11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu.

Wielkość: px
Rozpocząć pokaz od strony:

Download "11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu."

Transkrypt

1 Równania różniczkowe cząstkowe pierwszego rzędu Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu Równania różniczkowe cząstkowe. Definicje i oznaczenia. Równaniem różniczkowym cząstkowym nazywamy wyrażenie postaci (RRCz) F(x 1,x 2,...,x n,u,u x1,u x2,...,u xn,u x1 x 1,u x1 x 2,...)=0, }{{} skończenie wiele gdzieu=u(x 1,...,x n )jestfunkcjąniewiadomą,au xi,u xi x j,itd.,oznaczają jej pochodne cząstkowe. Maksymalny rząd pochodnej cząstkowej występującej w równaniu nazywamy rzędem równania. Jeślirównaniemarządk,tofunkcjaϕ=ϕ(x 1,...,x n )jestrozwiązaniem klasycznymrównaniawobszarzeω R n,gdymaciągłepochodne cząstkowedorzędukwłączniewωirówność(rrcz)spełnionajestdla wszystkich(x 1,...,x n ) Ω.Niekiedyżądasiętylkoabyϕbyłafunkcją ciągłąwωimiaławωciągłepochodnecząstkowewystępującewrównaniu. Rozpatruje się także rozwiązania mniej regularne, w tym także nie będące funkcjami ciągłymi(rozwiązania uogólnione, słabe, mocne, dystrybucyjne, lepkościowe,...). Każdorazowo wymaga to podania precyzyjnej definicji pojęcia rozwiązania. Przykład. Równanie różniczkowe cząstkowe pierwszego rzędu u x =0 w R 2 jestspełnioneprzezu(x,y)=f(y),gdzief: R Rjestdowolnąfunkcją. Rozwiązanie klasyczne powyższego równania ma zatem postać u(x,y)=f(y),gdzief: R RjestdowolnąfunkcjąklasyC 1 (lubdowolną funkcją ciągłą) Równania różniczkowe cząstkowe pierwszego rzędu,n=2. W przypadku wymiaru przestrzeni n = 2 równanie pierwszego rzędu ma ogólną postać F(x,y,u,u x,u y )=0.

2 11 2 Skompilował Janusz Mierczyński Szczególnymi przypadkami są a(x,y)u x +b(x,y)u y =c(x,y)u+f(x,y) a(x,y)u x +b(x,y)u y =c(x,y,u) a(x,y,u)u x +b(x,y,u)u y =c(x,y,u) równanieliniowe, równaniesemiliniowe, równaniequasiliniowe Zagadnienie Cauchy ego dla równania quasiliniowego Rozważmy równanie różniczkowe cząstkowe quasiliniowe pierwszego rzędu (RRCzQ) a(x,y,u)u x +b(x,y,u)u y =c(x,y,u), gdzieofunkcjacha,biczakładamy,żesąklasyc 1 naobszarzeω R 3. Niechl ΩbędziekrzywąklasyC 1,bezsamoprzecięć,zadanąwpostaci parametrycznej x=x 0 (s),y=y 0 (s),u=u 0 (s), s [s 1,s 2 ], otejwłasności,żejejrzutl 0 napłaszczyznęxoyjestteżkrzywąklasyc 1 bezsamoprzecięć. 1 Zagadnienie Cauchy ego a(x,y,u)u x +b(x,y,u)u y =c(x,y,u) (ZC) u(x 0 (s),y 0 (s))=u 0 (s) dlas [s 1,s 2 ] polega na znalezieniu rozwiązania ϕ = ϕ(x, y) równania(rrczq), określonegowpewnymotoczeniukrzywejl 0 ispełniającegowarunek Cauchy ego: (WC) u(x 0 (s),y 0 (s))=u 0 (s) dlas [s 1,s 2 ]. Interpretacja geometryczna. WprowadzającoznaczeniaA:=(a,b,c),N=(u x,u y, 1),równanie (RRCzQ) można zapisać jako (11.1) A,N =0. Ponieważ N jest wektorem normalnym do powierzchni zadanej równaniem u=u(x,y),wiecrówność(11.1)oznacza,żewektorależywpłaszczyźnie 1 Przypominam,żewdefinicjikrzywejklasyC 1 żądasię,m.in.,bywektorstycznyw każdym punkcie krzywej był niezerowy.

3 Równania różniczkowe cząstkowe pierwszego rzędu 11 3 stycznej do tej powierzchni. Warunek(WC) oznacza z kolei, ze krzywa l leży na powierzchni danej równaniem u = u(x, y). Zatem zagadnienie Cauchy ego polega na znalezieniu powierzchni stycznej w każdym swym punkcie do zadanego pola wektorowego A i przechodzącej przez zadaną krzywąlwprzestrzeni R 3. Metoda charakterystyk. Przytoczona interpretacja geometryczna leży u podstaw metody znajdowania rozwiązania zagadnienia Cauchy ego, zwanej metodą charakterystyk. W skrócie polega ona na tym, że przez każdy punkt krzywej l przeprowadzamy krzywą, która w każdym swoim punkcie jest styczna do pola wektorowego A. Powierzchnia utworzona przez te krzywe jest szukanym rozwiązaniem zagadnienia. Dlaustalonegos [s 1,s 2 ]rozważamynastępującezagadnieniepoczątkowe dx dt =a(x,y,u), x(0)=x 0(s), dy (11.2) dt =b(x,y,u), y(0)=y 0(s), du dt =c(x,y,u), u(0)=u 0(s). Z twierdzenia Picarda Lindelöfa dla układów równań różniczkowych zwyczajnych(twierdzenie 6.2) wynika, że istnieje dokładnie jedno rozwiązanie (11.3) ξ=ξ(t,s),η=η(t,s),υ=υ(t,s) zagadnieniapoczątkowego(11.2),określonedlat ( δ s,δ s ),gdzie 0<δ s. Okazuje się, że odwzorowanie gdzie [ (t,s) (ξ(t,s),η(t,s),υ(t,s)) R 3 ], := s [s 1,s 2 ] ( δ s,δ s ) {s}, jestklasyc 1 (jesttowniosekztwierdzeniaoróżniczkowalnejzależności rozwiązania zagadnienia początkowego dla układu równań różniczkowych zwyczajnych od parametru, wyniku dość technicznego). Szukamy teraz warunku dostatecznego na to, by, przynajmniej w pobliżu krzywej l, wzory(11.3), gdy(t, s), były równaniami parametrycznymi

4 11 4 Skompilował Janusz Mierczyński pewnejpowierzchniwr 3 dającejsięprzedstawićjakowykresfunkcji ϕ=ϕ(x,y)klasyc 1. ZdefiniujmyprzekształcenieΦ: R 2,klasyC 1,wzorem Φ(t,s):=(ξ(t,s),η(t,s)), (t,s). JakobianprzekształceniaΦwpunkcie(t,s) wyrażasięwzorem Dlat=0otrzymujemy ξ t (t,s) ξ s (t,s) J Φ (t,s):= η t (t,s) η s (t,s) a(x J Φ (0,s):= 0 (s),y 0 (s),u 0 (s)) x 0(s) b(x 0 (s),y 0 (s),u 0 (s)) y 0 (s) dlas [s 1,s 2 ]. Na podstawie twierdzenia o funkcji odwrotnej, warunkiem dostatecznym na to,byistniałootoczenied odcinka{0} [s 1,s 2 ]takie,żeφ D jest odwracalne,zodwzorowaniemodwrotnym(φ D ) 1 :E 1 1 DklasyC 1, na jest, by zachodziło (11.4) a(x 0 (s),y 0 (s),u 0 (s)) x 0(s) b(x 0 (s),y 0 (s),u 0 (s)) y 0 (s) 0 dlakażdegos [s 1,s 2 ]. Zauważmy,że(11.4)oznaczapewienwaruneknapołożeniekrzywejl 0 : wektorstycznydol 0 irzutwektoraanapłaszczyznęxoyniemogąbyć równoległewżadnympunkciekrzywejl 0. Definiujemyodwzorowanieϕ:E R,klasyC 1,wzorem ϕ:=υ (Φ D ) 1. Udowodnimy teraz, że ϕ jest rozwiązaniem zagadnienia Cauchy ego(zc). Zapiszmy powyższą równość w postaci ϕ(x,y)=υ(t(x,y),s(x,y)), (x,y) E, gdzie(φ D ) 1 (x,y)=(t(x,y),s(x,y)).dokonujączamianyzmiennych, otrzymujemy ϕ(ξ(t,s),η(t,s))=υ(t,s), (t,s) D.

5 Równania różniczkowe cząstkowe pierwszego rzędu 11 5 Różniczkując powyższą równość po t, i uwzględniając równania różniczkowe zwyczajne w(11.2), otrzymujemy ϕ x (ξ(t,s),η(t,s)) a(ξ(t,s),η(t,s),υ(t,s)) +ϕ y (ξ(t,s),η(t,s)) b(ξ(t,s),η(t,s),υ(t,s)) =c(ξ(t,s),η(t,s),υ(t,s)), copoprzejściudozmiennych(x,y)daje ϕ x (x,y) a(x,y,ϕ(x,y))+ϕ y (x,y) b(x,y,ϕ(x,y))=c(x,y,ϕ(x,y)). To, że spełnione są warunki Cauchy ego(wc), wynika z warunków początkowych w(11.2). W dalszym ciągu udowodnimy, ze rozwiązanie to jest wyznaczone jednoznaczniewpewnymotoczeniukrzywejl 0.Niech ϕ(x,y)będzie dowolnym rozwiązaniem zagadnienia(zc). Wykażemy, ze ϕ(x, y) = ϕ(x, y) wpobliżukrzywejl 0.Wzmiennych(t,s)równośćtajestrównoważnaz ϕ(ξ(t,s),η(t,s))=υ(t,s) dla(t,s)zpewnegootoczeniazbioru{0} [s 1,s 2 ].Dlaustalonego s [s 1,s 2 ]rozważmyróżnicę z(t):= ϕ(ξ(t,s),η(t,s)) υ(t,s). Mamy z(0) = 0 oraz, różniczkując obustronnie względem t, z (t)= ϕ x (ξ(t,s),η(t,s))) a(ξ(t,s),η(t,s),υ(t,s)) + ϕ y (ξ(t,s),η(t,s))) b(ξ(t,s),η(t,s),υ(t,s)) c(ξ(t,s),η(t,s),υ(t,s)) = ϕ x (ξ(t,s),η(t,s))) a(ξ(t,s),η(t,s), ϕ(ξ(t,s),η(t,s)) z(t)) + ϕ y (ξ(t,s),η(t,s))) b(ξ(t,s),η(t,s), ϕ(ξ(t,s),η(t,s)) z(t)) c(ξ(t,s),η(t,s), ϕ(ξ(t,s),η(t,s)) z(t)) Funkcja z(t) jest zatem rozwiązaniem zagadnienia początkowego z =F(t,s,z) z(0)=0. =:F(t,s,z(t)). Zauważmyprzytym,zeF(t,s,z)iF z (t,s,z)sąfunkcjamiciągłymi. Zauważmy ponadto, ze funkcja stale równa zeru jest rozwiązaniem tego

6 11 6 Skompilował Janusz Mierczyński zagadnienia. Ponieważ zagadnienie powyższe ma jednoznaczne rozwiązanie, więc z(t) 0, co kończy dowód jednoznaczności rozwiązania zagadnienia(zc). Podsumowując, udowodniliśmy następujące twierdzenie. Twierdzenie11.1.Załóżmy,żea,b,c:Ω R,gdzieΩ R 3 jest obszarem,sąfunkcjamiklasyc 1.Niechl ΩbędziekrzywąklasyC 1,bez samoprzecięć,zadanąwpostaciparametrycznej(x 0,y 0,u 0 ):[s 1,s 2 ] Ω,o tejwłasności,żejejrzutl 0 ={(x 0 (s),y 0 (s)):s [s 1,s 2 ]}teżjestkrzywą klasyc 1 bezsamoprzecięć. Jeżelidlakażdegos [s 1,s 2 ]zachodzi a(x 0 (s),y 0 (s),u 0 (s)) x 0 (s) b(x 0 (s),y 0 (s),u 0 (s)) y 0 (s) 0, to zagadnienie Cauchy ego a(x,y,u)u x +b(x,y,u)u y =c(x,y,u) u(x 0 (s),y 0 (s))=u 0 (s) dlas [s 1,s 2 ] ma rozwiązanie. Rozwiązanie to jest lokalnie jednoznaczne. Układ równań równań różniczkowych zwyczajnych występujący w zagadnieniu(11.2) nosi nazwę układu równań charakterystycznych równania(rrczq), orbity tego układu nazywają sie charakterystykami (równania(rrczq)) a rzuty tych trajektorii na płaszczyznę XOY rzutami charakterystycznymi. Przykład.Znaleźćrozwiązanierównaniaxu x +yu y =(x+y)uspełniające waruneku=1dlax=1,1<y<2. Rozwiązanie. Zapisujemy równanie krzywej l w postaci parametrycznej: x 0 (s)=1,y 0 (s)=s,u 0 (s)=1,s (1,2).Rozwiązujemyzagadnienie początkowe dla układu równań charakterystycznych dx dt =x, x(0)=1, dy dt =y, y(0)=s, du =(x+y)u, u(0)=1, dt dlas (1,2).Rozwiązaniemjestξ(t,s)=e t,η(t,s)=se t, υ(t,s)=e (1+s)(et 1).Zapomocąpierwszychdwóchrównańeliminujemy zmienne(t,s)wtrzecimrównaniuotrzymującu(x,y)=e (1+y/x)(x 1).

7 Równania różniczkowe cząstkowe pierwszego rzędu Liniowe równanie transportu Liniowym równaniem transportu nazywamy równanie różniczkowe cząstkowe liniowe pierwszego rzędu (RT) u t + b, x u =f w(0, ) R n, gdzieu=u(t,x)=u(t,x 1,...,x n )jestszukanąfunkcją, x :=( x 1,..., x n ),b=(b 1,...,b n ) R n jestzadanymwektorem,zaś f:(0, ) R n Rjestzadanąfunkcją. Liniowe równanie transportu(rt) nazywamy jednorodnym, gdy f 0. W przeciwnym przypadku, liniowe równanie transportu nazywamy niejednorodnym. Rozważmy liniowe jednorodne równanie transportu (RTJ) u t + b, x u =0 w(0, ) R n. W istocie znaczy ono, że pochodna funkcji u w kierunku wektora (1,b 1,...,b n )=(1,b)mabyćrównazeru,zatemfunkcjaumabyćstałana każdej prostej równoległej do wektora(1, b). Rozpatrzmy zagadnienie początkowe (RTJ-ZP) u t + b, x u =0 w(0, ) R n u=g na{0} R n, gdzieg: R n Rjestzadanąfunkcją. Dlaustalonego(t,x) (0, ) R n,prostaprzechodzącaprzeztenpunkti równoległado(1,b)przecinahiperpłaszczyznę{0} R n wpunkcie (0, x tb). Jeśli zagadnienie początkowe(rtj-zp) ma rozwiązanie ϕ, to ϕ(t,x)=ϕ(0,x tb)=g(x tb),czyli (11.5) ϕ(t,x)=g(x tb), t 0,x R n. JeślifunkcjagjestklasyC 1,totakzdefiniowaneϕjestklasycznym rozwiązaniem równania(rtj). Przejdźmy teraz do zagadnienia początkowego dla niejednorodnego liniowego równania transportu (RTN-ZP) u t + b, x u =f w(0, ) R n u=g na{0} R n,

8 11 8 Skompilował Janusz Mierczyński gdzief:(0, ) R n Rig: R n Rsązadanymifunkcjami. Niechψ:[0, ) R n Rbędzierozwiązaniemzagadnienia(RTN-ZP). Ustalmy(t,x) (0, ) R n,ipołóżmyz(s):=ψ(t+s,x+sb), s [ t, ).Wówczas z (s)=ψ t (t+s,x+sb)+ b, x ψ(t+s,x+sb) =f(t+s,x+sb), co daje Zatem ψ(t,x) g(x tb)=ψ(t,x) ψ(0,x)=z(0) z( t)= = 0 t (11.6) ψ(t,x)=g(x tb)+ f(t+s,x+sb)ds= t 0 t 0 0 t z (s)ds f(s,x+(s t)b)ds. f(s,x+(s t)b)ds, t 0,x R n.

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Równania różniczkowe cząstkowe B1 Streszczenia wykładów

Równania różniczkowe cząstkowe B1 Streszczenia wykładów Streszczenia wykładów Jan Goncerzewicz 25 października 2016 (Notatki w trakcie permanentnego redagowania) Wersja 1.01a 1 1 Wstęp 1.1 Definicje i oznaczenia. Równaniem różniczkowym cząstkowym nazywamy wyrażenie

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne Równania w postaci Leibniza 4 1 4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne 4.1 Równania różniczkowe w postaci Leibniza Załóżmy, że P : D R i Q: D R są funkcjami ciągłymi określonymi

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

6 Układy równań różniczkowych. Równania wyższych rzędów.

6 Układy równań różniczkowych. Równania wyższych rzędów. Układy równań. Równania wyższych rzędów. 6 1 6 Układy równań różniczkowych. Równania wyższych rzędów. 6.1 Podstawowe pojęcia dla układów równań różniczkowych zwyczajnych Definicja. Układem n równań różniczkowych

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE 1. Pojęcia wstępne Przykład 1.1. (Rozpad substancji promieniotwórczej ) Z doświadczeń wiadomo, że prędkość rozpa pierwiastka promieniotwórczego jest ujemna i proporcjonalna

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych

Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Analiza matematyczna i algebra liniowa Elementy równań różniczkowych Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936

Bardziej szczegółowo

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie.

2. Kombinacja liniowa rozwiązań zeruje się w pewnym punkcie wtedy i tylko wtedy, gdy zeruje się w każdym punkcie. Wniosek 1 Rozpatrzmy układ równań postaci: y 1 = a 11 (x)y 1 + + a 1n (x)y n y 2 = a 21 (x)y 1 + + a 2n (x)y n y n = a n1 (x)y 1 + + a nn (x)y n (1) o współczynnikach ciągłych w przedziale J 1 Rozwiązanie

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zestaw zadań z Równań różniczkowych cząstkowych I 18/19 Zad 1. Znaleźć rozwiązania ogólne u = u(x, y) następujących równań u x = 1, u y = 2xy, u yy = 6y, u xy = 1, u x + y = 0, u xxyy = 0. Zad 2. Znaleźć

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Różniczkowalna zależność rozwiązania od warunków początkowych i parametrów

Różniczkowalna zależność rozwiązania od warunków początkowych i parametrów Różniczkowalna zależność 1 Różniczkowalna zależność rozwiązania od warunków początkowych i parametrów Rozważmy zagadnienie początkowe x =f(t,x,p) (1) x()=ξ. Funkcjafjestokreślonanazbiorze(a,b) R S,gdzieRjestwnętrzem

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne Równania w postaci Leibniza 4 1 4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne 4.1 Równania różniczkowe w postaci Leibniza Załóżmy,żeP:D RiQ:D Rsąfunkcjamiciągłymiokreślonymina

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 6.

Ekoenergetyka Matematyka 1. Wykład 6. Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

Geometria. Rozwiązania niektórych zadań z listy 2

Geometria. Rozwiązania niektórych zadań z listy 2 Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na

Bardziej szczegółowo

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja 19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 15

RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 Niech r ( t ) [ x( t), y( t), z( t)], t I ( r ( t ) x( t) i y( t) j z( t) k, t I ) będzie równaniem wektorowym krzywej w R 3. Definicja Krzywą o równaniu r ( t ) [ a cost,

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego

Bardziej szczegółowo

Równania pierwszego rzędu i metoda charakterystyk

Równania pierwszego rzędu i metoda charakterystyk Rozdział 14 Równania pierwszego rzędu i metoda charakterystyk Rozważmy równanie różniczkowe cząstkowe pierwszego rzędu F (x, u(x), Du(x)) = 0 dla x Ω, (14.1) gdzie F : Ω R R n R jest zadaną funkcja gładką.

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda

czastkowych Państwo przyk ladowe zadania z rozwiazaniami:   karpinw adres strony www, na której znajda Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równania różniczkowe zwyczajne rzędun,n 2 Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/38 Równania różniczkowe zwyczajne

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego...

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego... Skrypt powstał na bazie wykładów z przedmiotu Równania różniczkowe, które prowadzę dla studentów drugiego semestru kierunku Automatyka i Robotyka na Wydziale Elektrotechniki i Automatyki Politechniki Gdańskiej.

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2017)

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2017) Prace Koła Mat. Uniw. Ped. w Krak. 4 (2017), 1 11 edagogicznego w Krakowie PKoło Matematyków Uniwersytetu Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2017) Magdalena Gwóźdź 1 Afiniczna

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s. Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo

Równania różniczkowe cz astkowe rzȩdu pierwszego

Równania różniczkowe cz astkowe rzȩdu pierwszego Równania różniczkowe cz astkowe rzȩd pierwszego 1 Równania liniowe jednorodne Rozważmy równanie a 1 ( 1,..., n ) 1 +... + a n ( 1,..., n ) n = 0, (1) gdzie a i, i = 1,..., n s a dane, a fnkcja = ( 1,...,

Bardziej szczegółowo