D-1 WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI. i czasowe. ĆWICZENIE NR 7. Sygnały Elektryczne parametry częstotliwościowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "D-1 WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI. i czasowe. ĆWICZENIE NR 7. Sygnały Elektryczne parametry częstotliwościowe"

Transkrypt

1 D-. Cel ćwiczeia. Celem ćwiczeia jes zapozaie z zasadami pomiaru częsoliwości i czasu; podsawowymi paramerami ypowych częsościomierzy - czasomierzy, warukami ich uŝykowaia ze szczególym uwzględieiem dokładości pomiaru. 2. Pojęcia podsawowe. Częsoliwość i czas aleŝą do ajczęściej mierzoych wielkości izyczych. Częsoliwość sygału okresowego u() zdeiiowaa jes jako liczba okresów (cykli) ego sygału w jedosce czasu (rys.2). = = w () w gdzie: -jes liczbą okresów, w jes wzorcowym czasem, w kórym odbywa się zliczaie cykli. Jedoską częsoliwości jes Hz = /s. Okres sygału mierzoego u() spełia waruek : u() = u( + k ) gdzie k=, 2... (2) Pomiaru okresu moŝa dokoać określając liczbę elemearych odcików czasu wyzaczaych przez geeraor wzorcowy o dokładie zaej wzorcowej częsoliwości w w przedziale czasu k (rys. 4). = k w Spełieie waruku (2) asępuje dla usaloego poziomu warości sygału u() azywaego poziomem wyzwalaia ( Rys.4.) W dosępej aparaurze warość poziomu wyzwalaia moŝe być zadawaa ręczie, lub auomayczie. Ze względu a sosowaą meodę wyróŝia się: - pomiar aalogowy częsoliwości i okresu, kóry jes hisoryczie ajsarszy i ajczęściej odbywa się z wykorzysaiem obserwacji za pomocą oscyloskopu, wzorcem pomiarowym jes w ym przypadku geeraor podsawy czasu oscyloskopu. Sosowae są akŝe częsościomierze przeworikowe, w kórych asępuje przewarzaie częsoliwości a apięcie elekrycze, warość częsoliwości jes wyzaczaa z wyiku pomiaru apięcia. - pomiar cyrowy. (3)

2 D- Cyrowy pomiar częsoliwości realizuje się w prakyce dwoma sposobami: - meodą bezpośredią poprzez zliczeie liczby okresów we wzorcowym odciku czasu p. w ciągu s. - meodą pośredią poprzez pomiar okresu mierzoego sygału i wyzaczeie mierzoej częsoliwości jako odwroości okresu = (4) 3. Srukury mierików cyrowych do pomiaru częsoliwości i czasu. 3.. Częsościomierz. Podsawową srukurę częsościomierza cyrowego, przedsawioo a rysuku. 2 4 sygał wejściowy Blok ormujący Bramka Liczik Geeraor wzorcowy Dzielik częsoliwości 3 Wyświelacz Rys. Podsawowa srukura częsościomierza. Wejściowy sygał okresowy ➀ o dowolym kszałcie podlega przeworzeiu w bloku ormującym a ciąg impulsów prosokąych ➁, kóre wywarzae są w chwilach czasowych zdeermiowaych zrówaiem ampliudy sygału mierzoego z poziomem wyzwalaia, dobieraym przez mierzącego lub usaloym auomayczie. Liczbę impulsów przekazaych do liczika ➃ wyzacza sygał, serujący bramką ➂ o dokładie zaym czasie rwaia w uzyskay z geeraora wzorcowego. Sopień podziału częsoliwości wzorcowej określa czas owarcia bramki, a przez o zakres pomiarowy częsościomierza. MoŜe o być wybieray ręczie, bądź auomayczie (ab.2). 2

3 D- poziom wyzwalaia wejście pomiarowe 2 wyjście bloku ormującego 3 =/ wyjście wzorca 2 4 w wejście liczika 2 Rys.2. Sygały w wybraych pukach srukury częsościomierza. I ak, jeŝeli liczik zlicza impulsy w zakresie 6 pozycji dziesięych (dekad) o pojemości zakresy pomiarowe i ajmiejsza rejesrowaa zmiaa warości (rozdzielczość) przedsawiają się asępująco: ab. 2. Przykładowe paramery częsościomierza zawierającego liczik 6- dekadowy. w Zakres Rozdzielczość [khz] [Hz]

4 D Mierik odcika czasu i okresu. Pomiaru odcika czasu badaego sygału moŝa dokoać zamieiając miejscami geeraor wzorcowy i źródło sygału mierzoego oraz modyikując sposób serowaia bramką. 5 6 Geeraor wzorcowy Bramka Liczik 2 sygał wejściowy A sygał wejściowy B Blok ormujący "A" Blok ormujący "B" Rys.3. Podsawowa srukura mierika zaleŝości czasowych między dwoma sygałami A i B. Pomiar okresu realizoway jes przy zwarym przełącziku. sar sop 3 Serowaie bramką 4 Wyświelacz Ogólie mierzoy odciek czasu, wyzaczay jes sygałami: SAR ➁, owierającym bramkę i SOP ➂ zamykającym bramkę. Sygały e powsały z uormowaia sygałów wejściowych odpowiedio w kaałach A i B. Sa liczika jes rówy liczbie impulsów o wzorcowej częsoliwości w ➃ przepuszczoych przez bramkę w mierzoym odciku czasu 6. = = w (4) w Mierik odcika czasu moŝe być wykorzysay do pomiaru okresu sygałów (rys. 4), w ym przypadku a oba kaały podaway jes sygał mierzoy (przełączik jes zwary). 4

5 D- poziom wyzwalaia w Rys.4. Sygały w wybraych pukach srukury mierika okresu. 4. Błędy w cyrowym pomiarze częsoliwości i okresu. 4.. Błąd dyskreyzacji.( iepewość dyskreyzacji) W ogólym przypadku sygał wejściowy i sygał wzorcowy są sygałami iezsychroizowaymi, wysępują pomiędzy imi przesuięcia czasowe (rys.2, rys.4) o warościach i 2. Warości przesuięć zmieiają się w sposób przypadkowy. 5

6 D- Ławo zauwaŝyć, Ŝe skukiem ych przesuięć jes losowa zmiaa sau liczika o warość = ±. W prakyce ajczęściej przyjmuje się względą graiczą, miarę błędu dyskreyzacji, zdeiiowaą jako: δ = ± = ± (5) Wiadomo, Ŝe błąd dyskreyzacji wysępuje we wszyskich pomiarach cyrowych. Z zaleŝości (5) widać, Ŝe jego warość maleje hiperboliczie w ukcji warości wskazaia i osiąga warość miimalą dla pełego wypełieia liczika = N, δ 3/N 2/N /N sugeruje N/3 N/2 N Rys. 5. ZaleŜość błędu dyskreyzacji od wskazaia. o, Ŝe meoda pomiarowa jak i zakres pomiaru powiy być ak dobierae, aby wypełieie liczika było jak ajbliŝsze maksymalemu. Przy małych warościach mierzoych częsoliwości realizacja pomiarów meodą bezpośredią wymaga więc duŝych warości wzorcowego czasu owarcia bramki w dla uzyskaia maksymalego wypełieia liczika (ab.2). Zmiejszeie warości błędu dyskreyzacji uzyskuje się przebiegu i obliczając = /. 4.2.Błąd wzorca.(iepewość wzorca) sosując pośredią meodę mierząc okres mierzoego Sercem częsościomierza jak i czasomierza jes e sam wzorzec częsoliwości sąd moŝa wykazać Ŝe: δ w = δ w (6) 6

7 D- gdzie: δ w jes błędem graiczym wzorcowego odcika czasu w, a δ w jes błędem graiczym częsoliwości wzorcowej w. Składowa w posaci błędu względego wzorca δ w powsaje jako skuek iesałości częsoliwości geeraora wzorcowego. W prakyce sosuje się sabile geeraory kwarcowe. Częsoliwość geeraora zaleŝy jedak w pewym sopiu od emperaury i apięcia zasilaia. Współczese geeraory kwarcowe sosowae w częsościomierzach - czasomierzach charakeryzują się asępującymi paramerami: - δ w zwykłe rezoaory kwarcowe pracujące w emperaurze pokojowej 0 C + 50 C - δ w rezoaory skompesowae cieplie umieszczoe w ermosaach. Z doświadczeń prakyczych wyika, Ŝe wpływ zmia apięcia zasilaia geeraora a składową δ w jes co ajmiej o rząd miejszy, w prakyce moŝa przyjąć, Ŝe jes do pomiięcia. Wypadkowy błąd (iepewość) pomiaru częsoliwości meodą bezpośredią (rys.) jes sumą błędu dyskreyzacji i błędu wzorca w δ b = ± + (7) w w Gdzie: - δ w = jes błędem wzorca, w - δ b = / jes błędem dyskreyzacji W mieriku odcika czasu (rys.3) wysępują dwa iezaleŝe bloki ormujące, kóre woszą dwie dodakowe składowe błędu, błąd bramkowaia i błąd iesymerii Błąd bramkowaia (iepewość bramkowaia ) []. Błąd bramkowaia (iaczej błąd wyzwalaia rigger error) δ W wyika z losowego opóźieia reakcji bramki a sygał owierający jak i zamykający. Spowodoway jes isieiem szumów i zakłóceń a wejściach A i B (rys. 3.) Błąd e ma charaker przypadkowy i widoczy jes w pomiarach okresu i odcika czasu Błąd iesymerii. 7

8 D- W pomiarze odcika czasu, kaŝda iesymeria pomiędzy orem A doprowadzającym sygał owierający bramkę a orem "B" doprowadzającym sygał zamykający bramkę rys.3. wprowadza błąd sysemayczy. Niesymeria moŝe być spowodowaa róŝą długością kabli jak i róŝymi czasami propagacji sygału w orach. Wypadkowy błąd (iepewości) pomiaru częsoliwości meodą pośredią zawiera rzy składowe, błąd dyskreyzacji, błąd wzorca i błąd bramkowaia w δ p = ± + + δ w (8) w w gdzie: - δ = jes błędem wzorca w - δ p. = / jes błędem dyskreyzacji - δ w jes błędem bramkowaia 4.5. Wybór meody pomiaru. ab. 2. Rodzaje składowych błędu w pomiarach częsoliwości i czasu Pomiar Rodzaj składowej błędu Częsoliwość me. bezpośredia Okres (częsoliwość me. pośredia) Odciek czasu Charaker składowej błędu dyskreyzacji przypadkowy wzorca wyzwalaia + + przypadkowy iesymerii + sysemayczy Niezaą częsoliwość moŝa mierzyć zarówo bezpośredio jak pośredio. O wyborze meody decyduje porówaie błędów pomiaru w obu przypadkach. Wysarczy porówać ylko błędy dyskreyzacji poiewaŝ jak wspomiao w pk w obu rodzajach pomiarów przyrząd korzysa z ego samego wzorca. Składowa dyskreyzacji dla bezpośrediej meody pomiaru częsoliwości : 8

9 D- δ b = = (0) w Dla pośrediej meody pomiaru częsoliwości δ p = = () w δ δ b δ p me. pośr. gr me. bezpośr. Rys. 6. ZaleŜość błędu dyskreyzacji δ od częsoliwości mierzoej dla meody bezpośrediej δ b i pośrediej δ p. Z rys. 6 widać, Ŝe do pomiaru sygałów o częsoliwościach miejszych od gr korzysiejsza jes meoda pośredia a większe częsoliwości korzysiej jes mierzyć meodą bezpośredią. Warość częsoliwości graiczej gr wyika z porówaia zaleŝości (0) i () gr = w w (2) W ypowych zasosowaiach, jeŝeli częsoliwość sygału wzorcowego w pomiarze pośredim w = 0 7 Hz, a czas pomiaru w meodzie bezpośrediej w = s, o częsoliwość graicza gr = Hz 3.2 khz. Współczese rozwiązaia częsościomierzy / czasomierzy mikroprocesorowych aleŝą do grupy przyrządów azywaych współbieŝymi (odwracalymi) Reciprocal Couers, w kórych zarówo meoda pomiaru jak i zakres pomiaru dobieray jes auomayczie z uwzględieiem dokładości pomiaru. Dodakowo sosuje się 9

10 D- zwiększaie dokładości pomiaru poprzez powarzaie pomiarów i uśrediaie wyików jak rówieŝ realizację pomiaru wielu okresów (k= 0,00,000...) Uproszczoą srukurę przyrządu współbieŝego HP 5345A przedsawia rys. 7. W srukurze ej rówolegle, w ym samym czasie pracują dwa licziki; liczik zdarzeń, kóry zlicza okresy sygału wejściowego i liczik czasu, kóry zlicza impulsy zegarowe, mierząc w e sposób czas pracy liczika zdarzeń. W celu zmiejszeia błędu dyskreyzacji liczik zdarzeń zlicza impulsy aŝ do zebraia liczby większej od pewej warości miimalej (p. 0 6 impulsów). Procesor wylicza okres (3), częsoliwość (), (5) lub czas rwaia sygału wejściowego. Geeraor wzorcowy 0 MHz Zegar 500MHz Wyświelacz sygał wejściowy "A" sygał wejściowy "B" Blok ormujący "A" Blok ormujący "B" Bramka + układ serowaia bramką Liczik czasu Liczik zdarzeń Procesor Rys.7. Uproszczoa srukura przyrządu współbieŝego HP 5345A 5. Program ćwiczeia. 5.. Pomiar okresu za pomocą oscyloskopu Zesawić układ pomiarowy jak a rys. 8. Geeraor Cerala liia Sygałowa BNC Oscyloskop OS5020 Rys. 8. Pomiar okresu za pomocą oscyloskopu. 0

11 D Dla sygału zadaego przez prowadzącego dobrać skalę podsawy czasu c [ms/cm] ak, aby a ekraie ekspooway był pojedyczy okres mierzoego sygału. Zmierzyć długość l [cm] mierzoego okresu. Oceić warość błędu odczyu l [cm]. Pomiary wykoać dla średich warości częsoliwości sygału mierzoego (00Hz 00kHz), ajlepiej, ale iekoieczie uzyskiwaych z geeraora wzorcowego. Uwaga!! Sprawdzić czy płya regulacja podsawy czasu usawioa jes w pozycji "kalibrowaa" Wyzaczyć warość mierzoego okresu = c l Obliczyć warość względego błędu pomiaru przyjmując c = ± + c l l c 2% c Zebrać dae pomiarowe i i (, ) dla wszyskich sześciu saowisk pomiarowych (ab. 3). ab *) 6 = = 6 i i= = *) 6 = S = ( 5 i= 2 i ) = *) Dla swojego wyiku pomiaru Wyzaczyć warość średią okresu S = - i= (i ) średiej. Porówać warości i S. 2 = i i= oraz odchyleie średie kwadraowe S jako miarę rozrzuu wyików pomiarów, wokół warości

12 D Powórzyć zadaia z pk..2.4 dla kilku róŝych warości okresu zadaych przez prowadzącego (0-5 s 0s) i kilku kszałów mierzoego sygału. Oceić przeprowadzoe pomiary, porówując uzyskae dokładości. Dokoać pomiarów dla sygałów wzorcowych o w = MHz, w2 = 0MHz, zwrócić uwagę a odkszałceia sygału, oraz pogorszeia dokładości odczyu wyikające z ograiczeia maksymalej, kalibrowaej częsoliwości geeraora podsawy czasu oscyloskopu. Wykoać pomiary dla małych częsoliwości w3 = 0Hz, w4 = Hz ( w5 = 0.Hz). Zwrócić uwagę a rudości związae z sychroizacją obrazu ( usawić sychroizację oscyloskopu w pozycji "ormal") i problemy odczyu warości okresu Pomiar okresu i częsoliwości za pomocą częsościomierza Zesawić układ pomiarowy, (sygał załączyć a wejście B częsościomierza KZ-2025, a wejście A dla częsościomierza PFL-22) Zapozać się z działaiem regulaora poziomu wyzwalaia. W celu sprawdzeia działaia regulaora poziomu wyzwalaia aleŝy załączyć ukcje "Częso" Częsościomierz Geeraor Cerala liia Oscyloskop OS5020 Sygałowa BNC ("Freq") a zakresie w = / w = 0s. Dla sygału mierzoego, przy owarej bramce, usawić pokręło "poziom" ("Level") w środku obszaru w kórym zachodzi regulare zliczaie impulsów. Rys. 9. Pomiar okresu i częsoliwości za pomocą częsościomierza Dla zbioru sygałów wzorcowych (odiesieia) zadaych przez prowadzącego dokoać pomiarów częsoliwości i okresu. Wyiki zapisać w ablicy 4. Wyzaczyć warości względych błędów pomiarów i 2

13 D- ab.4. Lp. [Hz] w w [Hz] Dla przeprowadzoych pomiarów wyzaczyć warość częsoliwości graiczej gr i przeaalizować uzyskae wyiki zaware w ablicy. Usawieie przełączika "Fukcja" w rybie: "Okres" ("Period"). Przy zwarych wejściach (B i C dla KZ ) ( A i B dla PFL-22) umoŝliwia pomiar okresu z rozdzielczością 0, µs 0s w zaleŝości od dokoaego wyboru Dokoać wielokroego pomiaru częsoliwości s i okresu s przebiegu w sieci eergeyczej ab.5, wyzaczyć w oparciu o zajomość paramerów s s przyrządów warości błędów względych i, wyzaczyć warość S = średią częsoliwości - i= (s s ) i 2 = oraz odchyleie średie kwadraowe s s i i= jako miarę rozrzuu wyików pomiarów wokół średiej. s s ab.5. Lp. s [Hz] s = s s = S = Zapozać się z działaiem przełączików wyboru zboczy wyzwalających, dokoać pomiaru okresu, czasu rwaia, czasu przerwy p sygałów prosokąych (rys. 0), współczyika wypełieia D. Wyzaczyć warość błędu względego współczyika wypełieia D. Pomiar paramerów D czasowych uruchamia klawisz "czas" (" I B-C") przełączika ukcji przy zwarych wejściach (B i C dla KZ 2025), (A i B dla PFL -22). Pomiar moŝliwy jes z rozdzielczością 0.µs 0s w zaleŝości od wyboru. Realizacja pomiarów moŝe być dokoywaa przy auomayczej regulacji poziomu odiesieia w 3

14 D- zakresie 0,3 < D< 0,7, o wyborze, p lub decydują przełącziki wyboru zboczy wyzwalających. p D = ; D D = ± + Rys. 0. Paramery czasowe przebiegu prosokąego W srukurze jak a rysuku dokoać pomiarów częsoliwości sygałów z geeraorów zajdujących się a saowisku. Częsościomierz Geeraor Oscyloskop OS5020 Mee Rys. Pomiar częsoliwości za pomocą róŝych przyrządów. Wyzaczyć warości błędów wyiki. dla kaŝdego z przyrządów, porówać uzyskae 4

15 D- ab. 6. Lp. CZĘSOŚCIOMIERZ KZ (PFL) MEEX [Hz] [Hz] Uwagi 6. Lieraura:. Chwaleba A, Poiński M, Siedlecki A, Merologia Elekrycza. Warszawa, WN Zieloko R, Barosiński i ii: Laboraorium z Podsaw Miericwa. Gdańsk 998. WPG. 3. Mała Ecyklopedia Merologii. Warszawa, WN

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Sygnały pojęcie i klasyfikacja, metody opisu.

Sygnały pojęcie i klasyfikacja, metody opisu. Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić

Bardziej szczegółowo

(opracował Leszek Szczepaniak)

(opracował Leszek Szczepaniak) ĆWICZENIE NR 3 POMIARY POŁOśENIA I PRZEMIESZCZEŃ LINIOWYCH I KĄTOWYCH (opracował Leszek Szczepaiak) Cel i zakres ćwiczeia Celem ćwiczeia jest praktycze zapozaie się z metodami pomiarowymi i czujikami do

Bardziej szczegółowo

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów

Bardziej szczegółowo

POMIAR CZĘSTOTLIWOŚCI I INTERWAŁU CZASU

POMIAR CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Nr. Ćwicz. 7 Politechnika Rzeszowska Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I POMIAR CZĘSOLIWOŚCI I INERWAŁU CZASU Grupa:... kierownik 2... 3... 4... Ocena I. CEL ĆWICZENIA Celem

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

22. CYFROWE POMIARY CZĘSTOTLIWOŚCI, OKRESU CZASU I PRZESUNIĘCIA KĄTOWEGO

22. CYFROWE POMIARY CZĘSTOTLIWOŚCI, OKRESU CZASU I PRZESUNIĘCIA KĄTOWEGO Maeriały pomocicze do laoraorium z Merologii elekryczej i elekroiczej 22. CYFROWE POMIARY CZĘSOLIWOŚCI, OKRESU CZASU I PRZESUNIĘCIA KĄOWEGO Opracoał: S. Moskoicz Na orma elekroiczy przeorzył: A. Wollek

Bardziej szczegółowo

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie:

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie: Wydział EAIiIB Kaedra Merologii i Elekroniki Laboraorium Podsaw Elekroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw.. Wprowadzenie do obsługi przyrządów pomiarowych cz. Daa wykonania:

Bardziej szczegółowo

I. Cel ćwiczenia. II. Program ćwiczenia SPRAWDZANIE LICZNIKÓW ENERGII ELEKTRYCZNEJ

I. Cel ćwiczenia. II. Program ćwiczenia SPRAWDZANIE LICZNIKÓW ENERGII ELEKTRYCZNEJ Politechika Rzeszowska Zakład Metrologii i Systemów Diagostyczych Laboratorium Metrologii II SPRAWDZANIE LICZNIKÓW ENERGII ELEKTRYCZNEJ Grupa L.../Z... 1... kierowik Nr ćwicz. 9 2... 3... 4... Data Ocea

Bardziej szczegółowo

Błędy kwantyzacji, zakres dynamiki przetwornika A/C

Błędy kwantyzacji, zakres dynamiki przetwornika A/C Błędy kwatyzacji, zakres dyamiki przetworika /C Celem ćwiczeia jest pozaie wpływu rozdzielczości przetworika /C a błąd kwatowaia oraz ocea dyamiki układu kwatującego. Kwatowaie przyporządkowaie kolejym

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU

ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU ĆWICZENIE 7 POMIARY CZĘSTOTLIWOŚCI I CZASU 5. Cel ćwiczenia Celem ćwiczenia jes poznanie podsawowych meod pomiaru częsoliwości, okresu, czasu rwania impulsu, czasu przerwy, ip. 5.2 Wprowadzenie Częsoliwością

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( )

( 0) ( 1) U. Wyznaczenie błędów przesunięcia, wzmocnienia i nieliniowości przetwornika C/A ( ) ( ) Wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A Celem ćwiczeia jest wyzaczeie błędów przesuięcia, wzmocieia i ieliiowości przetworika C/A. Zając wartości teoretycze (omiale) i rzeczywiste

Bardziej szczegółowo

POMIAR WARTOŚCI SKUTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁU

POMIAR WARTOŚCI SKUTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁU POMIAR WARTOŚCI SKTECZNEJ NAPIĘĆ OKRESOWO ZMIENNYCH METODĄ ANALOGOWEGO PRZETWARZANIA SYGNAŁ CEL ĆWICZENIA Celem ćwiczeia jest zwróceie uwagi a ograiczeie zakresu poprawego pomiaru apięć zmieych wyikające

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Wyznaczanie temperatury i wysokości podstawy chmur

Wyznaczanie temperatury i wysokości podstawy chmur Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe.

Przetworniki analogowo-cyfrowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI INSTYTUT MASZYN I UZĄDZEŃ ENEGETYCZNYCH LABOATOIUM ELEKTYCZNE Przeworniki analogowo-cyfrowe. (E 11) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

L A B O R A T O R I U M T E C H N I K I C Y F R O W E J

L A B O R A T O R I U M T E C H N I K I C Y F R O W E J Paweł OSTASZEWSKI 55566 25.11.2002 Piotr PAWLICKI 55567 L A B O R A T O R I U M T E C H N I K I C Y F R O W E J Ćwiczeie r 2 Temat: B A D A N I E P R Z E R Z U T N I K Ó W Treść ćwiczeia: Obserwacja a

Bardziej szczegółowo

Termoanemometr wzorcowanie sondy. Pomiar rozkładu prędkości termoanemometrem.

Termoanemometr wzorcowanie sondy. Pomiar rozkładu prędkości termoanemometrem. Termoaemomer wzorcowaie sody. Pomiar rozkładu prędkości ermoaemomerem.. Cel ćwiczeia Celem ćwiczeia jes pozaie podsawowych właściwości merologiczych ermoaemomeru sałoemperaurowego, sposobu jego wzorcowaia

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe i cyfrowo- analogowe

Przetworniki analogowo-cyfrowe i cyfrowo- analogowe Przetworiki aalogowo-cyfrowe i cyfrowo- aalogowe 14.1. PRZETWORNIKI C/A Przetworik cyfrowo-aalogowy (ag. Digital-to-Aalog Coverter) jest to układ przetwarzający dyskrety sygał cyfrowy a rówowaŝy mu sygał

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

1. Wyznaczanie charakterystyk statycznych prądnicy tachometrycznej prądu stałego.

1. Wyznaczanie charakterystyk statycznych prądnicy tachometrycznej prądu stałego. ĆWICZENIE 5 Pomiary prędkości CEL ĆWICZENIA. Celem ćwiczeia jest pozaie możliwości pomiaru prędkości obrotowej. Ćwiczeie obejmuje: wyzaczeie własości statyczych prądic tachometryczych i oceę możliwości

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

POMIARY CZASU, CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO Ćwiczenie nr 3

POMIARY CZASU, CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO Ćwiczenie nr 3 Podsawy elekroniki i merologii na kierunku Inormayka POMIARY CZASU, CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO Ćwiczenie nr 3 1. Cel ćwiczenia Podsawowym celem ćwiczenia jes poznanie analogowych i cyrowych

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie sudenów z podsawowymi właściwościami ów przebiegów elekrycznych o jes źródeł małej mocy generujących przebiegi elekryczne. Przewidywane jes również (w miarę

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników Insrukcja do ćwiczenia laboraoryjnego Badanie przerzuników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. 2. Właściwości, ablice sanów, paramery sayczne przerzuników RS, D, T, JK.

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017 Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,

Bardziej szczegółowo

ĆWICZENIE nr 2 CYFROWY POMIAR MOCY I ENERGII

ĆWICZENIE nr 2 CYFROWY POMIAR MOCY I ENERGII Politechika Łódzka Katedra Przyrządów Półprzewodikowych i Optoelektroiczych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTROICZEJ ĆWICZEIE r CYFROWY POMIAR MOCY I EERGII Łódź 009 CEL ĆWICZEIA: Ćwiczeie ma a

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

WYKORZYSTANIE MULTIMETRÓW CYFROWYCH DO POMIARU SKŁADOWYCH IMPEDANCJI

WYKORZYSTANIE MULTIMETRÓW CYFROWYCH DO POMIARU SKŁADOWYCH IMPEDANCJI 1 WYKORZYSTAIE MULTIMETRÓW CYFROWYCH DO POMIARU 1. CEL ĆWICZEIA: SKŁADOWYCH IMPEDACJI Celem ćwiczenia jest zapoznanie się z możliwościami pomiaru składowych impedancji multimetrem cyfrowym. 2. POMIARY

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego 1 MLIMER CYFROWY 1. CEL ĆWICZEIA: Celem ćwiczenia jes zapoznanie się z zasadą działania, obsługą i możliwościami mulimeru cyfrowego 2. WPROWADZEIE: Współczesna echnologia elekroniczna pozwala na budowę

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET Wydział Elekroniki Mikrosysemów i Fooniki Poliechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 5 Przełącznikowy ranzysor mocy MOSFET Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Obsługa wyjść PWM w mikrokontrolerach Atmega16-32

Obsługa wyjść PWM w mikrokontrolerach Atmega16-32 Zachodniopomorski Uniwersye Technologiczny WYDZIAŁ ELEKTRYCZNY Kaedra Inżynierii Sysemów, Sygnałów i Elekroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA Obsługa wyjść PWM w mikrokonrolerach Amega16-32 Opracował:

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich

Bardziej szczegółowo

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r.

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r. Wykaz zmia wprowadzoych do skróu prospeku iformacyjego KBC Parasol Fuduszu Iwesycyjego Owarego w diu 0 syczia 200 r. Rozdział I Dae o Fuduszu KBC Subfudusz Papierów DłuŜych Brzmieie doychczasowe: 6. Podsawowe

Bardziej szczegółowo

Przetwarzanie analogowocyfrowe

Przetwarzanie analogowocyfrowe Przewarzanie analogowocyfrowe Z. Serweciński 05-03-2011 Przewarzanie u analogowego na cyfrowy Proces przewarzania u analogowego (ciągłego) na cyfrowy składa się z rzech podsawowych operacji: 1. Próbkowanie

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA Sprawozdanie z ćwiczenia nr

PRACOWNIA ELEKTRYCZNA Sprawozdanie z ćwiczenia nr Zespół Szkół Techiczych w Skarżysku-Kamieej PRACOWNIA ELEKTRYCZNA Sprawozdaie z ćwiczeia r imię i azwisko Temat ćwiczeia: BADANIE SILNIKA BOCZNIKOWEGO PRĄDU STAŁEGO rok szkoly klasa grupa data wykoaia

Bardziej szczegółowo

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2.

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2. POLIECHNIK WROCŁWSK, WYDZIŁ PP I- LBORORIUM Z PODSW ELEKROECHNIKI I ELEKRONIKI Ćwiczenie nr 9. Pomiary podsawowych paramerów przebiegów elekrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

LV5. Pomiary przemiennych napięć i prądów w obwodach jednofazowych

LV5. Pomiary przemiennych napięć i prądów w obwodach jednofazowych LV5 Pomiary przemieych apięć i prądów w obwodach jedofazowych Celem ćwiczeia jest zapozaie z problematyką wyzaczaia wartości apięcia i prądu z próbek sygału zebraych w obwodzie pomiarowym apięcia przemieego..

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ

ANALIZA MATEMATYCZNA 1 (MAP 1024) LISTY ZADAŃ ANALIZA MATEMATYCZNA (MAP 0) LISTY ZADAŃ Listy zadań przezaczoe są dla studetów którzy program matematyki szkoły poadgimazjalej zają jedyie a poziomie podstawowym Obejmują iezbęde do dalszej auki zagadieia

Bardziej szczegółowo

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

10. Demodulatory asynchroniczne

10. Demodulatory asynchroniczne 56 0. Deodulaory asychroicze Cele ćwiczeia Badaie właściwości asychroiczej i sychroiczej deodulacji AM. Zapozaie z właściwościai odulacji cyrowych FSK i PSK. Badaie deodulaora FSK i BPSK. Zapozaie z przykładai

Bardziej szczegółowo

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.

Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy. MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,

Bardziej szczegółowo

Przełączanie diody. Stan przejściowy pomiędzy stanem przewodzenia diod, a stanem nieprzewodzenia opisuje się za pomocą parametru/ów czasowego/ych.

Przełączanie diody. Stan przejściowy pomiędzy stanem przewodzenia diod, a stanem nieprzewodzenia opisuje się za pomocą parametru/ów czasowego/ych. Przełączaie diody 1. Trochę eorii a przejściowy pomiędzy saem przewodzeia diod, a saem ieprzewodzeia opisuje się za pomocą parameru/ów czasowego/ych. Mamy więc ajprosszy eleme półprzewodikowy (dwójik),

Bardziej szczegółowo

Kinetyczna teoria gazów. Zjawiska transportu : dyfuzja transport masy transport energii przewodnictwo cieplne transport pędu lepkość

Kinetyczna teoria gazów. Zjawiska transportu : dyfuzja transport masy transport energii przewodnictwo cieplne transport pędu lepkość Kieycza eoria gazów Zjawiska rasporu : dyfuzja raspor masy raspor eergii przewodicwo cieple raspor pędu lepkość Zjawiska rasporu - dyfuzja syuacja począkowa brak rówowagi proces wyrówywaia koceracji -

Bardziej szczegółowo

I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO

I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO I PRACOWNIA FIZYCZNA, UMK TORUŃ Istrukcja do ćwiczeia r WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA RÓŻNICOWEGO Istrukcję wykoał Mariusz Piwiński I. Cel ćwiczeia. pozaie ruchu harmoiczeo oraz

Bardziej szczegółowo

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

Statystyka opisowa. () Statystyka opisowa 24 maja / 8 Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki

Podstawy Elektroniki dla Elektrotechniki AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Klucze Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2015 r. 1 1. Wsęp. Celem ćwiczenia jes ugrunowanie

Bardziej szczegółowo

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2 Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5

LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 5 Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 5 ANALIZA WŁASNOŚCI DYNAMICZNYCH WYBRANEGO OBIEKTU FIZYCZNEGO 1. Opis właściwości dyamiczych obiektu Typowym

Bardziej szczegółowo

Gretl konstruowanie pętli Symulacje Monte Carlo (MC)

Gretl konstruowanie pętli Symulacje Monte Carlo (MC) Grel kosruowaie pęli Symulacje Moe Carlo (MC) W Grelu, aby przyspieszyć pracę, wykoać iesadardową aalizę (ie do wyklikaia ) możliwe jes użycie pęli. Pęle realizuje komeda loop, kóra przyjmuje zesaw iych

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

1.3. Metody pomiaru efektu kreacji wartości przedsiębiorstwa

1.3. Metody pomiaru efektu kreacji wartości przedsiębiorstwa 48 Warość przedsiębiorswa 1.3. Meody pomiaru efeku kreacji warości przedsiębiorswa Przesłaki pomiaru efeku kreacji warości przedsiębiorswa Aby kocepcja zarządzaia warością mogła być wprowadzoa w Ŝycie,

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta

Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta Ćwiczenie 7 POMIARY CZĘSTOTLIWOŚCI I INTERWAŁU CZASU Opracowała: A. Szlachta I. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych metod pomiaru częstotliwości. Metody analogowe, zasada cyfrowego

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

oraz I = 50Ω, przez który przepływają kluczowane na przemian prądy I + . W przypadku, gdy Robc > RGR

oraz I = 50Ω, przez który przepływają kluczowane na przemian prądy I + . W przypadku, gdy Robc > RGR Laboaoium Pzyządów Półpzewodikowych 0091019 Ćwiczeie Właściwości dyamicze diod p- 1 CEL ĆWICZENIA Celem ćwiczeia jes zapozaie się z pocesem pzełączaia diod p- oaz sposobem usalaia waości wybaych paameów,

Bardziej szczegółowo

wirnika (w skrócie CPW). Jako czujniki położenia wirnika najczęściej stosuje się czujniki hallotronowe.[1]

wirnika (w skrócie CPW). Jako czujniki położenia wirnika najczęściej stosuje się czujniki hallotronowe.[1] Zeszyy Probleowe aszyy Elekrycze Nr 7/5 149 Jausz Heańczyk, Krzyszof Krykowski Poliechika Śląska, Gliwice BADANIA SYULACYJNE I LABORAORYJNE SILNIKA P BLDC WYKORZYSUJĄCEGO CZUJNIK POŁOŻENIA WIRNIKA W OBWODZIE

Bardziej szczegółowo

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI

KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI KATEDRA ENERGOELEKTRONIKI I ELEKTROENERGETYKI Grupa: 1. 2. 3. 4. 5. LABORATORIUM ELEKTROENERGETYKI Data: Ocea: ĆWICZENIE 3 BADANIE WYŁĄCZNIKÓW RÓŻNICOWOPRĄDOWYCH 3.1. Cel ćwiczeia Celem ćwiczeia jest:

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

UKŁADY REGULACJI NAPIĘCIA

UKŁADY REGULACJI NAPIĘCIA Zespół Szkół Tehizyh w Skarżysku-Kamieej Sprawozdaie z ćwizeia r 2 Temat ćwizeia: PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA imię i azwisko KŁADY REGLACJI NAPIĘCIA rok szkoly klasa grupa data wykoaia I. Cel

Bardziej szczegółowo

19. Zasilacze impulsowe

19. Zasilacze impulsowe 19. Zasilacze impulsowe 19.1. Wsęp Sieć energeyczna (np. 230V, 50 Hz Prosownik sieciowy Rys. 19.1.1. Zasilacz o działaniu ciągłym Sabilizaor napięcia Napięcie sałe R 0 Napięcie sałe E A Zasilacz impulsowy

Bardziej szczegółowo

EA3 Silnik komutatorowy uniwersalny

EA3 Silnik komutatorowy uniwersalny Akademia Góriczo-Huticza im.s.staszica w Krakowie KAEDRA MASZYN ELEKRYCZNYCH EA3 Silik komutatorowy uiwersaly Program ćwiczeia 1. Oględziy zewętrze 2. Pomiar charakterystyk mechaiczych przy zasilaiu: a

Bardziej szczegółowo

Wprowadzenie do SIMULINKA

Wprowadzenie do SIMULINKA Akademia Morska w Gdyi Kaedra Aomayki Okręowej Teoria serowaia Mirosław Tomera. WSTĘP SIMULINK jes pakieem oprogramowaia słżącym do modelowaia, symlacji i aalizowaia kładów dyamiczych. Moża implemeować

Bardziej szczegółowo

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ

INSTRUKCJA NR 06-2 POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ LABORATORIUM OCHRONY ŚRODOWISKA - SYSTEM ZARZĄDZANIA JAKOŚCIĄ - INSTRUKCJA NR 06- POMIARY TEMPA METABOLIZMU METODĄ TABELARYCZNĄ 1. Cel istrukcji Celem istrukcji jest określeie metodyki postępowaia w celu

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza

Bardziej szczegółowo

POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH

POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH POMIARY KIERUNKÓW I WYZNACZENIE KĄTÓW POZIOMYCH KĄT POZIOMY Defiicja kąt poziomy wyzaczay jest przez ślady przecięcia dwóch płaszczyz pioowych przechodzących przez oś celową i obserwowae pukty z poziomą

Bardziej szczegółowo