STRATY MOCY W EKRANACH TRÓJFAZOWEGO SYMETRYCZNEGO TORU WIELKOPRĄDOWEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "STRATY MOCY W EKRANACH TRÓJFAZOWEGO SYMETRYCZNEGO TORU WIELKOPRĄDOWEGO"

Transkrypt

1 OZNAN UNVE TY OF TE CNOLOGY ACAE MC OUNAL No 69 Ectica Egiig Zygmut ĄTE Tomasz ZCZEGELNA aiusz UA TATY MOCY W EANAC TÓFAZOWEGO YMETYCZNEGO TOU WELOĄOWEGO o pzsyłu gii ktycz o użych pąach stosu się m.i. osłoięt toy wikopąow. W uząziach tgo typu pzpływ pąu wywołu kty atuy ktomagtycz tmicz oaz yamicz. opaw wyzaczi paamtów ktoyamiczych ma uż zaczi paktycz. Wyzaczi aci pomięzy tymi paamtami st izbę w pocsi optymaizaci kostukci toów wikopąowych. Okśi stat mocy spowoowaych pzz iukowa pąy wiow st koicz szczgói wówczas gy staty t staowią zaczą część całkowitych stat mocy w aaizowa kostukci. W pacy kozystaąc z twizia oytiga oaz pawa ou a-lza wyzaczoo staty mocy w kaach obiguowgo tóazowgo symtyczgo tou wikopąowgo. W obicziach uwzgęioo zwętz oaz wwętz zawisko zbiżia.. WTĘ o pzsyłu gii ktycz o użych pąach stosu się m.i. osłoięt toy wikopąow. ym z ozwiązań kostukcyych toów wikopąowych st tzw. symtyczy to obiguowy [-6]. W takim toz osłoięt uow pzwoy azow umiszczo są w wizchołkach tókąta ówoboczgo ys.. zpływ pąu pzmigo w uząziach ktogtyczych wywołu kty atuy ktomagtycz tmicz i yamicz taki ak: staty mocy agzwai się kostukci ukłau i otoczia siły mięzy poszczgóymi mtami ukłau. W pzypaku toów wikopąowych okśi paamtów ktoyamiczych ma uż zaczi paktycz. Zaomość p. stat mocy spowoowaych pzz iukowa pąy wiow st izbęa szczgói wówczas gy staty t staowią zaczą część całkowitych stat mocy w aaizowa kostukci [-6]. zko popzcz kaów oaz pzwoów azowych są uż atgo pzy wyzaczaiu stat mocy awt a częstotiwości pzmysłow aży oitchika Częstochowska.

2 8 Zygmut iątk Tomasz zczgiiak aiusz usiak uwzgęić zawisko askókowości oaz zwętz ys. i wwętz zawisko zbiżia ys. [-6]. ys.. ąy wiow iukowa w kai pzz po magtycz pąu własgo pzwou azowgo x z X w y μ γ ys.. ąy wiow iukowa w kai pzz po magtycz pąu sąsiigo pzwou azowgo. OLE ELETOMAGNETYCZNE W EANAC YMETYCZNEGO TOU WELOAOWEGO ozpatzmy po ktomagtycz w kaach tóazowgo symtyczgo tou wikopąowgo pzstawiogo a ysuku. W pzypaku symtycz iii kaowa pzstawio a ysuku całkowita gęstość pąu w kai st sumą gęstości pąów wytwozoych pzz każy z pzwoów czyi

3 taty mocy w kaach tóazowgo symtyczgo... 9 L μ L L μ μ ys.. Tóazowy symtyczy to wikopąowy Całkowita gęstość pąu zaży o pąów. śi pąy t twozą symtyczą tókę pąów ukłau tóazowgo tz. xp[ ] oaz xp[ ] to gęstość pąu wyaża się wzom w któym b c gzi a b c b c atomiast gęstość pąu okśoa st wzom gzi xp- cos xp cos a

4 Zygmut iątk Tomasz zczgiiak aiusz usiak oaz b pzy czym ukc i są zmoyikowaymi ukcami Bssa opowiio piwszgo i ugigo ozau zęu - oaz + obicza ówiż a oaz [7]. Natomiast μ ozacza zspooą stałą popagaci st pusacą ozacza kouktywość kau a pzikaość magtycza póżi - 7 m μ. Całkowit atężi poa ktyczgo w kai możmy wyazić wzom E E E 5 W kai piwszym całkowit po magtycz 6 gzi w któym c b h 7 a i są poami magtyczymi w kai piwszym wytwozoymi pzz opowii pąy w pzwoach ugim i tzcim. kłaowa pomiiowa poa magtyczgo 8 a symtycz tóki pąów azowych wypakowa skłaowa pomiiowa poa magtyczgo F 9 pzy czym si xp si - xp F 9a Wypakowa skłaowa stycza poa magtyczgo w kai piwszym ma postać pzy czym skłaową okśamy wzom 7 atomiast a symtycz tóki pąów ma postać

5 taty mocy w kaach tóazowgo symtyczgo... g kłaowa stycza wypakowgo poa magtyczgo w kai piwszym ma zatm postać h g W kai całkowitą gęstość pąu wyażamy wzom w któym gęstość pąu uwzgęia wwętz zawisko zbiżia i okśoa st wzom po zastąpiiu pąu pąm atomiast gęstość pąu okśamy wzom w któym pą zastępumy pąm a wikość zastępumy popzz G xp cos xp- cos W kai całkowit po magtycz wyażamy wzom 6 gzi w któym okśo st wzom 7 po zastąpiiu pąu pąm. Natomiast a symtycz tóki pąów azowych wypakowa skłaowa pomiiowa poa magtyczgo w kai opisaa st wzom 9 w któym wikość zspooą F zastępumy wikością xp si xp- si Natomiast wypakowa skłaowa stycza w kai okśoa st wzom w któym pą zastępumy pąm a wikość zastępumy wikością G. W kai całkowitą gęstość pąu wyażamy wzom w któym gęstość pąu okśoa st wzom po zastąpiiu pąu pąm atomiast gęstość pąu okśamy wzom w któym pą zastępumy pąm a wikość zastępumy popzz M xp- cos xp cos 5 Całkowit po magtycz w kai opisa st wzom 6 gzi w któym okśo st wzom 7 po zastąpiiu pąu pąm. a symtycz tóki pąów azowych wypakowa skłaowa pomiiowa poa magtyczgo w kai

6 Zygmut iątk Tomasz zczgiiak aiusz usiak okśoa st wzom 9 w któym pą zastępumy pąm a wikość F zastępumy popzz si xp si - xp N 6 Natomiast wypakowa skłaowa stycza w kai okśoa st wzom w któym pą zastępumy pąm a wikość zastępumy wikością M.. TATY MOC W EANAC TÓFAZOWEGO YMETYCZNEGO TOU WELOĄOWEGO Zspooa moc pozoa kau piwszgo wyosi [8] E 7 Z wzou 7 otzymumy 8 gzi moc aa st wzom γ c b 9 atomiast g g Aaitycz wyoębii w wzoz 8 części zczywist mocy czy i części uoo mocy bi st tu z wzgęu a zspooą stałą popagaci i zspoo zmoyikowa ukc Bssa. atgo tż o wyzaczia mocy czy posłużymy się wzom [8] z V V Z wzou otzymumy gzi moc okśoa st wzom γ a a moc

7 taty mocy w kaach tóazowgo symtyczgo... a b b pzy czym stał a oaz a okśo są w pacy [6] Moc czya wyziaa w kai bz uwzgęiaia zawiska askókowości w 5 γ Wty tż moc czyą wyziaą w kai piwszym możmy wyazić w ostkach wzgęych ako stosuk k 6 Zażość współczyika w k o paamtu a óżych watości wzgę gubości ściaki kau uowgo oaz óżych watości wzgę ogłości λ mięzy osiami pzwoów pzstawiamy a ysuku pzy czym k zaś. Moc bią wyziaą a aktaci wwętz kau uowgo wyzaczymy z wzou 7 otzymuąc 7 pzy czym moc okśoa st wzom a b γ c a b 8 ys.. Zażość wzgę mocy czy w kai o paamtu α : a a stał watości paamtu β i óżych watości λ b stałgo paamtu λ i óżych watości β

8 Zygmut iątk Tomasz zczgiiak aiusz usiak atomiast moc b b a g g 9 śi wpowazimy moc bią oisiia w w μ X wówczas moc bią możmy wyazić w ostkach wzgęych ako stosuk w k Zażość współczyika k o paamtu a óżych watości paamtu oaz pzstawiamy a ysuku 5. a b ys. 5. Zażość wzgę mocy bi w kai o paamtu α : a a stał watości paamtu β i óżych watości λ b stałgo paamtu λ i óżych watości β posób wyzaczaia stat mocy czy i bi w kai oaz tóazowgo symtyczgo tou wikopąowgo st ityczy o tgo pzstawiogo powyż a kau. śi poato uwzgęimy ż M G 5 to wty moc czy w wikościach wzgęych wyzia w kaach i maą postać

9 taty mocy w kaach tóazowgo symtyczgo... 5 a moc bi k k k k 6 w w k k 7 w w. WNO W aizowaych w paktyc toach wikopąowych a częstotiwości pzmysłow watość paamtu α zawata st o 5 o. Ozacza to ż staty mocy czy w kaach obiguowgo symtyczgo tou wikopąowgo mogą być awt zisięciokoti wyższ o stat mocy czy iuwzgęiaąc zwętzgo oaz wwętzgo zawiska zbiżia ys.. O tym ak uża st óżica pomięzy tymi mocami cyuą paamty gomtycz i izycz tgoż tou. Natomiast moc bia wyziaa a iukcyości wwętz kau moż być awt pięciokoti wyższa o moc bi i uwzgęiaąc zawisk zbiżia ys. 5. Wyzaczaąc staty mocy aży pamiętać ż wyzaczoa z twizia oytiga moc bia związaa st tyko z iukcyością wwętzą kau uowgo. By móc okśić całkowitą moc bią wyziaą w kaach obiguowgo symtyczgo tou wikopąowgo aży ówiż wyzaczyć moc bią wyziaą a iukcyościach zwętzych oaz wzamych. LTEATUA [] Nawowski.: Toy wikopąow izoowa powitzm ub F 6. Wy. o. ozański ozań 998. [] iątk Z.: mpacs o high-cut busucts. Wy. o. Częst. Czstochowa 8. [] usiak.: o Magtycz wu i Tóbiguowych Toów Wikopąowych aca oktoska Częstochowa 8. [] zczgiiak T. iątk Z. usiak.: taty mocy symtyczgo tóazowgo tou wikopąowgo Wasztaty oktoacki. yica-zó 9. [5] zczgiiak T. iątk Z. usiak.: taty mocy w kai tóazowgo symtyczgo tou wikopąowgo Wasztaty oktoacki Lubi. [6] zczgiiak T.: taty mocy w ikaowaych i kaowaych uowych toach wikopąowych aca oktoska Giwic. [7] Mc Lacha N.W.: Fukc Bssa a iżyiów. WN Waszawa 96. [8] akowski M.: Ektotchika totycza. o ktomagtycz. WN WN Waszawa 995..

10 6 Zygmut iątk Tomasz zczgiiak aiusz usiak OWE LOE N TE CEEN OF TE YMMETCAL TEE AE G CUENT BUUCT sig o th high cut busucts o high cuts a votags causs cssity pcis scibig o ctomagtic yamic a thma cts. owg o th atios btw ctoyamics a costuctioa paamts is cssay i th optimizatio costuctio pocss o th high cut busucts. omatio about istibutio ctomagtic i a pow osss is a bas ito aaysis o ctoyamics a thma cts i th high cut busucts. th pap usig th oytig thom a ou-lz aw th activ a activ pow i th scs o th symmtica high cut busuct w tmi. to accout w tak ita a xta poximity ct.

STRATY MOCY W EKRANACH TRÓJFAZOWEGO JEDNOBIEGUNOWEGO TORU WIELKOPRĄDOWEGO

STRATY MOCY W EKRANACH TRÓJFAZOWEGO JEDNOBIEGUNOWEGO TORU WIELKOPRĄDOWEGO OZNN UNVE TY OF TE CNOLOGY CDE MC JOUNL No 7 Elctical Eii Zymut ĄTEK Tomasz ZCZEGELNK Daiusz KUK TTY MOCY W EKNC TÓJFZOWEGO JEDNOBEGUNOWEGO TOU WELKOĄDOWEGO Do pzsyłu ii lktycz o użyc pąac stosu się m.i.

Bardziej szczegółowo

ANALIZA GĘSTOŚCI PRĄDÓW W NIEOSŁONIĘTYM TRÓJFAZOWYM TORZE WIELKOPRĄDOWYM

ANALIZA GĘSTOŚCI PRĄDÓW W NIEOSŁONIĘTYM TRÓJFAZOWYM TORZE WIELKOPRĄDOWYM POZNAN UNVE STY OF TE CHNOLOGY ACADE MC OUNALS No 77 Electical Egieeig 04 Tomasz SZCZEGELNAK* Zygmut PĄTEK* Daiusz KUSAK* ANALZA GĘSTOŚC PĄDÓW W NEOSŁONĘTYM TÓFAZOWYM TOZE WELKOPĄDOWYM Pzy optymalym poektowaiu

Bardziej szczegółowo

POLE MAGNETYCZNE RUROWEGO OSŁONIĘTEGO PRZEWODU FAZOWEGO W UKŁADZIE Z UZIEMIONYM LUB ZWARTYM EKRANEM CZĘŚĆ II

POLE MAGNETYCZNE RUROWEGO OSŁONIĘTEGO PRZEWODU FAZOWEGO W UKŁADZIE Z UZIEMIONYM LUB ZWARTYM EKRANEM CZĘŚĆ II PONAN UNVE STY OF TE CNOLOGY ACADE MC JOUNALS No 77 Elctcal Egg Dausz USA* ygmut PĄTE* Tomasz SCEGELNA* Pawł JABŁOŃS* POLE MAGNETYCNE UOWEGO OSŁONĘTEGO PEWODU FAOWEGO W UŁADE UEMONYM LUB WATYM EANEM CĘŚĆ

Bardziej szczegółowo

Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów.

Przykłady procesów nieodwracalnych: wyrównywanie się temperatur, gęstości i różnicy potencjałów. modynamika pocsów niodwacalnych modynamika klasyczna - tmostatyka - opis pocsów odwacalnych Ni można na podstawi otzymać wniosków dotyczących pzbigu w czasi pocsów niodwacalnych Pzykłady pocsów niodwacalnych:

Bardziej szczegółowo

POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1)

POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1) POL LKTROTATYCZN W PRÓŻNI - CD Dio ktyczny q + q Dio ktyczny to ukła ównych co o watości unktowych łaunków ktycznych zciwngo znaku ozmiszczonych w stałj ogłości o sibi Dio chaaktyzuj się zz oani jgo ioowgo

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 3 technikum str 1

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 3 technikum str 1 Zks mtłu oowązuąy o zmu popwkowo z mtmtyk kls tkum st Dzł pomowy Dotyzy klsy Zks lz Wyksy włsoś uk wykłz symptot uk wykłz Fuk wykłz Pzsuę wyksu uk wykłz o wkto I loytmy Poę loytmu włsoś loytmów Olz loytmów,

Bardziej szczegółowo

Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008

Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008 Poua wymiaowaia mimośoowo śikago łupa żlbtowgo wg P-E-99:8. Utalamy zy łup jt mukły zy kępy a) wyzazamy ługość obliziową i mukłość łupa (5.8.3.) 3 bh I I i (jżli watość ϕ i jt zaa, moża pzyjąć,7) +,ϕ S

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

Elementy matematyki finansowej

Elementy matematyki finansowej Elmty matmatyki fiasowj RZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Elmty matmatyki fiasowj Wykład: Elmty Matmatyki Fiasowj la Wykładu Tmat: Elmty matmatyki fiasowj Zaczi czasu w oci fktywości iwstycji

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 01 82 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A P r o m o c j a G m i n y M i a s t a G d y n i a p r z e z z e s p óp

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

Spędź czas w Dortmundzie korzystając z autobusu i kolei

Spędź czas w Dortmundzie korzystając z autobusu i kolei ęź z Dz zyją z Tä z D 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 00 0 0 0 z y D! D J z ł Dz yzyj j jją ł zy ć ó D j Pń zę yjy ż, y y zć! Dz żj ją zz zł D z żj jy zzó zy y jyz zó j ż zć Pń zł, jż Pń ży, z Pń zz

Bardziej szczegółowo

Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny)

Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny) inż. Michał Stzeszewski 0-006 Pzejowanie ciepła pzy konwekcji swobonej w pzestzeni oganiczonej (szczeliny) Zaania o saozielnego ozwiązania v. 0.. powazenie celu uposzczenia achunkowego ozwiązania zjawiska

Bardziej szczegółowo

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E = 3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1

Bardziej szczegółowo

σ r z wektorem n r wynika

σ r z wektorem n r wynika Wyład Napęża głów Pozuamy płazczyzy dowol achylo do o uładu wpółzędych o t właośc by wto apęża a t płazczyź był wpółoowy z wtom wtom tóy otu tę płazczyzę w pztz (wtom do omalym). a) pzypad ogóly b) płazczyza

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

Arkusze maturalne poziom podstawowy

Arkusze maturalne poziom podstawowy Akusze matualne poziom postawowy zaania zamknięte N zaania 5 7 8 9 0 Pawiłowa opowieź a c a b c b a Liczba punktów zaania otwate N zaania Pawiłowa opowieź Punkty Q mg 00 N Z III zasay ynamiki wynika, że

Bardziej szczegółowo

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Podstawowe rozkłady zmiennych losowych typu dyskretnego Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

Zanim zapytasz prawnika

Zanim zapytasz prawnika 2 Zanim zapytasz prawnika 1 Zanim zapytasz prawnika Poradnik dla Klientów Biur Porad Prawnych i Informacji Obywatelskiej Pod redakcją Grzegorza Ilnickiego Fundacja Familijny Poznań Poznań 2012 3 N i n

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n

Bardziej szczegółowo

2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l

Bardziej szczegółowo

Projekt ze statystyki

Projekt ze statystyki Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...

Bardziej szczegółowo

4πε0ε w. q dl. a) V m 2

4πε0ε w. q dl. a) V m 2 Rozwiązania są moje, Batka i jeszcze te któe znaazłem w A. Niestety nie mogę zagwaantować, że są popawne :( Jeżei twoje opowiezi óżnią się o tych, to napisz o mnie (najepiej z wyjaśnienie ską bieze się

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Wykł XI Postwy fiyki kwtowj Mot ęu Oto otu ęu fiiujy jko więc skłow x i y y ˆ i w wsółęych ktjńskich ów są y i x x i x y y x Łtwo wykć ż skłow otu ęu słiją stęujący wiąk koutcyjy ijk [ ] i i j k x y i

Bardziej szczegółowo

Kształty żłobków stojana

Kształty żłobków stojana Kztałty żłobów tojana Kztałty żłobów winia: a), b), c) lati olewane Al. ) - i) lati lutowane z pętów Cu Wymiay żłoba oplowego Kąt zbieżności ściane żłoba: Śenica mniejza: = π + h )in in ( b Śenica więza:

Bardziej szczegółowo

K R Ó L O W I E PD Ż N I IPWP.P K J S O L D U N G O W I E P 1 0

K R Ó L O W I E PD Ż N I IPWP.P K J S O L D U N G O W I E P 1 0 1 0 A Królowie Danii K J O L D U N G O W I E. S K J O L D U N G O W I E. E S T R Y D S E N O W I E K R Ó L O W I E D Ż N I IW. S. U N IŻ KŻ L MŻ R S KŻ. O L D E N B U R G O W I E. G L Ü C K S B U R G O

Bardziej szczegółowo

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E

Bardziej szczegółowo

1 3. N i e u W y w a ć w o d y d o d o g a s z a n i a g r i l l a! R e k o m e n d o w a n y j e s t p i a s e k Z a w s z e u p e w n i ć s i

1 3. N i e u W y w a ć w o d y d o d o g a s z a n i a g r i l l a! R e k o m e n d o w a n y j e s t p i a s e k Z a w s z e u p e w n i ć s i M G 4 2 7 v.1 2 0 1 6 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w

Bardziej szczegółowo

(0) Rachunek zaburzeń

(0) Rachunek zaburzeń Wyłd XII Rch zbzń Mchi wtow Rch zbzń st podstwową mtodą zdowi pzybliżoych ozwiązń óżgo odz ówń występących w fizyc Tt zsti pzdstwioy ch zbzń w zstosowi do ówi Schödig bz czs Ogiczymy się pzy tym do tzw

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

ANALIZA STRAT MOCY W TRÓJFAZOWYCH TORACH WIELKOPRĄDOWYCH

ANALIZA STRAT MOCY W TRÓJFAZOWYCH TORACH WIELKOPRĄDOWYCH OZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Elctrical Egirig 5 Tomasz SZCZEGIELNIAK Zygmut IĄTEK Dariusz KUSIAK ANALIZA STRAT MOCY W TRÓJFAZOWYCH TORACH WIELKORĄDOWYCH Do przsyłu rgii lktryczj

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )

Bardziej szczegółowo

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU ży Oły Wł, ęy Oł Wł VETIGO MGET JCZEWSK UL JCKOWSKIEGO - WOCŁW TEL/FX l: -l: v@l OJEKT DOCELOWEJ OGIZCJI UCHU y: I Ząy: O: Ll: ///W/ G Wł l y T - - Wł ż Oły ęy Oł Wł Wó: lślą, : Wł, G: Wł, ż Oły T: ży

Bardziej szczegółowo

MODELOWANIE OPTYCZNEGO ELEMENTU PRZEŁĄCZNICY OXC OPARTEGO NA KĄTOWYM NAPĘDZIE ELEKTROSTATYCZNYM MEMS

MODELOWANIE OPTYCZNEGO ELEMENTU PRZEŁĄCZNICY OXC OPARTEGO NA KĄTOWYM NAPĘDZIE ELEKTROSTATYCZNYM MEMS Rnata SULIMA MODELOWANIE OPTYCZNEGO ELEMENTU PRZEŁĄCZNICY OXC OPARTEGO NA KĄTOWYM NAPĘDZIE ELEKTROSTATYCZNYM MEMS STRESZCZENIE Pzłączniki optyczn MEMS wypiają otychczasow pzłączniki lktoniczn. Ninijszy

Bardziej szczegółowo

Przejmowanie ciepła przy kondensacji pary

Przejmowanie ciepła przy kondensacji pary d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej

Bardziej szczegółowo

LINIA PRZESYŁOWA PRĄDU STAŁEGO

LINIA PRZESYŁOWA PRĄDU STAŁEGO oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady

Bardziej szczegółowo

MISKOLC. ubytovací katalóg. 1 www.hellomiskolc.hu

MISKOLC. ubytovací katalóg. 1 www.hellomiskolc.hu O í O OÓW OOWY 1 www í,, ý, ľ x š, í ť, čť, š š čý ý ľ, ý, ž ž,, ý č í Uč ľ, ň ý ľ í í í žť ť š ý ž ý č ž ý ô, š ď š í O 16 -í š äčš ž? ôž ť ž čť! ý ľ x č ý ť žť šť äčší žý ý í í ď, šš, č, í, í žčíš íš

Bardziej szczegółowo

K R Ó L O W I E PS Z W E C J I PWP.P O LF K U N G O W I E P 5 2 2

K R Ó L O W I E PS Z W E C J I PWP.P O LF K U N G O W I E P 5 2 2 5 2 2 3. Folkungowie WŻ L D E MŻ R B I R G E R S S O N MŻ G N U S I LŻ D U L Å S B I R G E R MŻ G N U S S O N MŻ G N U S I I E R I K S S O N E R Y K MŻ G N U S S O N HŻŻ K O N MŻ G N U S S O N 5 2 3 W

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka

Bardziej szczegółowo

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE 4.5. PODTAWOWE OBCZENA HAŁAOWE 4.5.. WPROWADZENE Z dotychczasowych ozważań wiemy już dużo w zakesie oisu, watościowaia i omiau hałasu w zemyśle. Wato więc tę wiedzę odsumować w jedym zwatym ukcie, co umożliwi

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

Zmiana wartości pieniądza

Zmiana wartości pieniądza Ziaa watości piiądza w czasi topa dyskotowa Wydatki i fkty astępują w óży czasi, tzba więc uwzględić fakt, ż watość piiądza ziia się w czasi, więc taka saa sua piiędzy będzi iała ią watość w óży czasi.

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna

W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna W0 56 Opó ciplny Pzwodzni cipła Konwkcja Pominiowani Ekanowani cipła w0 Waunkim pzpływu cipła a między dwoma ośodkami o jst óŝnica tmpatu Cipło o pzpływa z ośodka o o tmpatuz wyŝszj do ośodka o o tmpatuz

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

( ) Praca. r r. Praca jest jednąz form wymiany energii między ciałami. W przypadku, gdy na ciało

( ) Praca. r r. Praca jest jednąz form wymiany energii między ciałami. W przypadku, gdy na ciało Paca i enegia Paca Paca jest jenąz fom wymiany enegii mięzy ciałami. pzypaku, gy na ciało bęące punktem mateialnym ziała stała siła F const oaz uch ciała obywa się o punktu A o B po linii postej bez zawacania

Bardziej szczegółowo

INSTRUMENTY DŁUŻNE. Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji

INSTRUMENTY DŁUŻNE. Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji INSTRUMENTY ŁUŻNE Rozaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji Ryzyko iwesycji w obligacje Ryzyko eiwesycyje możliwość uzyskaia iskiej sopy zwou z wypłacoych

Bardziej szczegółowo

I. STADHOUDERZY NIDERLANDÓW

I. STADHOUDERZY NIDERLANDÓW 68 I. STADHOUDERZY NIDERLANDÓW I. TŻS D H O U D E R Z Y N I D E R LŻ N D Ó W R o z d z i a ł I I. KRÓLOWIE HOLANDII LUDWIK I 70 LUDWIK II 79 6 9 I. TŻS D H O U D E R Z Y N I D E R LŻ N D Ó W LUDWIK I Król

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n

Bardziej szczegółowo

5.1 Połączenia gwintowe

5.1 Połączenia gwintowe 5.0 Połączenia Połączenia służą o pzenoszenia obciążeń mięzy elementami konstukcyjnymi uniemożliwiając ich wzajemne pzemieszczenia. POŁĄCZENIA NIEROZŁĄCZNE ROZŁĄCZNE PLASTYCZNE - nitowe - zawijane - zaginane

Bardziej szczegółowo

PROCEDURA ANALIZY KOLIZYJNEGO STRUMIENIA POJAZDÓW SKRĘCAJACYCH W LEWO. Osobna faza i dodatkowy pas ruchu dla relacji w lewo SL jest konieczna, gdy

PROCEDURA ANALIZY KOLIZYJNEGO STRUMIENIA POJAZDÓW SKRĘCAJACYCH W LEWO. Osobna faza i dodatkowy pas ruchu dla relacji w lewo SL jest konieczna, gdy ROCEDURA ANALIZY KOLIZYJNEO TRUMIENIA OJAZDÓW KRĘCAJACYCH W LEWO 1) Koiczość wydziia osobj azy i dodatkowgo pasa rch da racji w o L Osoba aza i dodatkowy pas rch da racji w o L jst koicza, gdy 1 400 /h

Bardziej szczegółowo

7. Gottorpowie IE W ADOLF FRYDERYK 648 RPO GUSTAW III 656 TTO GUSTAW IV ADOLF 658 KAROL XIII 663 ECJI 7. GO IE SZW W LO KRÓ 647

7. Gottorpowie IE W ADOLF FRYDERYK 648 RPO GUSTAW III 656 TTO GUSTAW IV ADOLF 658 KAROL XIII 663 ECJI 7. GO IE SZW W LO KRÓ 647 6 4 6 7. Gottorpowie Ż D O L F F R Y D E R Y K G U S TŻ W I I I G U S TŻ W I VŻ D O L F KŻ R O L X I I I 6 4 7 KRÓLOWIE SZWECJI 7. GOTTOROWIE Adolf Fryderyk ANUJE W LATACH 1751 1771 648 O j c i e c- C

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

Ćw. 4 SprzęŜenie zwrotne

Ćw. 4 SprzęŜenie zwrotne Ćw. 4 SpzęŜni zwotn 1. Cl ćwicznia Clm ćwicznia jst uguntowani wiadomości dotyczącyc lmntanj toii spzęŝnia zwotngo w układac lktonicznyc. 2. Wymagan infomacj Budowa wzmacniacza tanzystoowgo i jgo paamty

Bardziej szczegółowo

Marii. Skłodowskiej-Curie. Ekspozycja-warsztaty Lekcje

Marii. Skłodowskiej-Curie. Ekspozycja-warsztaty Lekcje Epyj-y Lj M.--.-v.f L M 2011 j- Epyj-y p L M NR (b M) p Mé, Uy P-D, Uy. P M j- Uy P 11 Oy. y yp M j- phą ąż Lj M j- Ib hv, yj p E EDP 2003. Zję M j- ą ć Mé. L M 386, v Dv L 92290 hây-mby - FRANJA (33)

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l

Bardziej szczegółowo

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego .Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je

Bardziej szczegółowo

Sprężyny naciskowe z drutu o przekroju okrągłym

Sprężyny naciskowe z drutu o przekroju okrągłym Sprężyny owe z o przekroju okrągłym Stal sprężynowa, zgodnie z normą PN-71/M80057 (EN 10270:1-SH oraz DIN 17223, C; nr mat. 1.1200) Stal sprężynowa nierdzewna, zgodnie z normą PN-71/M80057 (EN 10270:3-NS

Bardziej szczegółowo

1. SZCZEGÓLNE PRZYPADKI ŁUKÓW.

1. SZCZEGÓLNE PRZYPADKI ŁUKÓW. Olga Kopacz, Aam Łoygowski, Kzysztof Tymbe, ichał Płotkowiak, Wojciech Pawłowski Konsultacje naukowe: pof. hab. Jezy Rakowski Poznań /. SZCZEGÓLNE PRZYPADKI ŁUKÓW.. Łuk jenopzegubowy kołowy. Dla łuku jak

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 4 52 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e p o m i a r ó w i n s t a l a c j i e l e k t r y c

Bardziej szczegółowo

Podstawowe konstrukcje tranzystorów bipolarnych

Podstawowe konstrukcje tranzystorów bipolarnych Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

W W Y D A N I E S P E C J A L N E S z a n o w n i P a ń s t w o! Spis t reści: y d arz e ni a c z e rw c ow e w 3 P oz nani u, r. Z

W W Y D A N I E S P E C J A L N E S z a n o w n i P a ń s t w o! Spis t reści: y d arz e ni a c z e rw c ow e w 3 P oz nani u, r. Z M 50-r o c z n i c a P o z n a ń s k i e g o C z e r w c a 56 r. KAZIMIERA IŁŁAKOWICZÓWNA Ro z s t r z e l a n o m o j e s e r c e C h c i a ł a m o k u l t u r z e n a p i s a ć n a p r a w d ę i n t

Bardziej szczegółowo

2 0 0 M P a o r a z = 0, 4.

2 0 0 M P a o r a z = 0, 4. M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z

Bardziej szczegółowo

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X P R O J E K T I W A L I D A C J A U R Z Ą D Z E P O M I A R O W Y C H a S I Y W L I N I E I K Ą T A W Y C H Y L E N I A L I

Bardziej szczegółowo

HABSBURGOWIE XV XIX W. HABSBURGOWIE. XV-XIX w.

HABSBURGOWIE XV XIX W. HABSBURGOWIE. XV-XIX w. HABSBURGOWIE XV XIX W. HABSBURGOWIE 358 XV-XIX w. Ż L B R E C H T I I F R Y D E R Y K I I I M Ż K S Y M I L IŻ N I K Ż R O L V H Ż B S B U R G O W I E W X VŁ X I XW. F E R D Y NŻ N D I M Ż K S Y M I L

Bardziej szczegółowo

L U D O L F I N G O W I E PWP XŁ X IPW.P L U D O L F I N G O W I E X MX IPw.A P 8 0

L U D O L F I N G O W I E PWP XŁ X IPW.P L U D O L F I N G O W I E X MX IPw.A P 8 0 L U D O L F I N G O W I E X MX Iw.A 8 0 K O N RŻ D I H E N R Y K I TŻ S Z N I K O T T O I W I E L K I O T T O I I O T T O I I I H E N R Y K I I WŚ I Ę T Y 8 1 K O N RŻ D I M A 8 2 O j c i e c- K O N RŻ

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE

WARTOŚĆ PIENIĄDZA W CZASIE WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Podział obwodów ze względu na wymiary Prędkość fali EM w środowisku jednorodnym (ε r 1, µ r 1)

Podział obwodów ze względu na wymiary Prędkość fali EM w środowisku jednorodnym (ε r 1, µ r 1) Podział obwodów z wzgędu na wyiay Pędkość ai M w śodowisku dnoodny ε µ v v 9 F 7 H ε µ 36π π v µε µ µ ε ε c µ ε w póŝni c 8 µ ε 3 s Opó chaakysyczny póŝni: pędkość ai M świała R p µ π 377 ε Ω Obwody kyczn

Bardziej szczegółowo

PROJEKT STAŁEJ ORGANIZACJI RUCHU

PROJEKT STAŁEJ ORGANIZACJI RUCHU B R I BUDMEX - C, K () --, -:@v WYKONAWCA Z Dó M P W, - Pń -: @ ZLECENIODAWCA Z Dó M P W, - Pń -: @ PROJEKT STAŁEJ ORGANIZACJI RUCHU B Hń P - ż Hń-J P: ż Kf Sb KUPPOOD A P S: F: Tł, Ię N Sść: N ń: P: Pń,

Bardziej szczegółowo

ś ź Ą ś Ą ś ś Ę Ą ń ń ń ś ń ńś ś ń ć ń ś ś ź ć ś ś ź ź Ę Ę ś ć ś ś ć ś ść ń Ę ć ć ć ś ń ć ć ć ś ś Ą ź ść ĘĄ ś ś ć ść ć Ś ś ś ś Ą ś ź ś ś ź ń Ą ś ź Ń ś ś ś Ń ń ź ć ś ś ś ć Ń ś ń ś ź ś ń ń ć ć ś ń ć ń ć

Bardziej szczegółowo

I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E

I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony

Bardziej szczegółowo

Tradycyjne mierniki ryzyka

Tradycyjne mierniki ryzyka Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%

Bardziej szczegółowo

Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą

Bardziej szczegółowo

ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć

Bardziej szczegółowo

Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś

Bardziej szczegółowo

Ę Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć

Bardziej szczegółowo

Ą Ł Ą Ą ś ś ż Ż ś ś ś ść ś ś Ą ś Ż ś ć ż ś ś ż ś ż Ć Ł Ż ż Ź ć ĄĄ Ż Ą Ż Ą Ź Ż Ł Ł Ę ś ś ś ż Ą ś Ą ś Ą Ż Ą Ż Ą Ć Ż Ż ś Ż Ą Ć Ł Ł Ę ś ż Ż ć ś ś ś ś Ż Ć ż ż ś ś ż ś ś Ż Ż ś ś ś ś ś Ż ż Ż ś ś Ż Ę ż ś ż Ź Ę

Bardziej szczegółowo