm ATR/FT-IR na próbkach
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
METODY SPEKTRALNE. dr hab. Włodzimierz Gałęzowski Wydział Chemii UAM Zakład Chemii Ogólnej (61)
METODY SPEKTRALNE dr hab. Włodzimierz Gałęzowski Wydział Chemii UAM Zakład Chemii Ogólnej (61) 829 1484 wlodgal@amu.edu.pl materiał wymagany na egzaminie: wykłady ćwiczenia wiadomości z kursu Analizy Instrumentalnej
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Wyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
Badania optyczne monokryształów podwójnej soli siarczanu dwuglicyny i siarczanu amonu
Józef ŻMIJA WAT Stanisław ŁABUZ, Władysław PROSZAK Politechnika Rzeszowska Badania optyczne monokryształów podwójnej soli siarczanu dwuglicyny i siarczanu amonu WSTĘP Większość kryształów zwiozków glicyny
IDENTYFIKACJA JAKOŚCIOWA NIEZNANEGO ZWIĄZKU ORGANICZNEGO
IDENTYFIKACJA JAKOŚCIOWA NIEZNANEGO ZWIĄZKU ORGANICZNEGO Schemat raportu końcowego w ramach ćwiczeń laboratoryjnych z przedmiotu Badanie struktury związków organicznych 1. Symbol kodujący identyfikowaną
Badanie widm IR związków organicznych
Badanie widm IR związków organicznych Wprowadzenie (praca doktorska Moniki Hereć) Widma oscylacyjne cząsteczek. Technika FTIR. Drgania atomów w cząsteczkach ujawniają się w widmach optycznych o częstościach
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
Metody spektroskopowe w identyfikacji związków organicznych. Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz
Metody spektroskopowe w identyfikacji związków organicznych Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz Metody spektralne wykorzystują zjawiska związane z oddziaływaniem materii z promieniowaniem
POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH
LŁ ELEKTRONIKI WAT POMIARY TŁUMIENIA I ABSORBCJI FAL ELEKTROMAGNETYCZNYCH dr inż. Leszek Nowosielski Wojskowa Akademia Techniczna Wydział Elektroniki Laboratorium Kompatybilności Elektromagnetycznej LŁ
WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych
WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych Prof. dr hab. Halina Abramczyk Dr inż. Beata Brożek-Płuska POLITECHNIKA ŁÓDZKA Wydział Chemiczny, Instytut Techniki Radiacyjnej Laboratorium
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM
Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział
UNIWERSYTET OPOLSKI - KONSORCJANT NR 8. projektu pt.: Nowe przyjazne dla środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych
UNIWERSYTET OPOLSKI - KONSORCJANT NR 8 projektu pt.: Nowe przyjazne dla środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych Zadanie nr 5. Ocena wpływu czynników środowiskowych oraz obciążeń
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
STABILNOŚĆ TERMICZNA SPOIW POLIAKRYLANOWYCH NA PRZYKŁADZIE SOLI SODOWEJ KOPOLIMERU KWAS MALEINOWY-KWAS AKRYLOWY
WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXIII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r. Beata GRABOWSKA 1, Mariusz HOLTZER 2, Artur BOBROWSKI 3,
Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej
Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm
OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS
OZNACZANE STĘŻENA BARWNKÓW W WODZE METODĄ UV-VS. SPEKTROFOTOMETRA UV-Vis Spektrofotometria w zakresie nadfioletu (ang. ultra-violet UV) i promieniowania widzialnego (ang. visible- Vis), czyli spektrofotometria
JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik ćwiczenie nr 26 Zakres zagadnień obowiązujących do ćwiczenia 1. Prawo Lamberta
WYKORZYSTANIE SPEKTROSKOPII W PODCZERWIENI DO IDENTYFIKACJI WYROBÓW BUDOWLANYCH
PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK nr 2 (138) 2006 BUILDING RESEARCH INSTITUTE - QUARTERLY No 2 (138) 2006 ARTYKUŁY - REPORTS Hanna Jóźwiak* WYKORZYSTANIE SPEKTROSKOPII W PODCZERWIENI DO
FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz
FIZYKOCEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli
SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]
SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną
Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XII Oddziaływanie promieniowania z materią w kontekście spektroskopii oscylacyjnej Absorpcja i rozpraszanie
Instrukcja do ćwiczeń
Instrukcja do ćwiczeń Badania identyfikacyjno - porównawcze materiałów kryjących na dokumencie I. Cel ćwiczenia Zapoznanie studentów z możliwością zastosowania spektrometrii IR, spektrofotometrii UV-Vis
METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii
METODY SPEKTROSKOPOWE II UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii Pokój nr 1 w Chemii B Godziny konsultacji: Poniedziałek 11-13 E-mail: jakub.grynda@gmail.com PLAN
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 OZNACZANIE CHLORKÓW METODĄ SPEKTROFOTOMETRYCZNĄ Z TIOCYJANIANEM RTĘCI(II)
Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)
Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego
Ćw. M8 Zjawisko absorpcji i emisji światła w analityce. Pomiar widm absorpcji i stężenia ryboflawiny w roztworach wodnych za pomocą spektrofotometru. Wyznaczanie stężeń substancji w roztworze metodą fluorescencyjną.
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Absorpcja promieni rentgenowskich 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Badanie właściwości optycznych roztworów.
ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
wymiana energii ciepła
wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw
EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
EKSTRAHOWANIE KWASÓW NUKLEINOWYCH Wytrącanie etanolem Rozpuszczenie kwasu nukleinowego w fazie wodnej (met. fenol/chloroform) Wiązanie ze złożem krzemionkowym za pomocą substancji chaotropowych: jodek