( ) gdzie: σ z naprężenie pionowe w gruncie, σ z = γz, [kpa] K a współczynnik parcia czynnego

Wielkość: px
Rozpocząć pokaz od strony:

Download "( ) gdzie: σ z naprężenie pionowe w gruncie, σ z = γz, [kpa] K a współczynnik parcia czynnego"

Transkrypt

1 PARCI CZYNN I BIRN GRUNTU Prci gruntu jst jgo oddiływnim n konstrukcję odirjącą (ściny i mury oorow, ścinki scln, it). Znjomość wrtości tgo oddiływni jst konicn ry rojktowniu tych konstrukcji. Podn oniżj scgółow rowiąni dotycąc tgo gdnini uwględniją srg łożń urscjących: - ścin konstrukcji odirjącj jst ionow, - ni wystęuj trci omiędy ściną gruntm, cgo wynik, ż kirunk siły rci jst oiomy, - niom ściną jst oiomy i niobciążony, - odstw klin odłmu jst łscyną nchyloną od kątm α do oiomu. Jdnostkow rci cynn ( ) or rci birn ( ) ściną oorową oblic się worów wynikjących nliy stnu grnicngo w grunci (rowiąni Rnkin'): σ c σ + c gdi: σ nrężni ionow w grunci, σ γ, [kp] o tg 45 φ /, [ - ] wsółcynnik rci cynngo ( ) o wsółcynnik rci birngo tg ( 45 + φ / ) c sójność gruntu [kp]., [ - ] Nlży uwżyć, ż < 1 i > 1 cgo wynik, ż w tym smym grunci i n tj smj głębokości "" oniżj niomu jdnostkow rci cynn osid ncni mnijsą wrtość niż odór gruntu ( ). Wykrsy jdnostkowgo rci w jdnorodnym grunci nisoistym: Prci birn Prci cynn γ γ

2 Wykrsy jdnostkowgo rci w jdnorodnym grunci soistym: Prci birn c c Prci cynn c γ + c γ c Głębokość c n wykrsi rci cynngo gruntu soistgo wyncmy wrunku 0, c γ c 0, cgo wynik, ż: c c γ Cłkowit sił rci gruntu n mur oorowy jst równ objętości bryły rci i wynosi: rci cynn gruntu nisoistgo: rci birn gruntu nisoistgo: γ γ rci cynn gruntu soistgo (ni uwględni się cęści wykrsu rci do głębokości c ): ( ) ( c ) c γ c c + γ γ rci birn gruntu soistgo: 4c + γ γ + c Wydkow sił rci cynngo i birngo w jdnorodnym grunci nisoistym jst ołożon w odlgłości /3 od odstwy bryły rci, w rydku rci cynngo

3 jdnorodngo gruntu soistgo, wydkow t njduj się w odlgłości ( c )/3 od odstwy bryły rci. Ustlni ołożni wydkowj siły rci birngo dl gruntu soistgo możn rrowdić wdług nstęującgo schmtu: c c 1 w / /3 γ + c γ wykorystując równni równowgi momntów mmy: w P1 + P 3, skąd: gdi: w P1 + P P 3 P1 P c, γ, 4c + γ W rydku, gdy ściną oorową njduj się grunt uwrstwiony, n grnicy wrstw dochodi do skokowych min wrtości rci jdnostkowgo. Wrtość skokowych min jdnostkowgo rci jst ulżnion od wjmnych rlcji rmtrów wytrymłościowych (kąt trci wwnętrngo i kohji) w sąsidujących wrstwch gotchnicnych, co rdstwi kilk oniżsych rykłdów:

4 Wykrsy rci cynngo w grunci nisoistym, uwrstwionym: <Φ >Φ γ Φ γ Φ Wykrsy rci birngo w grunci nisoistym, uwrstwionym: <Φ >Φ γ Φ γ Φ Wykrsy jdnostkowgo rci birngo w grunci soistym, uwrstwionym: 17 o c 1 γ Φ 17 o c Φ c 1 >c 17 o c 1 Φ γ c 1 <c Φ 17 o c

5 W rydku ścinki sclnj głębionj w grunci oniżj dn wykou, o rwj stroni ścinki dił rci cynn gruntu (grunt rmisc ścinkę do wykou), ś o lwj stroni ścinki (oniżj dn wykou) wystęuj rci birn (ścink jst dociskn do gruntu). Wyko γ D Prci birn Prci cynn γd γ ( + D ) Wykrs sumrycngo rci jdnostkowgo gruntu n ścinkę otrymuj się odjmując od wrtości rci cynngo rci birn n okrślonj głębokości oniżj dn wykou jk n wykrsi: Wyko Prci cynn γ o D Prci birn γd γ(+d)

6 Głębokość o oniżj dn wykou dl rostgo rydku jdnorodngo gruntu nisoistgo nlży oblicyć wykorystując równość: o γ γ ( + o o ) Dl brdij łożonych rydków (gruntów uwrstwionych i soistych) głębokość o ncni łtwij jst wyncyć mtodą grficną, sorądjąc wykrsy rci gruntu w okrślonj skli. Podn owyżj wory dotycą rydków, gdy niom (owirchni gruntu ściną) jst oiomy i niobciążony. W sytucji oiomgo niomu, obciążongo obciążnim równomirni rołożonym o intnsywności q wory n jdnostkow rci cynn i birn nlży odowidnio modyfikowć, uwględnijąc wrtość obciążni niomu wdług worów: σ c γ ( + q) c ( + q) c σ + c γ + Rowiąni brdij skomlikownych rydków ukłdu obciążń or wrunków gologicnych (n. nchylony niom, uwględnini trci omiędy ściną gruntm) możn nlźć w litrtur rdmiotu (Pisrcyk 1998, Wiłun 1987).

6. Parcie i odpór gruntu (zadania uzupełniajce)

6. Parcie i odpór gruntu (zadania uzupełniajce) dr in. Piotr Srokos, Mcnik Gruntów 6. Prci i odór gruntu (dni uułnijc) Zdni Oblicy rokłd cynngo rci jdnostkowgo diłjcgo n stywn konstrukcj oorow or jj wrto wydkow w wrunkc rdstwionyc n rysunku. ε8 o q7kp

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

Ścianki szczelne. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

Ścianki szczelne. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki Ścinki scelne W preentcji tej obsernie korystłem mteriłów dokumentcyjnych ebrnych pre mgr inż. Sebstin Olesik, co mu jesce r tą drogą skłdm podiękownie. Ścinki scelne Ścinki scelne to lekkie konstrukcje

Bardziej szczegółowo

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

z b leżącą na płaszczyźnie xz, otrzymujemy równanie elipsoidy obrotowej, która w myśl równania (3) będzie miała następujące równanie: z b x y z

z b leżącą na płaszczyźnie xz, otrzymujemy równanie elipsoidy obrotowej, która w myśl równania (3) będzie miała następujące równanie: z b x y z Mtrił ddktcn Godj gomtrcn Mrcin Ligs, Ktdr Gomtki, Wdił Godji Górnicj i Inżnirii Środowisk, AGH LIPSOIDA OBROTOWA, LIPSA POŁUDNIKOWA, SZROKOŚĆ GODZYJNA, SZROKOŚĆ ZRDUKOWANA, SZROKOŚĆ GOCNTRYCZNA, WSPÓŁRZĘDN

Bardziej szczegółowo

Parcie gruntu na konstrukcje oporowe. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

Parcie gruntu na konstrukcje oporowe. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki Prcie gruntu n konstrukcje oporowe Grunt jko mterił budowlny W Budownictwie Ziemnym grunt trktowny jest jko mterił budowlny, z którego wykonywne są konstrukcje i budowle ziemne (np. nsypy) orz jko ośrodek,

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Ś Ż ż Ż

Ś Ż ż Ż Ś Ż ż Ż ż ć ć ć ć ć ć ż ż Ż ż Ż ż ż ć ż ż Ż Ż ż Ż ż Ż ż Ż Ż ż Ż ż ć ć ć ż ć ż ż ż ć Ż ć ć Ś ć Ż ć ż ź ż ż ż ć ż ż ż ż ć Ś ż Ż ż Ć Ć ć Ż ź ć ć ć ć ż ź ć ć Ść ć ż ź Ść ć ź Ś ć ć ć Ś ć ć ć ć ć ź ż ż ć ć

Bardziej szczegółowo

Metoda odpowiadających stanów naprężeń

Metoda odpowiadających stanów naprężeń Metd dwidjąyh stnów nrężeń Prblem: Jk nleźć rwiąnie dl grnineg stnu nrężeni Culmb-Mhr w grunie sistym, jeśli nne jest rwiąnie teg smeg gdnieni dl gruntu niesisteg? Teg smeg gdnieni n, że wsystkie rmetry

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji

Modelowanie i obliczenia techniczne. Model matematyczny w postaci transmitancji Modelownie i obliceni technicne Model mtemtycny w potci trnmitncji Model mtemtycny w potci trnmitncji Zkłdjąc, że leżność międy y i u możn opić linowym równniem różnickowym lub różnicowym, możliwe jet

Bardziej szczegółowo

Zadanie 5. Kratownica statycznie wyznaczalna.

Zadanie 5. Kratownica statycznie wyznaczalna. dnie 5. Krtownic sttycznie wyznczln. Wyznczyć wrtości sił w prętch krtownicy sttycznie wyznczlnej przedstwionej n Rys.1: ). metodą nlitycznego równowżeni węzłów, ). metodą gricznego równowżeni węzłów;

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń

Bardziej szczegółowo

Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż

Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż Ś Ż Ś ć ż Ś ż ź ż ż ż ć ż ć Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż ż ż ż ż ć ż ć ź ż ż ć ć ż ć ż ż ż ć ż ż ć ć ż ż ż ż ć ż ż ż ż ż ż ć ż ż ż ż ż ć ż ć ć ż ć ż ż ż ć ć ć

Bardziej szczegółowo

ć ć ć Ś ć Ż

ć ć ć Ś ć Ż Ę ć ć ć Ś ć Ż Ę Ś ŚĆ Ś ć ć ć Ś ć ć ć ć ć ć Ś Ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć Ś Ż Ś Ę ć ć Ż ŚĆ ć ć ć ć ć Ż ć ć ć ć ć ć ć ź ć Ż ć ć ć ć ź ć ć ć ć ć ć ć Ć ć ć Ę ć ź ć ć ć ć ć ć ć Ę ź Ę ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę

ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ę Ł ć ż ć ż ć ę ę ę ż ć ż ć ę ż ż ć ę ę ę ę ę ę ę ę ę ż ę ę ę Ź ę ż ę ć ż ę ę ę Ź ć Ź ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ć ę ę ż ę ż ć ć Ść ć ę ć ć ż

Bardziej szczegółowo

Parcie gruntu na konstrukcje oporowe

Parcie gruntu na konstrukcje oporowe Prcie gruntu n konstrukcje oorowe Grunt jko mterił budowlny W Budownictwie Ziemnym grunt trktowny jest jko mterił budowlny, z którego wykonywne są konstrukcje i budowle ziemne (n. nsyy) orz jko ośrodek,

Bardziej szczegółowo

Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN

Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN Zminy w wydniu drugim skryptu Konstrukcje stlowe. Prykłdy obliceń według PN-EN 99- Rodił. Dodno nowy punkt.. Inormcje o minch (str. 0.) obecnym wydniu uwględniono miny: wynikjące wprowdeni pre PKN w cerwcu

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur OPERONEM Fiyk i stronoi Poio roserony Listopd 0 W niniejsy schecie ocenini dń otwrtych są preentowne prykłdowe poprwne odpowiedi. W tego typu ch nleży również unć

Bardziej szczegółowo

ć

ć Ń ć Ś Ś ć Ó Ś Ń ć Ś Ż Ć Ń Ó ć ć Ó Ó Ś Ó Ó Ó Ź Ó Ś Ó ŚĆ Ź ŚĆ Ń Ó Ń ć ŚĆ Ś Ź Ź Ń Ó Ó Ó Ó Ń Ó Ó Ó Ó Ó Ź Ź Ź Ó Ń Ź Ó Ź Ż ć ć Ś ć Ó ć ć Ń Ó Ń Ó Ź Ż Ń Ó Ń Ń Ś Ż Ż Ó Ó Ń Ś ć Ó Ó Ń Ó Ó Ń Ó Ó Ó ć ć Ó Ó Ó Ś Ż

Bardziej szczegółowo

ZADANIE PROJEKTOWE STATYKA BUDOWLI

ZADANIE PROJEKTOWE STATYKA BUDOWLI Politechnik Wrocłwsk Wydził Budownictw Lądowego i Wodnego Instytut Inżynierii Lądowej Zkłd Dynmiki Budowli rok kdem. / semestr III Wroclw.. r. ZADAIE POJEKTOWE STATYKA BUDOWLI Prowdzc Dr inz. onik Podwórn

Bardziej szczegółowo

Ś ć

Ś ć Ś ć Ś Ś ć Ó Ś Ń ć ć ć ć Ś ŚĆ Ż Ń Ó Ż Ś ć Ń ć Ó Ó ć ć ć ć Ź Ś ć Ó Ó ć Ś Ń Ó Ś Ń Ż Ż Ź Ó Ń ć Ś Ź Ż ć Ś Ó ć ć ć ć Ż Ó Ś Ś Ó Ś Ś Ś Ś Ś ć ć Ś ć ć Ś ć Ó Ó ć Ó ć Ó ć ć Ó Ó Ó Ó Ś Ó ć Ż Ó ć Ń ć ć ć ć ć

Bardziej szczegółowo

Wiązki gaussowskie scalony Strona 1 z 9 Wiązki gaussowskie

Wiązki gaussowskie scalony Strona 1 z 9 Wiązki gaussowskie Wiąi gussowsi sclony Sron 9 Wiąi gussowsi. rdmio opisu: pol rochodi się w irunu osi, ogrnicon do oolicy osi opycnj: D y x ol lrycn możn rołożyć n słdow ( i poprcną: ). odobni dywrgncję możn rołożyć n sm

Bardziej szczegółowo

Ę ć ń ń Ń Ę ń ź ć ć ć ć

Ę ć ń ń Ń Ę ń ź ć ć ć ć ć ź Ż ń Ż Ę ć ń ń Ń Ę ń ź ć ć ć ć ć Ż ć ć Ż ń ń ń ź ć ć ń ń ź ń ń ć ń ń ć ź ć ń ń ń ń ń Ć ć Ę Ś Ę Ę ć ń Ż ć ć ć ć ć Ę ć ź ć Ż ń ń ć ź ź ź ń ń ć ć ć Ż ń ź ź ń ń ń ć ć ć ć ć ć ć ć ć ć ć Ń ć ć ć ź ć ź ź Ź

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji.

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji. Zbrani obciążń a) Stał: Ciężar własny okrycia dachu: Pokryci dachówką kariówką odwójni. Przyjęto ciężar okrycia wraz z konstrukcją dachu: g 0,95 ; b) Zinn: Śnig wg EC: s ) C i i C s t k,gdzi: s wartość

Bardziej szczegółowo

Errata do I i II wydania skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1

Errata do I i II wydania skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1 Errt do I i II dni skrptu Konstrukcj stlo. Prkłd oblicń dług PN-EN 99- Rodił. W osttnim kpici pkt. dodno nstępującą inormcję: Uględniono min nikjąc prodni pr PKN crcu 009 r. poprk opublikonch normch, śld

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść

ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść Ą Ł Ł Ł Ę Ł ś ś ś ś ść ść ść ść Ś ść ŚĆ ś ŚĆ ś ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść ś ś ś Ż ś Ś ś Ś ść ś ś ś ś ś ś ś ś Ś ś ś ś ś Ł Ś ś ś ś Ś ś ś ź Ś ŚĆ ś ś ś ś ś ś Ś ś Ś ś ś ś ś ś ś ś Ś Ś ść ś ś ś ś

Bardziej szczegółowo

Sprawdzian całoroczny kl. III

Sprawdzian całoroczny kl. III Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0

Bardziej szczegółowo

Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż

Bardziej szczegółowo

ś ś Ó Ó ć ŹÓ Ó Ż Ź Ó Ż ś ś

ś ś Ó Ó ć ŹÓ Ó Ż Ź Ó Ż ś ś Ź Ó ść Ż ź Ż Ż ś ś Ż ś Ż ś ś Ó Ó ć ŹÓ Ó Ż Ź Ó Ż ś ś ś Ź ś ść Ż ść Ó Ó Ó Ó ś ś ś ś ś ś ś ś Ó ś ś ź ś ś ś ś ś ś ś ś Ż ś ś ść ś ć Ż ś Ż ś ś ś ś ś ś ś ś ś ś ś Ż Ż ć ś Ś ś ś Ź ć ś ś ś ś ś Ż ć ć ś Ż Ż ź ś ś

Bardziej szczegółowo

Ż ż ż ź ś ż ś ż ż ż ż ż ś ż ź ś ś ż ść ż ś ż ż ż Ż ż ż ż ż ć ś ż ż ż ć ż ż ż ś Ż ć ś ż ś ż ż ż ś ż ś ż ś ś ż ż ś ś ść ż ść ść ś ś ś ś ś ś ż ć ż Ł ż Ń ź ź ś ś ś ż ć ś Ź ść ść ż ż ć ż ż Ą Ż ś Ń Ł ż ś ż ż

Bardziej szczegółowo

ź Ź Ź ć ć ć ź ć ć ć ć ć Ź

ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ć Ż Ż ć ć ć ć ć ć ć ć Ż ć ć ć ź ć Ź ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć Ż ć ć ć ć ć ć ć ć Ż ć Ł Ś Ś ć Ą Ę ć Ę ć Ż ć

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś

Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś ś ż ź ż ś Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś ż ż ś ź Ą ż Ń ż ż ż Ż ź ż ść Ż ś ź ź ś Ś ź ś ś Ą Ż ś Ż ś Ż ś ż ż ś ż ść ś ż ż ś ż ś ż ć ś ś ź ś ż ś ż ź ż ż ź ź Ó ż ć ż ż ż ź

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0

Bardziej szczegółowo