( ) gdzie: σ z naprężenie pionowe w gruncie, σ z = γz, [kpa] K a współczynnik parcia czynnego
|
|
- Halina Kowal
- 8 lat temu
- Przeglądów:
Transkrypt
1 PARCI CZYNN I BIRN GRUNTU Prci gruntu jst jgo oddiływnim n konstrukcję odirjącą (ściny i mury oorow, ścinki scln, it). Znjomość wrtości tgo oddiływni jst konicn ry rojktowniu tych konstrukcji. Podn oniżj scgółow rowiąni dotycąc tgo gdnini uwględniją srg łożń urscjących: - ścin konstrukcji odirjącj jst ionow, - ni wystęuj trci omiędy ściną gruntm, cgo wynik, ż kirunk siły rci jst oiomy, - niom ściną jst oiomy i niobciążony, - odstw klin odłmu jst łscyną nchyloną od kątm α do oiomu. Jdnostkow rci cynn ( ) or rci birn ( ) ściną oorową oblic się worów wynikjących nliy stnu grnicngo w grunci (rowiąni Rnkin'): σ c σ + c gdi: σ nrężni ionow w grunci, σ γ, [kp] o tg 45 φ /, [ - ] wsółcynnik rci cynngo ( ) o wsółcynnik rci birngo tg ( 45 + φ / ) c sójność gruntu [kp]., [ - ] Nlży uwżyć, ż < 1 i > 1 cgo wynik, ż w tym smym grunci i n tj smj głębokości "" oniżj niomu jdnostkow rci cynn osid ncni mnijsą wrtość niż odór gruntu ( ). Wykrsy jdnostkowgo rci w jdnorodnym grunci nisoistym: Prci birn Prci cynn γ γ
2 Wykrsy jdnostkowgo rci w jdnorodnym grunci soistym: Prci birn c c Prci cynn c γ + c γ c Głębokość c n wykrsi rci cynngo gruntu soistgo wyncmy wrunku 0, c γ c 0, cgo wynik, ż: c c γ Cłkowit sił rci gruntu n mur oorowy jst równ objętości bryły rci i wynosi: rci cynn gruntu nisoistgo: rci birn gruntu nisoistgo: γ γ rci cynn gruntu soistgo (ni uwględni się cęści wykrsu rci do głębokości c ): ( ) ( c ) c γ c c + γ γ rci birn gruntu soistgo: 4c + γ γ + c Wydkow sił rci cynngo i birngo w jdnorodnym grunci nisoistym jst ołożon w odlgłości /3 od odstwy bryły rci, w rydku rci cynngo
3 jdnorodngo gruntu soistgo, wydkow t njduj się w odlgłości ( c )/3 od odstwy bryły rci. Ustlni ołożni wydkowj siły rci birngo dl gruntu soistgo możn rrowdić wdług nstęującgo schmtu: c c 1 w / /3 γ + c γ wykorystując równni równowgi momntów mmy: w P1 + P 3, skąd: gdi: w P1 + P P 3 P1 P c, γ, 4c + γ W rydku, gdy ściną oorową njduj się grunt uwrstwiony, n grnicy wrstw dochodi do skokowych min wrtości rci jdnostkowgo. Wrtość skokowych min jdnostkowgo rci jst ulżnion od wjmnych rlcji rmtrów wytrymłościowych (kąt trci wwnętrngo i kohji) w sąsidujących wrstwch gotchnicnych, co rdstwi kilk oniżsych rykłdów:
4 Wykrsy rci cynngo w grunci nisoistym, uwrstwionym: <Φ >Φ γ Φ γ Φ Wykrsy rci birngo w grunci nisoistym, uwrstwionym: <Φ >Φ γ Φ γ Φ Wykrsy jdnostkowgo rci birngo w grunci soistym, uwrstwionym: 17 o c 1 γ Φ 17 o c Φ c 1 >c 17 o c 1 Φ γ c 1 <c Φ 17 o c
5 W rydku ścinki sclnj głębionj w grunci oniżj dn wykou, o rwj stroni ścinki dił rci cynn gruntu (grunt rmisc ścinkę do wykou), ś o lwj stroni ścinki (oniżj dn wykou) wystęuj rci birn (ścink jst dociskn do gruntu). Wyko γ D Prci birn Prci cynn γd γ ( + D ) Wykrs sumrycngo rci jdnostkowgo gruntu n ścinkę otrymuj się odjmując od wrtości rci cynngo rci birn n okrślonj głębokości oniżj dn wykou jk n wykrsi: Wyko Prci cynn γ o D Prci birn γd γ(+d)
6 Głębokość o oniżj dn wykou dl rostgo rydku jdnorodngo gruntu nisoistgo nlży oblicyć wykorystując równość: o γ γ ( + o o ) Dl brdij łożonych rydków (gruntów uwrstwionych i soistych) głębokość o ncni łtwij jst wyncyć mtodą grficną, sorądjąc wykrsy rci gruntu w okrślonj skli. Podn owyżj wory dotycą rydków, gdy niom (owirchni gruntu ściną) jst oiomy i niobciążony. W sytucji oiomgo niomu, obciążongo obciążnim równomirni rołożonym o intnsywności q wory n jdnostkow rci cynn i birn nlży odowidnio modyfikowć, uwględnijąc wrtość obciążni niomu wdług worów: σ c γ ( + q) c ( + q) c σ + c γ + Rowiąni brdij skomlikownych rydków ukłdu obciążń or wrunków gologicnych (n. nchylony niom, uwględnini trci omiędy ściną gruntm) możn nlźć w litrtur rdmiotu (Pisrcyk 1998, Wiłun 1987).
6. Parcie i odpór gruntu (zadania uzupełniajce)
dr in. Piotr Srokos, Mcnik Gruntów 6. Prci i odór gruntu (dni uułnijc) Zdni Oblicy rokłd cynngo rci jdnostkowgo diłjcgo n stywn konstrukcj oorow or jj wrto wydkow w wrunkc rdstwionyc n rysunku. ε8 o q7kp
PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.
MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz
Ścianki szczelne. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki
Ścinki scelne W preentcji tej obsernie korystłem mteriłów dokumentcyjnych ebrnych pre mgr inż. Sebstin Olesik, co mu jesce r tą drogą skłdm podiękownie. Ścinki scelne Ścinki scelne to lekkie konstrukcje
Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa
Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d
Ć W I C Z E N I E N R E-14
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.
Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników
z b leżącą na płaszczyźnie xz, otrzymujemy równanie elipsoidy obrotowej, która w myśl równania (3) będzie miała następujące równanie: z b x y z
Mtrił ddktcn Godj gomtrcn Mrcin Ligs, Ktdr Gomtki, Wdił Godji Górnicj i Inżnirii Środowisk, AGH LIPSOIDA OBROTOWA, LIPSA POŁUDNIKOWA, SZROKOŚĆ GODZYJNA, SZROKOŚĆ ZRDUKOWANA, SZROKOŚĆ GOCNTRYCZNA, WSPÓŁRZĘDN
Parcie gruntu na konstrukcje oporowe. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki
Prcie gruntu n konstrukcje oporowe Grunt jko mterił budowlny W Budownictwie Ziemnym grunt trktowny jest jko mterił budowlny, z którego wykonywne są konstrukcje i budowle ziemne (np. nsypy) orz jko ośrodek,
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Ś Ż ż Ż
Ś Ż ż Ż ż ć ć ć ć ć ć ż ż Ż ż Ż ż ż ć ż ż Ż Ż ż Ż ż Ż ż Ż Ż ż Ż ż ć ć ć ż ć ż ż ż ć Ż ć ć Ś ć Ż ć ż ź ż ż ż ć ż ż ż ż ć Ś ż Ż ż Ć Ć ć Ż ź ć ć ć ć ż ź ć ć Ść ć ż ź Ść ć ź Ś ć ć ć Ś ć ć ć ć ć ź ż ż ć ć
Metoda odpowiadających stanów naprężeń
Metd dwidjąyh stnów nrężeń Prblem: Jk nleźć rwiąnie dl grnineg stnu nrężeni Culmb-Mhr w grunie sistym, jeśli nne jest rwiąnie teg smeg gdnieni dl gruntu niesisteg? Teg smeg gdnieni n, że wsystkie rmetry
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji
Modelownie i obliceni technicne Model mtemtycny w potci trnmitncji Model mtemtycny w potci trnmitncji Zkłdjąc, że leżność międy y i u możn opić linowym równniem różnickowym lub różnicowym, możliwe jet
Zadanie 5. Kratownica statycznie wyznaczalna.
dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
Metody Lagrange a i Hamiltona w Mechanice
Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń
Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż
Ś Ż Ś ć ż Ś ż ź ż ż ż ć ż ć Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż ż ż ż ż ć ż ć ź ż ż ć ć ż ć ż ż ż ć ż ż ć ć ż ż ż ż ć ż ż ż ż ż ż ć ż ż ż ż ż ć ż ć ć ż ć ż ż ż ć ć ć
ć ć ć Ś ć Ż
Ę ć ć ć Ś ć Ż Ę Ś ŚĆ Ś ć ć ć Ś ć ć ć ć ć ć Ś Ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć Ś Ż Ś Ę ć ć Ż ŚĆ ć ć ć ć ć Ż ć ć ć ć ć ć ć ź ć Ż ć ć ć ć ź ć ć ć ć ć ć ć Ć ć ć Ę ć ź ć ć ć ć ć ć ć Ę ź Ę ć ć ć ć ć ć ć ć ć ć ć
ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę
ę Ł ć ż ć ż ć ę ę ę ż ć ż ć ę ż ż ć ę ę ę ę ę ę ę ę ę ż ę ę ę Ź ę ż ę ć ż ę ę ę Ź ć Ź ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ć ę ę ż ę ż ć ć Ść ć ę ć ć ż
Parcie gruntu na konstrukcje oporowe
Prcie gruntu n konstrukcje oorowe Grunt jko mterił budowlny W Budownictwie Ziemnym grunt trktowny jest jko mterił budowlny, z którego wykonywne są konstrukcje i budowle ziemne (n. nsyy) orz jko ośrodek,
Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN
Zminy w wydniu drugim skryptu Konstrukcje stlowe. Prykłdy obliceń według PN-EN 99- Rodił. Dodno nowy punkt.. Inormcje o minch (str. 0.) obecnym wydniu uwględniono miny: wynikjące wprowdeni pre PKN w cerwcu
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur OPERONEM Fiyk i stronoi Poio roserony Listopd 0 W niniejsy schecie ocenini dń otwrtych są preentowne prykłdowe poprwne odpowiedi. W tego typu ch nleży również unć
ć
Ń ć Ś Ś ć Ó Ś Ń ć Ś Ż Ć Ń Ó ć ć Ó Ó Ś Ó Ó Ó Ź Ó Ś Ó ŚĆ Ź ŚĆ Ń Ó Ń ć ŚĆ Ś Ź Ź Ń Ó Ó Ó Ó Ń Ó Ó Ó Ó Ó Ź Ź Ź Ó Ń Ź Ó Ź Ż ć ć Ś ć Ó ć ć Ń Ó Ń Ó Ź Ż Ń Ó Ń Ń Ś Ż Ż Ó Ó Ń Ś ć Ó Ó Ń Ó Ó Ń Ó Ó Ó ć ć Ó Ó Ó Ś Ż
ZADANIE PROJEKTOWE STATYKA BUDOWLI
Politechnik Wrocłwsk Wydził Budownictw Lądowego i Wodnego Instytut Inżynierii Lądowej Zkłd Dynmiki Budowli rok kdem. / semestr III Wroclw.. r. ZADAIE POJEKTOWE STATYKA BUDOWLI Prowdzc Dr inz. onik Podwórn
Ś ć
Ś ć Ś Ś ć Ó Ś Ń ć ć ć ć Ś ŚĆ Ż Ń Ó Ż Ś ć Ń ć Ó Ó ć ć ć ć Ź Ś ć Ó Ó ć Ś Ń Ó Ś Ń Ż Ż Ź Ó Ń ć Ś Ź Ż ć Ś Ó ć ć ć ć Ż Ó Ś Ś Ó Ś Ś Ś Ś Ś ć ć Ś ć ć Ś ć Ó Ó ć Ó ć Ó ć ć Ó Ó Ó Ó Ś Ó ć Ż Ó ć Ń ć ć ć ć ć
Wiązki gaussowskie scalony Strona 1 z 9 Wiązki gaussowskie
Wiąi gussowsi sclony Sron 9 Wiąi gussowsi. rdmio opisu: pol rochodi się w irunu osi, ogrnicon do oolicy osi opycnj: D y x ol lrycn możn rołożyć n słdow ( i poprcną: ). odobni dywrgncję możn rołożyć n sm
Ę ć ń ń Ń Ę ń ź ć ć ć ć
ć ź Ż ń Ż Ę ć ń ń Ń Ę ń ź ć ć ć ć ć Ż ć ć Ż ń ń ń ź ć ć ń ń ź ń ń ć ń ń ć ź ć ń ń ń ń ń Ć ć Ę Ś Ę Ę ć ń Ż ć ć ć ć ć Ę ć ź ć Ż ń ń ć ź ź ź ń ń ć ć ć Ż ń ź ź ń ń ń ć ć ć ć ć ć ć ć ć ć ć Ń ć ć ć ź ć ź ź Ź
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji.
Zbrani obciążń a) Stał: Ciężar własny okrycia dachu: Pokryci dachówką kariówką odwójni. Przyjęto ciężar okrycia wraz z konstrukcją dachu: g 0,95 ; b) Zinn: Śnig wg EC: s ) C i i C s t k,gdzi: s wartość
Errata do I i II wydania skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1
Errt do I i II dni skrptu Konstrukcj stlo. Prkłd oblicń dług PN-EN 99- Rodił. W osttnim kpici pkt. dodno nstępującą inormcję: Uględniono min nikjąc prodni pr PKN crcu 009 r. poprk opublikonch normch, śld
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
± - małe odchylenie od osi. ± - duże odchylenie od osi
TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń
ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść
Ą Ł Ł Ł Ę Ł ś ś ś ś ść ść ść ść Ś ść ŚĆ ś ŚĆ ś ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść ś ś ś Ż ś Ś ś Ś ść ś ś ś ś ś ś ś ś Ś ś ś ś ś Ł Ś ś ś ś Ś ś ś ź Ś ŚĆ ś ś ś ś ś ś Ś ś Ś ś ś ś ś ś ś ś Ś Ś ść ś ś ś ś
Sprawdzian całoroczny kl. III
Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
ś ś Ó Ó ć ŹÓ Ó Ż Ź Ó Ż ś ś
Ź Ó ść Ż ź Ż Ż ś ś Ż ś Ż ś ś Ó Ó ć ŹÓ Ó Ż Ź Ó Ż ś ś ś Ź ś ść Ż ść Ó Ó Ó Ó ś ś ś ś ś ś ś ś Ó ś ś ź ś ś ś ś ś ś ś ś Ż ś ś ść ś ć Ż ś Ż ś ś ś ś ś ś ś ś ś ś ś Ż Ż ć ś Ś ś ś Ź ć ś ś ś ś ś Ż ć ć ś Ż Ż ź ś ś
Ż ż ż ź ś ż ś ż ż ż ż ż ś ż ź ś ś ż ść ż ś ż ż ż Ż ż ż ż ż ć ś ż ż ż ć ż ż ż ś Ż ć ś ż ś ż ż ż ś ż ś ż ś ś ż ż ś ś ść ż ść ść ś ś ś ś ś ś ż ć ż Ł ż Ń ź ź ś ś ś ż ć ś Ź ść ść ż ż ć ż ż Ą Ż ś Ń Ł ż ś ż ż
ź Ź Ź ć ć ć ź ć ć ć ć ć Ź
ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ć Ż Ż ć ć ć ć ć ć ć ć Ż ć ć ć ź ć Ź ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć Ż ć ć ć ć ć ć ć ć Ż ć Ł Ś Ś ć Ą Ę ć Ę ć Ż ć
Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9
ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś
ś ż ź ż ś Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś ż ż ś ź Ą ż Ń ż ż ż Ż ź ż ść Ż ś ź ź ś Ś ź ś ś Ą Ż ś Ż ś Ż ś ż ż ś ż ść ś ż ż ś ż ś ż ć ś ś ź ś ż ś ż ź ż ż ź ź Ó ż ć ż ż ż ź
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0