POLE MAGNETYCZNE RUROWEGO OSŁONIĘTEGO PRZEWODU FAZOWEGO W UKŁADZIE Z UZIEMIONYM LUB ZWARTYM EKRANEM CZĘŚĆ I

Wielkość: px
Rozpocząć pokaz od strony:

Download "POLE MAGNETYCZNE RUROWEGO OSŁONIĘTEGO PRZEWODU FAZOWEGO W UKŁADZIE Z UZIEMIONYM LUB ZWARTYM EKRANEM CZĘŚĆ I"

Transkrypt

1 PONAN UNVE STY OF TE CHNOOGY ACADE MC JOUNAS No 77 Ectric Enginring Driusz USA ygmunt PĄTE Tomsz SCEGENA Pwł JABŁOŃS POE MAGNETYCNE UOWEGO OSŁONĘTEGO PEWODU FAOWEGO W UŁADE UEMONYM UB WATYM EANEM CĘŚĆ W rtyku wykzno k n po mgntyczn osłoniętgo przwou fzowgo m wpływ uzimini u zwrci krnu. Opisu tgo okonno wzormi wzgęnych wrtości po i prmtrów uwzgęniących częstotiwość, konuktywność i wymiry poprzczn krnu. Uwzgęniono przy tym tkż zwisko nskórkowości orz wwnętrzn i zwnętrzn zwisk ziżni. Część opisu znczni impnci włsn krnu i impnci wzmn mięzy przwom fzowym krnm. SŁOWA UCOWE: po mgntyczn, impnc włsn i wzmn, krn rurowy. WPOWADENE W torch wikoprąowych n u więc fzowych przwoów rurowych osłoniętych st rurowym krnm. Po mgntyczn przwou inuku w osłoni prąy wirow, któr wytwrzą po mgntyczn oziływni zwrotngo. Wypkow po mgntyczn w oszrz wwnętrznym i zwnętrznym osłony st sumą wktorową tych pó []. W ogónym przypku wóch koncntrycznych przwoów rurowych osi przwoów ni pokrywą się tworząc tzw. ukł niwspółosiowy rysunk []. ozptrzono krn rys. o konuktywności, prominiu wwnętrznym i zwnętrznym, równogły o niwspółosiowgo wwnętrzngo przwou rurowgo o konuktywności, prominiu wwnętrznym i zwnętrznym z prąm sinusoinym o wikości skutczn zspoon. Ogłość mięzy osimi przwoów wynosi. Przwó fzowy z prąm, z uzimionymi u zwrtymi np. poprzz otcząc tor wikoprąowy konstrukc stow końcmi przwoząc osłony, przstwiono n rysunku. Poitchnik Częstochowsk.

2 6 Driusz usik, ygmunt Piątk, Tomsz Szczginik, Pwł Jłoński y y H r H Θ X r r XY Θ γ Y ρ Φ x x γ μ ys.. Ekrn rurowy z wwnętrznym niwspółosiowym przwom rurowym u ys.. Przwó fzowy krnowny niwspółosiową przwozącą osłoną uzimioną n końcch; wiok ogóny, schmt zstępczy Prą powrotny w krni okrśono wzorm [] k i gzi współczynnik zspoony k i u w którym impnc st impncą włsną krnu o skończon ługości, st impncą wzmną mięzy krnm przwom fzowym, zś u st impncą uzimini u owou zwirącgo osłonę.. MPEDANCJA EANU mpnc krnu i w prcch [-6]. Piątk i B. Bron wprowzą, ż przy pominięciu zwisk nskórkowości, rzystnc krnu

3 Po mgntyczn rurowgo osłoniętgo przwou fzowgo w ukłzi 65 orz go inukcyność w z n n 5 gzi inukcyność zwnętrzn n z 6 orz inukcyność wwnętrzn n w 7 Jśi uwzgęnimy zwisko nskórkowości, to rzystnc krnu 8 gzi - 9 Wty tż inukcyność krnu w z n gzi inukcyność wwnętrzn w W powyższych wzorch,, itp. oznczą zmoyfikown funkc Bss pirwszgo rzęu, opowinio pirwszgo i rugigo rozu [7]. wzorów 8 i otrzymumy impncę włsną krnu

4 Driusz usik, ygmunt Piątk, Tomsz Szczginik, Pwł Jłoński 66 n orz impncę wwnętrzną w 5 Jśi wprowzi się wikości wzgęn orz k k, to przy pominięciu zwisk nskórkowości otrzymno rzystncę krnu 6 orz go inukcyność w z n n 7 gzi inukcyność wwnętrzn n w 8 Uwzgęniąc zwisko nskórkowości wyznczono rzystncę krnu nstępuącym wzorm 9 orz go inukcyność włsną w z n gzi inukcyność wwnętrzn w Wzgęną zminę rzystnci możn wyrzić poprzz stosunk rzystnci przwou z uwzgęninim zwisk nskórkowości wzór 9 o rzystnci z uwzgęnini tgo zwisk wzór 6, czyi otrzymno

5 Po mgntyczn rurowgo osłoniętgo przwou fzowgo w ukłzi 67 k Pooni inukcyności cłkowit z wzorów 7 i, otrzymno n n n k żność powyższych współczynników o współczynnik α kiku wrtości prmtru β przstwiono n rysunkch i. ys.. żność rzystnci krnu rurowgo o prmtru ys.. żność inukcyności krnu rurowgo o prmtru α; przy stł ługości i różnych wrtościch wzgęn gruości β, przy stł wrtości wzgęn gruości β i różnych ługości mpnc włsn krnu prmtrów wzgęnych m postć n orz impnc wwnętrzn

6 Driusz usik, ygmunt Piątk, Tomsz Szczginik, Pwł Jłoński 68 w 5. MPEDANCJA WAJEMNA PEWÓD FAOWY EAN W prcch [8-9]. Piątk i B. Bron wyprowzą inukcyność wzmną mięzy przwom fzowym krnm o skończonych ługościch z pominięcim zwisk nskórkowości i ziżni w postci wzoru: n n M M M 6 orz impncę wzmną z uwzgęninim tych zwisk n 7 u tż n c 8 o prmtrów wzgęnych n 9 orz n c Struktur impnci st inn niż impnci. wzgęu nk n włsności funkci Bss, nizżni o prmtrów orz otrzymno Części uroon, pozion przz ω, impnci wzmnych są inukcynościmi wzmnymi, przy czym

7 Po mgntyczn rurowgo osłoniętgo przwou fzowgo w ukłzi 69 M m M m M Uził części rzczywist impnci wzmn w cłkowit wrtości t impnci schrktryzowno współczynnikim k, zś zminę inukcyności wzmn w zżności o prmtru α współczynnikim km M M. żność powyższych współczynników o wrtości prmtru k przstwiono n rysunku 5. ys. 5. żność impnci wzmn o prmtru α: części rzczywist, wzgęn inukcyności wzmn. WNOS rysunków i wynik, ż zwisko nskórkowości powou prz wszystkim istotną zminę rzystnci włsn krnu. wisko to, zżn o konuktywności, wymirów poprzcznych krnu, w tym gruości go ścink, powinno yć uwzgęnin przy wyznczniu impnci włsn krnu, nwt częstotiwości przmysłow. rysunku 5 wynik, ż uził części rzczywist impnci wzmn w cłkowit wrtości moułu t impnci st niznczny ni przkrcz, % wrtości. miny inukcyności wzmn ni przkrczą, % wrtości inukcyności wzmn wyznczn z wzoru 9. TEATUA [] Nwrowski.: Tory wikoprąow izoown powitrzm u SF 6, Wy. Po. Poznński, Poznń 998. [] Piątk.: mpncs of Tuur High Currnt Busucts. Sris Progrss in High- Votg tchniqu, Vo. 8, Poish Acmy of Scincs, Committ of Ectric Enginring, Wy. Po. Częst., Częstochow 8.

8 7 Driusz usik, ygmunt Piątk, Tomsz Szczginik, Pwł Jłoński [] usik D.: Po mgntyczn wu i tróigunowych torów wikoprąowych, ozprw oktorsk, Po. Częst., Wyz. E., Częstochow 8. [] Bron B., Piątk.: Anityczno-numryczn wyznczni impnci włsnych i wzmnych płskigo, osłoniętgo, trófzowgo toru wikoprąowgo. Poish - Ukrinin Joint Sminr, Soin, pp [5] Piątk.: nukcyności przwou osłoniętgo, Przgą Ektrotchniczny 998,. XXV, No, ss [6] Piątk, Bron B.: mpnc G o skończon ługości, XXV C SPETO, Giwic-Nizic, ss [7] Mc chn N.W.: Funkc Bss inżynirów, PWN, Wrsw 96. [8] Piątk., Bron B.: mpnc noigunowgo G o skończon ługości, Śąski Wi. Ektryczn, Nr 5, ok X, m-czrwic, s. -8. [9] Piątk.: Sf n mutu impncs of finit ngth gs-insut trnsmission in G, Ectric Powr Systms srch 7, No. 77, pp. 9-. MAGNETC FED OF TUBUA SCEENED PHASE CONDUCTO N A SYSTEM WTH GOUNDED O SHOTED SHED PAT Th rtic iscusss th infunc of grouning or shorting of th scrn on th mgntic fi of scrn phs conuctor. This phnomnon hs n scri with th formus rvnt to th rtiv vus of th fi n th prmtrs owing th frquncy, conuctivity, n th cross-sction imnsions of scrn. nto ccount ws tkn skin, intrn n xtrn proximity ffcts. Prt scris th importnc of sf impnc of th shi n th mutu impnc twn th phs conuctor n th shi.

POLE MAGNETYCZNE RUROWEGO OSŁONIĘTEGO PRZEWODU FAZOWEGO W UKŁADZIE Z UZIEMIONYM LUB ZWARTYM EKRANEM CZĘŚĆ II

POLE MAGNETYCZNE RUROWEGO OSŁONIĘTEGO PRZEWODU FAZOWEGO W UKŁADZIE Z UZIEMIONYM LUB ZWARTYM EKRANEM CZĘŚĆ II PONAN UNVE STY OF TE CNOLOGY ACADE MC JOUNALS No 77 Elctcal Egg Dausz USA* ygmut PĄTE* Tomasz SCEGELNA* Pawł JABŁOŃS* POLE MAGNETYCNE UOWEGO OSŁONĘTEGO PEWODU FAOWEGO W UŁADE UEMONYM LUB WATYM EANEM CĘŚĆ

Bardziej szczegółowo

WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ II EKRAN I OBSZAR WEWNĘTRZNY EKRANU

WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO BIFILARNEGO TORU WIELKOPRĄDOWEGO. CZĘŚĆ II EKRAN I OBSZAR WEWNĘTRZNY EKRANU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Dariusz KUSIAK* Zygmunt PIĄTEK* Tomasz SZCZEGIELNIAK* WPŁYW GRUBOŚCI EKRANU NA CAŁKOWITE POLE MAGNETYCZNE DWUPRZEWODOWEGO

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2

Bardziej szczegółowo

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne

Bardziej szczegółowo

12. CZWÓRNIKI PARAMETRY ROBOCZE I FALOWE CZWÓRNIK U

12. CZWÓRNIKI PARAMETRY ROBOCZE I FALOWE CZWÓRNIK U OBWODY SYGNAŁY Wykłd : Czwórniki prmtry robocz i flow. CWÓRN PARAMETRY ROBOCE FALOWE.. PARAMETRY ROBOCE Jżli do jdnych wrót czwórnik dołączono źródło wymuszń, ntomist drui wrot iążono dwójnikim bzźródłowym,

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym

Bardziej szczegółowo

WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA TEMPERATURĘ PRZEWODU RUROWEGO

WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA TEMPERATURĘ PRZEWODU RUROWEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 89 Electrical Engineering 7 DOI.8/j.897-737.7.89.6 Tomasz SZCZEGIELNIAK* WPŁYW ZJAWISKA NASKÓRKOWOŚCI NA TEMPERATURĘ PRZEWODU RUROWEGO Projektowanie

Bardziej szczegółowo

( ) MECHANIKA BUDOWLI WZORY

( ) MECHANIKA BUDOWLI WZORY CHNIK BUDOLI ZORY Uwgi: zor ujęt w rmki powinn bć opnown pmięciowo (więkzość z nich wmg jni zrozumini b j zpmiętć )! Pozotł wzor, jżi bęą potrzbn w trkci kookwium bęą pon rzm z trścią zni; jnk nż zwrócić

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1)

POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1) POL LKTROTATYCZN W PRÓŻNI - CD Dio ktyczny q + q Dio ktyczny to ukła ównych co o watości unktowych łaunków ktycznych zciwngo znaku ozmiszczonych w stałj ogłości o sibi Dio chaaktyzuj się zz oani jgo ioowgo

Bardziej szczegółowo

ź Ś ś ś Ś Ś ś ś ś ś ś ś ź ś ś Ś Ś Ś źś Ń Ś ś Ą Ź ś ś ś ś Ś ś ś Ą Ś Ą Ą ś ś Ś Ś ść ś Ś ś ś Ś ś ś ś ź ś Ś Ś Ś Ś ś Ś Ź ś ś ś ś ś Ś ś Ś ć ć Ś Ś Ą ć ć Ś Ś Ś ś Ś ś Ę Ś Ę ś Ś Ś Ś Ś ś ś ś Ś Ś Ś Ś ś ś ć Ć Ę Ś Ś

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

1Coulomb 1Volt. Rys. 1. Schemat kondensatora płaskiego. Jednostką pojemności w układzie SI, jest Farad (F):

1Coulomb 1Volt. Rys. 1. Schemat kondensatora płaskiego. Jednostką pojemności w układzie SI, jest Farad (F): POJEMNOŚĆ ELEKTRYZNA Konenstor służy o mgzynowni energii potencjlnej w polu elektrycznym. Typowy konenstor płski, skł się z wóch równoległych, przewozących okłek o polu przekroju S umieszczonych w oległości

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn

Bardziej szczegółowo

Izotopy stabilne lub podlegające samorzutnym rozpadom

Izotopy stabilne lub podlegające samorzutnym rozpadom Izotopy stbiln lub podlgjąc smorzutnym rozpdom Izotopy - jądr o jdnkowj liczbi protonów, różniąc się liczbą nutronów t 1/ =14 s t 1/ =5730 lt Mp nuklidów stbilność jądr Frgmnt mpy nuklidów w obszrz otrzymywnych

Bardziej szczegółowo

Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie

Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie Stron 1 z 7 Połązni Instrukj otyzą systmu Winows w przypku rukrki połązonj loklni Uwg: Przy instlowniu rukrki połązonj loklni, jśli ysk CD-ROM Oprogrmowni i okumntj ni osługuj ngo systmu opryjngo, nlży

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Dnyh. Gry. Drzwo rozpinj. Minimln rzwo rozpinj. Bożn Woźn-Szzśnik wozn@gmil.om Jn Długosz Univrsity, Poln Wykł 9 Bożn Woźn-Szzśnik (AJD) Algorytmy i Struktury Dnyh. Wykł 9 1 / 4 Pln

Bardziej szczegółowo

Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN

Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN Zminy w wydniu drugim skryptu Konstrukcje stlowe. Prykłdy obliceń według PN-EN 99- Rodił. Dodno nowy punkt.. Inormcje o minch (str. 0.) obecnym wydniu uwględniono miny: wynikjące wprowdeni pre PKN w cerwcu

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna nukcja elektromagnetyczna Prawo inukcji elektromagnetycznej Faraaya Φ B N Φ B Dla N zwojów eguła enza eguła enza Prą inukowany ma taki kierunek, że wywołane przez niego pole magnetyczne przeciwstawia się

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA APARAT USG

SPECYFIKACJA TECHNICZNA APARAT USG Złącznik nr 7 SPECYFIKACJA TECHNICZNA APARAT USG Ultrsonogrf Wysokij Klsy z głowicmi Phsd Arry, Convx i Liniową orz z modułm Echokrdiogrfii, Strss Echo i modułm EKG. L.p. Wymgn prmtry tchniczn Wymgni Prmtry

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

III. Rachunek całkowy funkcji jednej zmiennej.

III. Rachunek całkowy funkcji jednej zmiennej. III. Rchunek cłkowy funkcji jednej zmiennej. 1. Cłki nieoznczone. Niech f : I R, I R - przedził n prostej. Definicj 1.1. (funkcji pierwotnej) Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I,

Bardziej szczegółowo

Regał / wózek do opon. podstawa...

Regał / wózek do opon. podstawa... Dl pństw wygoy Rgł / wózk o opon Rgł / wózk o opon postw... Rgł / wózk o opon, spwn konstrukj z rur stlowyh. Oynkown rury spinją z połąznimi śruowymi umożliwiją opsowni szrokośi rgłu / wózk o kżj sytuji

Bardziej szczegółowo

Wykład Indukcja elektromagnetyczna, energia pola magnetycznego

Wykład Indukcja elektromagnetyczna, energia pola magnetycznego Wykłd 3 3. ndukcj eektromgnetyczn, energi po mgnetycznego 3. ndukcyjność 3.. Trnsformtor Gdy dwie cewki są nwinięte n tym smym rdzeniu (często jedn n drugiej) to prąd zmienny w jednej wywołuje SEM indukcji

Bardziej szczegółowo

5. WYKORZYSTANIE GRAFÓW PRZEPŁYWU SYGNAŁÓW DO BUDOWY MODELI MATEMATYCZNYCH

5. WYKORZYSTANIE GRAFÓW PRZEPŁYWU SYGNAŁÓW DO BUDOWY MODELI MATEMATYCZNYCH 5. Worzstni grów rzłwu sgnłu o uow moli mtmtznh 5. WYKORZYSTANIE RAFÓW PRZEPŁYWU SYNAŁÓW DO UDOWY MODELI MATEMATYCZNYCH 5.. Wrowzni o grów rzłwowh Njzęśij sotną ostią grizną ułów utomti są shmt struturln

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. EN :2004

Pręt nr 1 - Element żelbetowy wg. EN :2004 Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800

Bardziej szczegółowo

4.6. Gramatyki regularne

4.6. Gramatyki regularne 4.6. Grmtyki regulrne G = < N,T,P,Z > jest grmtyką prwostronnie liniową, jeśli jej produkcje mją postć: ( i) U xv x T * U,V N ( ii) U x G = < N,T,P,Z > jest grmtyką prwostronnie regulrną, jeśli jej produkcje

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

CONNECT, STARTUP, PROMOTE YOUR IDEA

CONNECT, STARTUP, PROMOTE YOUR IDEA Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w

Bardziej szczegółowo

X, K, +, - przestrzeń wektorowa

X, K, +, - przestrzeń wektorowa Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

l b sin π + k m - współczynnik przeliczeniowy (dla R i X ) r 5.2. Obliczenie parametrów schematu zastępczego mm - średnia długość

l b sin π + k m - współczynnik przeliczeniowy (dla R i X ) r 5.2. Obliczenie parametrów schematu zastępczego mm - średnia długość 5.. Oiczenie petów cetu ztępczego 5... ezytncj jednej fzy uzwojeni tojn z N γ Cu ( α ϑ S c Cu z ( - śedni długość zwoju. π K ( d d - śedni długość p połączeni czołowego. K wpółczynnik wydłużeni połączeni

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu 24 mj 2012 r. Ankit solwnt Wyni I Sttus oowiązująy Symol Stron 1/5 ANKIETA ABSOLWENTA Losy zwoow solwntów PWSZ w Riorzu Dro Asolwntko, Droi Asolwni! HASŁO DO ANKIETY: Prosimy o okłn przzytni pytń i zznzni

Bardziej szczegółowo

CIENKOŚCIENNE KONSTRUKCJE METALOWE

CIENKOŚCIENNE KONSTRUKCJE METALOWE CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 6: Wymiarowanie elementów cienkościennych o przekroju w ujęciu teorii Własowa INFORMACJE OGÓLNE Ścianki rozważanych elementów, w zależności od smukłości pod naprężeniami

Bardziej szczegółowo

Wykład 2 Wahadło rezonans parametryczny. l+δ

Wykład 2 Wahadło rezonans parametryczny. l+δ Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos

Bardziej szczegółowo

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji.

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji. Zbrani obciążń a) Stał: Ciężar własny okrycia dachu: Pokryci dachówką kariówką odwójni. Przyjęto ciężar okrycia wraz z konstrukcją dachu: g 0,95 ; b) Zinn: Śnig wg EC: s ) C i i C s t k,gdzi: s wartość

Bardziej szczegółowo

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki

Podstawy Elektrotechniki i Elektroniki Postw ektotechniki i ektoniki Definicj po eektomgnetcznego z v Pzestzeń w któej n łunek eektczn ził ił Loentz v ntężenie po eektcznego [V/m] inukcj po mgnetcznego [T] v pękość łunku [m/s] Poe eektczne

Bardziej szczegółowo

1.3. Dane materiałowe wartości charakterystyczne (PN-B-03150:2000, Załącznik normatywny Z-2.2.3) f m.k = 30 MPa - wytrzymałość na zginanie

1.3. Dane materiałowe wartości charakterystyczne (PN-B-03150:2000, Załącznik normatywny Z-2.2.3) f m.k = 30 MPa - wytrzymałość na zginanie I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-050:000. ZałoŜenia o obiczeń.. Schemat geometrczn więźb achowej Więźba achowa płatwiowo-keszczowa... Dane ogóne Lokaizacja bunku - Biłgoraj Strefa obciąŝenia śniegiem

Bardziej szczegółowo

Przykład 2.5. Figura z dwiema osiami symetrii

Przykład 2.5. Figura z dwiema osiami symetrii Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl

Bardziej szczegółowo

Oscylator harmoniczny tłumiony drgania wymuszone

Oscylator harmoniczny tłumiony drgania wymuszone Oscylor hroniczny łuiony rgni wyuszone x / Γ x e x Oscylor swoony łuiony Γ x Jeśli Γ

Bardziej szczegółowo

Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1

Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1 Temt Afiniczne odwzorownie płszczyzny n płszczyznę Krol Btor GGiIŚ, II rok, niestc. grp SPRAWOZDANIE DANE FORMALNO-PRAWNE:. Zleceniodwc: Akdemi Górniczo-Htnicz Wydził Geozdezji Górniczej i Inżynierii Środowisk.

Bardziej szczegółowo

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1

FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1 FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Światło widzialne a widmo elektromagnetyczne

Światło widzialne a widmo elektromagnetyczne Światło widzialne a widmo elektromagnetyczne 10 3 λ [nm] λ 10 6 10 12 fale radiowe 1 mm 10 9 10 12 10 9 10 6 mikrofale 100 µm 10 µm 10 15 10 18 10 21 10 3 1 10 3 widmo optyczne prom. X promienie gamma

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk

Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.

Bardziej szczegółowo

WYKŁAD 2: CAŁKI POTRÓJNE

WYKŁAD 2: CAŁKI POTRÓJNE WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu

Bardziej szczegółowo

Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim

Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim Wszystkim Nauczycielom i pracownikom oświaty z okazji Dnia Edukacji Narodowej moc najserdeczniejszych życzeń, spełnienia najskrytszych marzeń oraz byście mogli w pełni realizować swoje plany życiowe i

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomrczn mod nnow Wkłd Włsnośc smorów s . dodk do wkłdu Słb zbżność convrgnc n dsrbuon Cąg zmnnch osowch FX x - dsrbun Isnj dsrbun F X x, k ż m FX x FX x w kżdm punkc x, F X w kórm X js cągł. X X zbg

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

Weryfikacja modelowa jest analizą statyczną logiki modalnej

Weryfikacja modelowa jest analizą statyczną logiki modalnej Weryfikcj modelow jest nlizą sttyczną logiki modlnej Mrcin Sulikowski MIMUW 15 grudni 010 1 Wstęp Weryfikcj systemów etykietownych 3 Flow Logic 4 Weryfikcj modelow nliz sttyczn Co jest czym czego? Weryfikcj

Bardziej szczegółowo

WYKRESY PARĆ HYDROSTATYCZNYCH

WYKRESY PARĆ HYDROSTATYCZNYCH dm Pweł Koioł WYKESY PĆ HYOSTTYNYH Prykłdy Wersj 1.d PK (2006-2013) Od utor Skrypt (eook) Wykresy prć hydrosttycnych jest prencony dl studentów studiów diennych, wiecorowych i ocnych wydiłów o kierunkch

Bardziej szczegółowo

A B C D E F G H I. 3 Q3 S300 TX 1P 6A TX³ (6kA/10kA) B. Q4 S300 TX 1P 6A TX³ (6kA/10kA) B 3 K3 PB400 1P 16A K4 PB400 1P 16A

A B C D E F G H I. 3 Q3 S300 TX 1P 6A TX³ (6kA/10kA) B. Q4 S300 TX 1P 6A TX³ (6kA/10kA) B 3 K3 PB400 1P 16A K4 PB400 1P 16A G H I Układ sieci apięcie znamionowe Moc zainstalowana Sieć T 400V 4.6kW IK Maks. IK Maks. (6k/0k) (6k/0k) Q (6k/0k) (6k/0k) (6k/0k) (6k/0k) (6k/0k) K P400 P 6 K P400 P 6 K P400 P 6 K4 P400 P 6 K5 P400

Bardziej szczegółowo

( ) gdzie: σ z naprężenie pionowe w gruncie, σ z = γz, [kpa] K a współczynnik parcia czynnego

( ) gdzie: σ z naprężenie pionowe w gruncie, σ z = γz, [kpa] K a współczynnik parcia czynnego PARCI CZYNN I BIRN GRUNTU Prci gruntu jst jgo oddiływnim n konstrukcję odirjącą (ściny i mury oorow, ścinki scln, it). Znjomość wrtości tgo oddiływni jst konicn ry rojktowniu tych konstrukcji. Podn oniżj

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

GAL 80 zadań z liczb zespolonych

GAL 80 zadań z liczb zespolonych GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +

Bardziej szczegółowo

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu 9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonomrczn mod niiniow Wkłd Włsności smorów i s . dodk do wkłdu Słb zbiżność convrgnc in disribuion { X } Ciąg zminnch osowch x - dsrbun X FX Isnij dsrbun F X x, k ż im FX x FX x w kżdm punkci x, F X w

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu)

Bardziej szczegółowo

1Q-2016 CENNIK INWERTERÓW STECA

1Q-2016 CENNIK INWERTERÓW STECA 1Q-2016 CENNK NWERTERÓW STECA 98.6 % pk fficincy inwrtry coolcpt zwycięzc tstu Photon Profi StcGrid 1500, StcGrid 2000, StcGrid 2500,StcGrid 3010, StcGrid 3600, StcGrid 4200 T h S o l r P o w r M g i

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona = 0,644. Rys. 25. Obwiednia momentów zginających

Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona = 0,644. Rys. 25. Obwiednia momentów zginających Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona f y M f,rd b f t f (h γ w + t f ) M0 Interakcyjne warunki nośności η 1 M Ed,385 km 00 mm 16 mm 355 1,0

Bardziej szczegółowo

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika

Bardziej szczegółowo

Przykłady obliczeń złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-B-03150

Przykłady obliczeń złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-B-03150 Politechnika Gańska Wyział Inżynierii Ląowej i Śroowiska Przykłay obliczeń złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-B-03150 Jerzy Bobiński Gańsk, wersja 0.33 (2015) Politechnika Gańska

Bardziej szczegółowo

GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ.

GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ. Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk GŁÓWN ROMINI KRZYWIZNY, DŁUGOŚĆ ŁUKU OŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLŻNIKA, OL OWIRZCHNI I OBJĘTOŚĆ LISOIDY OBROTOWJ rkrój

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Badanie regularności w słowach

Badanie regularności w słowach Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Automatyzacja Procesów Przemysłowych

Automatyzacja Procesów Przemysłowych Automatyzacja Procsów Przmysłowych Tmat: Układ rgulacji zamknięto-otwarty Zspół: Kirunk i grupa: Data: Mikuś Marcin Mizra Marcin Łochowski Radosław Politowski Dariusz Szymański Zbigniw Piwowarski Przmysław

Bardziej szczegółowo

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska

Funkcja nieciągła. Typy nieciągłości funkcji. Autorzy: Anna Barbaszewska-Wiśniowska Funkcja niciągła. Typy niciągłości funkcji Autorzy: Anna Barbaszwska-Wiśniowska 2018 Funkcja niciągła. Typy niciągłości funkcji Autor: Anna Barbaszwska-Wiśniowska DEFINICJA Dfinicja 1: Funkcja niciągła

Bardziej szczegółowo

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2 Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni

Bardziej szczegółowo

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS)

POLITECHNIKA LUBELSKA KARTA MODUŁU (SYLABUS) STOPIEŃ STUDIÓW: RODZAJ STUDIÓW: KIERUNEK STUDIÓW: KARTA MODUŁU (SYLABUS) Studia I stopnia (inżynierskie) studia stacjonarne MECHATRONIKA (MT) PRZEDMIOT: ROK STUDIÓW: SEMESTR: RODZAJ ZAJĘĆ I LICZBA GODZIN:

Bardziej szczegółowo

ZJAWISKO TERMOEMISJI ELEKTRONÓW

ZJAWISKO TERMOEMISJI ELEKTRONÓW ĆWICZENIE N 49 ZJAWISKO EMOEMISJI ELEKONÓW I. Zestaw przyrządów 1. Zasilacz Z-980-1 d zasilania katdy lampy wlframwej 2. Zasilacz Z-980-4 d zasilania bwdu andweg lampy z katdą wlframwą 3. Zasilacz LIF-04-222-2

Bardziej szczegółowo

= (10.1) gdzie: σ - odchylenie standardowe m - wartość średnia (10.2) (10.3) gdzie: p i prawdopodobieństwo wystąpienia wyniku x i

= (10.1) gdzie: σ - odchylenie standardowe m - wartość średnia (10.2) (10.3) gdzie: p i prawdopodobieństwo wystąpienia wyniku x i 10.1. Pomiry bezpośrenie O okłności wyniku ecyują czynniki tkie jk: jkość przyrząu, iość powtrznych pomirów, wrunki pomiru, tkże - w użym stopniu - umiejętności osoby przeprowzjącej pomir. Istotne jest

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

Dynamika relatywistyczna

Dynamika relatywistyczna Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:

Bardziej szczegółowo

1. Struktura montażowa

1. Struktura montażowa . Struktura montażowa.. Podział na jednostki montażowe - Zespół wałka-zębnika (wałka wejściowego). Zespół wałka-zębnika Nr na rysunku Nazwa części Liczba sztuk 3 Wał - zębnik 37 Łożysko stożkowe 30305

Bardziej szczegółowo

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem

Bardziej szczegółowo

1. Dane do ćwiczenia. n3 n2. hp n4

1. Dane do ćwiczenia. n3 n2. hp n4 . Dane o ćwiczenia - szerokość tunelu w świetle : a t 5 [cm] - grubość ścian tunelu : b 8 [cm] - grubość łyty ennej : c 0 [cm] - grubość łyty stroowej : 5 [cm] 0,5 [m] - wysokość tunelu w świetle : h t

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

STRATY MOCY W EKRANACH TRÓJFAZOWEGO SYMETRYCZNEGO TORU WIELKOPRĄDOWEGO

STRATY MOCY W EKRANACH TRÓJFAZOWEGO SYMETRYCZNEGO TORU WIELKOPRĄDOWEGO OZNAN UNVE TY OF TE CNOLOGY ACAE MC OUNAL No 69 Ectica Egiig Zygmut ĄTE Tomasz ZCZEGELNA aiusz UA TATY MOCY W EANAC TÓFAZOWEGO YMETYCZNEGO TOU WELOĄOWEGO o pzsyłu gii ktycz o użych pąach stosu się m.i.

Bardziej szczegółowo

Ź Ź ź Ś Ą Ź ć Ś

Ź Ź ź Ś Ą Ź ć Ś ć ź ć ć ć ć Ć ć Ę ć ć ć Ś ć Ć ć ć ć Ź Ź ź Ś Ą Ź ć Ś ć Ź Ę Ź ć ć Ą Ą Ą ć Ć Ą ć Ź Ś ź ć Ź ć Ź Ś Ź Ź Ą ć Ą Ź ć Ć Ź Ę Ą Ą Ś ć Ć ć ć Ś Ń Ą Ń Ś Ś Ę Ź Ą Ą Ą Ś ć Ź Ź Ś Ś ź ŚŚ Ć Ś Ś Ą Ą ć ć Ź ź Ź ć Ź Ź ź Ź ć Ć

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo