TRANSFORMATOR TRÓJFAZOWY
|
|
- Jacek Pietrzyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 TRANSFORMATOR TRÓJFAZOWY W eergetyce cęsto używ sę rowąń polegących wyorystu lu trsformtorów eergetycych prcuących rówolegle. Wąże sę tym l wżych wruów pewących poprwą prcę: ) ry eobcążoe stroe wtóre, w uwoech trsformtorów e płyą żde prądy po prądm łowym. ) Ze wrostem prądu obcąże trsformtory obcążą sę rówomere osągą swe prądy moowe edoceśe. ) rądy trsformtorów są e sobą w fe (prąd obcąże est rówy sume lgebrce prądów trsformtorów). Wrue est spełoy, gdy prełde trsformtorów są sobe rówe or gdy presuęc godowe są detyce co est rówowże wruow żeby wrtośc chwlowe odpowedch pęć były w żde chwl sobe rówe. Nerówość prełd pocąg sobą stee prądów wyrówwcych, ogrcoych tylo mpedcą trsformtorów. Dopusc sę odchyłę prełd, tym, że e może być o węs ż 0.5%. Wrue będe spełoy, gdy wrtośc wględe prądów wględem ch prądów moowych są sobe rówe: () () () () () ()... Dl uproscoego schemtu stępcego wrue te będe rówowży: () () () () () () Z Z Z... () Borąc pod uwgę, że pęce wrc est rówe: () u ( ) % ( ) Z ( ) Otrymmy dl wrtośc bewględych: () () u () () () u () () () u ()... () (4) Wrue będe tem spełoy, gdy pęc wrc trsformtorów precoych do prcy rówoległe będą edowe. repsy polse dopuscą odchyłę 0% pęc wrc. Sołbut Adm Błysto 06 str.
2 Sołbut Adm Błysto 06 str. Wrue będe spełoy, gdy porywą sę tróąty wrc poscególych trsformtorów, w prtyce spełoe edye dl ecych różc mocy moowych trsformtorów, węc stosue mocy moowych e może prercć proporc :. W prtyce eletroeergety dążymy do symetryce prcy w ułdch trófowych. Nestety, symetryce obcąże trsformtorów e wse est możlwe do uys, stąd wżym est umeętość ly ch prcy pry esymetrycym obcążeu. Od welu lt do ly prcy w stch ustloych używ est metod słdowych symetrycych. stot te metody poleg tym, że żdy trófowy ułd lowy pęć, prądów cy strume soroych, moż mtemtyce prestłcć do trech słdów symetrycych ywych słdową godą, precwą erową. Słdow god wetorów est słdem w tórym welośc w fch VW te są presuęte wględem sebe o ąt 0 w eruu godym ruchem wsówe egr. Dl słdowe precwe welośc w poscególych fch są presuęte tże o ąt 0 lec w eruu precwym. Słdow erow to słd tórego wrtość, erue wrot est w żde fe detycy. Mtemtyce moż dooć prelce welośc espoloych w ułde trófowym (p. prądów, V, W), poscególe słdowe symetryce (godą, precwą erową 0) wg. leżośc: W V 0 (5) o le obwodu eleże dl żde e słdowych możemy prelcyć welośc recywste: 0 W V (6) Gde: / e (7)
3 e 4 / (9) 0 (0) (8) Dl słdowe gode precwe schemt stępcy trsformtor est detycy. Wyróżć leży schemt stępcy dl słdowe erowe. Jego postć or wrtość ego prmetrów leży od grupy połąceń trsformtor. Słdow erow może płyąć edye wówcs, gdy w ułde połąceń wyprowdoo prewód erowy. Słdow erow może tże powć sę wewątr tróąt występue tm tylo w prądch fowych (my sę wewątr tróąt). Zchowe sę trsformtor dl te słdowe leże est od ułdu połąceń or od budowy rde trsformtor. 0 R X X R 0 W W R Fe0 X 0 Rys. Schemt stępcy trsformtor dl słdowe erowe. Schemt stępcy dl słdowe erowe możemy poo Rys.. Wrtośc prmetrów ostły sprowdoe tu do stroy wtóre. Reystce uwoeń or retce roprose są tu detyce dl słdowe gode precwe. Wyłąc W W są łącoe w leżośc od grupy połąceń Wyłąc W est włącoy w prypdu, gry po stroe perwote uwoe są połącoe w tróąt. Wyłąc W est włącoy dl yg po stroe wtóre (br strume słdowe erowe). Wrtość reystc wąe e strtm w żele est wą ftem, że pry steu strume słdowe erowe pole mgetyce obemue swom sęgem m.. dź trsformtor, w tóre uwg ft że est to lty mterł występuą duże strty. stotym Sołbut Adm Błysto 06 str.
4 problemem, tóry może spowodowć problemy w prtyce est możlwość wrostu pęc po w fch me obcążoych, stąd pry esymetr obcąże lepse rowąem est dążość do mmlc mpedc dl słdowe erowe prądu po stroe wtóre. Nmes wrtość mpedc est dl połące w yg. W ułdch połąceń wyprowdoym putem erowym po stroe wtóre (Yy, Y) prądy słdowe erowe płyą edye po stroe wtóre, pry cym prądy te w rdeu strumeń słdowe erowe (tylo pry połąceu w gwdę), tóry my sę w trsformtorch -olumowych pre powetre (or dź elemety ostrucye węsąc strty trsformtor), tomst w trsformtorch 5-olumowych pre olumy sre. Dl ułdów połącoych po stroe perwote w tróąt (Dy0) strumeń słdowe erowe wytwr w tróące pęc, tóre powoduą prepływ prądu wewątr tróąt, wytłumąc w te sposób strumeń te słdowe. De to możlwość prcy tego ułdu dl ewelch obcążeń esymetrycych. W dużych trsformtorch Yy0 dodtowo w sę uwoee połącoe w tróąt be wyprowd ego ońcówe ewątr edye po to, by wytłumć słdową erową strume. W połącech stroy wtóre w yg strumee słdowe erowe osą sę, co umożlw prcę w pełym rese esymetrycego obcąże. Jo pryłd ly obcąże esymetrycego rowżmy st obcąże edofowego w ułde Yy. omńmy w schemce stępcym prąd stu łowego. rąd po stroe wtóre występue tylo w fe, węc =, V=W=0. Słdowe symetryce prądów po stroe wtóre dl tego prypdu są rówe: 0 0 w w w0 () Słdow god, precw erow są sobe rówe: w w w0 () Odpowede wrtośc słdowych po stroe perwote są rówe: Sołbut Adm Błysto 06 str. 4
5 w p () w p (4) rąd słdowe erowe po stroe perwote e płye (br prewodu eutrlego): (0) p 0 (5) Odpowede prądy fowe po stroe perwote są rówe: p pv p p 0 p p 0 p p ( ) (6) (7) pw p 0 p p ( ) (8) W eergetyce występue wele rodów prcy trsformtorów: - Trsformtory podwyżsące pęce ( bloowe- moc rędu sete MVA, pry wysom pęcu wtórym do 400V). - Trsformtory obżące pęce (wyle dwustopowo: p. 0/5V (secowe - moce rędu desąte sete MVA); 5/0.4 V rodelce VA). - Trsformtory preuące eergę w eruu leżym od prcy ułdu eergetycego (p. spręgące dołące sec o różych wrtoścch wysoch pęć p. 0/400V). Jedym prmetrów opsuących trsformtor est formc o rodu stosowe olc. O ośc decydue tu tw. ls cepłoodporośc olc dl tóre w strsych ormch defowo dopuscle pryrosty tempertur wględem moowe tempertury otoce (40C w Europe) oco: Sołbut Adm Błysto 06 str. 5
6 Kls A - 60 Kls E Kls B Kls F Kls H Atule ormy podą msymle dopuscle wrtośc tempertur w ceplesym mescu trsformtor: Kls A - 05 Kls B - 0 Kls F - 55 Kls H - 80 Kls N - 00 Kls R - 0 Kls S - 40 Kls C > 40 o rdeem uwoem trsformtory są wyposżoe w wele urądeń wspomgących ch esplotcę. Sąt o p..: - oserwtor oleu ogrcee styu oleu powetrem (w strsych ostrucch), - rdtory, - wetyltory, - chłodce powetre wode, - rur wybuchow (>MVA) wór bepeceństw, tóry m pobegć możlwośc rosde d wsute byt dużego cśe wewętrego, - preź gowo podmuchowy (w strsych ostrucch preź Buchholt 9r), - wsź tempertury poomu oleu, - prełd prądowe pęcowe, - sfy sterowce, - prepusty trsformtorowe, - wory, - ułdy pomrowo dgostyce, - tp Sołbut Adm Błysto 06 str. 6
7 W eergetyce stote cee m prmetr wąy oceą ośc urądeń eletrycych, est to sprwość defow o lor wrtośc mocy cye oddwe pre trsformtor do mocy pobre: obc Występue to moc po stroe wtóre rów: (0) cos Or strty łowe obcążeowe obc. Strty łowe są to główe strty w żele, tomst strty obcążeowe to strty mocy reystc wrc: obc R R () m cos cos cos R cos ry de wrtośc prądu obcąże sprwość mlee e mesem sę współcy mocy stroy wtóre. ry stłym współcyu mocy sprwość leży edye od. Wrtość msyml sprwośc występue gdy: d 0 d d d R () () (4) R ) 0 (5) cos cos ( (9) Sołbut Adm Błysto 06 str. 7
8 Sołbut Adm Błysto 06 str. 8 0 cos cos R (6) Cyl występue w sytuc, gdy strty obcążeowe są rówe strtom łowym. obc R m (7) W prtyce sprwość defow pre moce e est lepsym wsźem efetywośc pretwr eerg. Zce lepsym wsźem est tw. sprwość eergetyc, defow o lor odpowedch eerg pretwrych w dłużsym orese csu (dob, tydeń, mesąc td ): obc e t t t t ) ( (8)
9 Sołbut Adm Błysto 06 str. 9
STAN USTALONY MASZYNY SYNCHRONICZNEJ:
=f f =t STAN STALONY ASYNY SYNCHRONCNJ: Chrkterystyk begu jłowego: N f - moowy prą wbue pry begu jłowym f N fn.5 f N Chrkterystyk ewętre: =f, =t f =t =t -leżość pęc cskch o prąu twork pry stłej wrtośc
Plan wykładu. Obliczanie pierwiastków wielomianów. Własności wielomianów. Własności wielomianów. Schemat Hornera. Własności wielomianów. p z. p c r.
Pl wyłdu Olicie pierwistów wielomiów Włsości wielomiów Schemt Horer olicie wrtości dieleie wielomiów deflcj omplety schemt Horer metod Newto eśli, to p m stopień. p p /3 3/3 Włsości wielomiów Włsości wielomiów
Algorytm I. Obliczanie wymaganej powierzchni absorpcji
Algorytm I. Oblcne wymgnej powerchn bsorpcj Wsp. prewodnośc olcj λ Zewnętrny wsp. wnn cepł α Prerój ew. olcj d Prerój wew. olcj d Grubość olcj d r Wsp. prenn cepł r α d π d + * ln λ d + α d Wsp. prenn
ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
MACIERZE I WYZNACZNIKI
MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)
Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI
Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene
Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.
Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.
ELEKTROTECHNIKA. Obwody elektryczne. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego. Elementy obwodu elektrycznego.
ELEKOEHNK Q Q rąd elerycy płye w obwode amęym Źródło eerg Wyład Obwody eleryce Zespół elemeów prewodących prąd, awerający pryajmej jedą drogę amęą dla prepływ prąd W elemeach obwod elerycego achodą procesy
1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty)
1. Alger wetorów Welość wetorową chrterue wrtość, cl moduł, erune, wrot. Możn ą predstwć w sposó grfcn o odcne serown o długośc proporconlne do modułu lu te w sposó nltcn. Sposó nltcn poleg n podnu rutów,,
INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA
prwch rękops do żytk słżboweo ISTYTUT RGOLKTRYKI POLITCHIKI WROCŁAWSKIJ Rport ser SPRAWODAIA r LABORATORIUM TORII I THCIKI STROWAIA ISTRUKCJA LABORATORYJA ĆWICI r 9 Sterowe optymle dyskretym obektem dymcym
啇c go b kt ᆗ匷 y l y s l g y l. P ysł ᆗ匷 ᆗ匷 s ob kt b o l go ᆗ匷 l. P ysł ᆗ匷ᆗ匷.. ᆗ匷ᆗ匷ᆗ匷 ᆗ匷ᆗ匷ᆗ匷ᆗ匷 啇c go Pᆗ匷ᆗ匷 ᆗ匷 ᆗ匷 s 啇c go l. ᆗ匷. 呷b s ᆗ匷ᆗ匷 ᆗ匷2-500 ᆗ匷 s o ot o co 啇c go ᆗ匷 P ó O g Z I s y TECHPLAN ᆗ匷 ᆗ匷
Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01
WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r
Wykład 6. Stabilność układów dynamicznych
Wyłd 6. Sblość ułdó dymcych Rożmy obe dymcy (uoomcy e poddy ymueom) d d d F( ) dm d Pu róog d F( ) r d Obe loy r r mcer( ) de Ułd e bly eżel yrącoy e u róog oe prodoy do u róog Defc blośc ee Lpuo Pu róog
Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel
Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze
Zastosowanie działań na hipersześcianach binarnych w diagnostyce sieci komputerowych
toowe dłń hpereścch brych w dgotyce ec komputerowych Formle, -wymrowym hpereścem brym ywmy grf wykły o węłch których kżdy opy jet ym wektorem brym (,..., ),( {, }, ) or o krwędch, łącących te węły, których
kwartalna sprzeda elazek
Modele elowe MODELE NIELINIOWE Prłd. model low elow - orówe). Kwrl sred ele w lch 996-999 wosł: 4 5 6 7 8 9 4 45 5 57 6 64 68 65 68 67 69 7 7 7 75 Wc rogo rec wrł ro 999. Z wres wd, e red jes rosc lec
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
SZTUCZNA INTELIGENCJA
SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =
St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne
PROGRAMOWANIE LINIOWE.
Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe
Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.
Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
Nadokreślony Układ Równań
Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).
( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił
3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej
2. TRANSFORMATORY I MASZYNY ELEKTRYCZNE 1
4 Zasady eergoelektryk. TRANSFORMATORY I MASZYNY ELEKTRYCZNE.. PRZENOSZENIE ENERGII ZA POŚREDNICTWEM POLA MAGNETYCZNEGO Masyy elektryce trasformatory pretwarają eergę pry udale pola magetycego. Eerga dostarcaa
Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej
Rozwiązywie ułdów rówń liiowych Metod elimicji Guss 2 Postwieie zgdiei Niech dy będzie ułd rówń postci b x x x b x x x b x x x 2 2 2 2 2 22 2 2 2 Powyższy ułd rówń liiowych z iewidomymi moż zpisć w postci
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
Puchar Prezesa WOZŻ. s e z o n u. R e g a t y A Z S. M i s t r z o s t w a. A r m a t o r a P O S N A N I A. O t w a r c i a.
j jhó yyyh 212 y h j. l p Z. T Z T Z Ż E L h B U C H G B U E Ł b ń b l h p ó Lb jąyh jhó ą 25 25 19 16 14 16 18 7 23 17 14 26 19 d 16.6 8.9 22.9 L T1 4 7 4 3 5 36 - h yp Z lb p p p p p p p p p p p p 1
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
o d ro z m ia r u /p o w y ż e j 1 0 c m d ł c m śr e d n ic y 5 a ) o ś r e d n ic y 2,5 5 c m 5 b ) o śr e d n ic y 5 c m 1 0 c m 8
T A B E L A O C E N Y P R O C E N T O W E J T R W A Ł E G O U S Z C Z E R B K U N A Z D R O W IU R o d z a j u s z k o d z e ń c ia ła P r o c e n t t r w a łe g o u s z c z e r b k u n a z d r o w iu
DYDAKTYCZNA PREZENTACJA PRÓBKOWANIA SYGNAŁÓW OKRESOWYCH
POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 73 Electricl Engineering 3 Wojciech LIPIŃSI* DYDAYCZA PREZEACJA PRÓBOWAIA SYGAŁÓW ORESOWYCH Przedstwiono dydtyczną prezentcję próbowni przebiegów oresowych
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł
Metody numeryczne w przykładach
Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I
Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka
lgebr mcerzow e te (rót prowzorycz powtór (uwg: tutj jest ezupełe osewet otcj tj. mcerze czsem są pogruboe czsem ursywe (tlcs) proszę sę e przejmowć t po prostu wyszło) PEWNE WZNE OPERCJE MCIERZOWE ozcz
Wybrane stany nieustalone transformatora:
Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich
Puchar Prezesa WOZŻ 2015
j jhó yyyh 2014 y h Z ł. J h j. l p T T G T Y Z Ś L G B U D Ł ł D b ń J ł l h J p ó Lb jąyh jhó łą 18 19 14 13 17 26 23 29 162 d 4-5 7 05 09 19 09 L T1 3 4 5 7 29 - Jh yp Zł lb p p p p p p p p 1 BZ 4 l
Model oświetlenia WYKŁAD 4. Adam Wojciechowski
Model oświetleni WYKŁAD 4 Adm Wojciechowsi Źródł świtł 1. Puntowe f tt p = 1 min, 1 2 c1 c2d c3d 2. Kierunowe, gdzie d - odległość od źródł p 3. Stożowe model refletor Wrn p p spot = p cos γ = p L o D
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
miąższość warstwy wodonośnej zadana głębokość wody w studni krzywa depresji podłoże nieprzepuszczalne
4 Pemyław Baa www.a.aow.pl\~pbaa Utaloy dopływ wody do tud upełej Według teo Duputa, woda do tud dotaje ę w poób adaly. Le ewpotecjale mają tałt ół, tóyc śedce mejają ę wa bloścą tud, a c śod leżą w jej
Staruszek do wszystkiego
Struszek wszystkiego tekst; Jeremi Przybory muz.: Jerzy Wsowski rr. voc.: Andrzej Borzym ru- stek wszy j j St l St ru- szek d wszy St ru- szek wszy Tum tu. ttt tu tu utkie-go jest inie-z-wo-dnv wsku#ch.
Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe
Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc
Podstawy praktycznych decyzji ekonomiczno- finansowych w przedsiębiorstwie
odswy pryczych decyzji eooiczo- fisowych w przedsiębiorswie l wyłdu - Wrość pieiądz w czsie 4 h - Efeywość projeów w iwesycyjych 3-4 h -Wżoy osz piłu u WACC h odswy pryczych decyzji eooiczo- fisowych w
Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu.
W 1 Rachu maroeoomcze 1. Produ rajowy bruo Sprzedaż fala - sprzedaż dóbr usług osumeow lub frme, órzy osaecze je zużyują, e poddając dalszemu przeworzeu. Sprzedaż pośreda - sprzedaż dóbr usług zaupoych
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
4) Podaj wartość stałych czasowych, wzmocnienia i punkt równowagi przy wymuszeniu impulsowym
LISA0: Podtwowe człony (obiety) dynmii Przygotownie ) Wymień i opiz włności podtwowych członów (obiety) dynmii potć trnmitncji nzwy i ogrniczeni prmetrów ) Wymień podtwowe człony dynmii dl tórych trnmitncj
i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
GEOMETRIA ANALITYCZNA W PRZESTRZENI
GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm
Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych
Fk. Niech mciee i B ego smego sopi będą odrcle or iech R-{}, N. Wed mciee -, T, B,, są kże odrcle i prdie są róości:. de ( - )=(de ) -. ( - ) - =. ( T ) - =( - ) T. (B) - =B - -. ( ) - = ( - ). ( ) - =(
K a r l a Hronová ( P r a g a )
A C T A U N I V E R S I T A T I S L O D Z I E N S I S KSZTAŁCENIE POLONISTYCZNE CUDZOZIEMCÓW 2, 1989 K a r l a Hronová ( P r a g a ) DOBÓR I UKŁAD MATERIAŁU GRAMATYCZNEGO W PODRĘCZNIKACH KURSU PODSTAWOWEGO
Rys. 1. Schemat połączenia. = (grubość sklejki) = (grubość drewna) Szymon Skibicki, Katedra Budownictwa Ogólnego
Szymo Sibici, Ktedr Budowictw Ogólego Przyłd obliczei połączei w rtowicy drewiej wyoego z pomocą łde z sleji iglstej gr. 8mm, łączoej gwoździe zgodie z Rys.. Sróty: EK5 P-E 995--:00AC:006A:008 W prmetrch
Rozwój współpracy międzyoperatorskiej w zakresie zarządzania połączonym systemem w Europie Środkowej
Rozwój współpracy międzyoperatorskiej w zakresie zarządzania połączonym systemem w Europie Środkowej Robert Paprocki PSE Operator S.A. / ENTSO-E VI Konferencja POWER RING Warszawa, 20 grudnia 2010 Electricity
Miś Colargol [B] Choir. q=120 [A] lar -gol. Co Co. to się włas - Wam. -nia. kła -nia. spie. Mis wys. lecz kie choć bar - w_cyr wać chciał
rnżcj Pweł Stuczyńsk 8 10 12 14 q=120 [A] 16 18 Ms co zw sze ć 1 4 5 6 spe w_cyr wć chcł wcąz fł szo ł pos bę dze ce m wszys rod drzew dł ze spe z przed ke mu z b fle pr zdz w st ck wę ce zcz nę Mś lrgol
POMPY SUCHOSTOJĄCE Pionowe pompy wielostopniowe (2900 obr/min)
SVI 201 / 03 E 03T/A 2 320,00 107360010 4F 0,3 3 x 230/400 1 3 106 SVI 202 / 03 E 03T/A 2 367,00 107360020 4F 0,3 3 x 230/400 2 3 106 SVI 203 / 03 E 03T/A 2 409,00 107360030 4F 0,45 3 x 230/400 3 3 106
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
dr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b...
RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Ukłd rówń liiowch iewidoi isuje w ostci Z ukłde () wiąe są ciere A X B które w: A cierą wsółcików X koluą iewidoch B koluą wrów wolch Wkorstując owżse ocei ukłd
Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN
Zminy w wydniu drugim skryptu Konstrukcje stlowe. Prykłdy obliceń według PN-EN 99- Rodił. Dodno nowy punkt.. Inormcje o minch (str. 0.) obecnym wydniu uwględniono miny: wynikjące wprowdeni pre PKN w cerwcu
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna
stalacje i Urządzeia Eletrycze Automatyi Przemysłowej Moderizacja systemu chłodzeia Ciągu echologiczego- część eletroeergetycza Wyoali: Sebastia Marczyci Maciej Wasiuta Wydział Eletryczy Politechii Szczecińsiej
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
Badanie transformatora jednofazowego
BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego. I. WIADOMOŚCI TEORETYCZNE Budowa i asada diałania
Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)
1 Badanie transformatora jednofaowego (Instrukcja do ćwicenia) Badanie transformatora jednofaowego. CEL ĆICZENI: Ponanie asady diałania, budowy i właściwości.transformatora jednofaowego. 1 IDOMOŚCI TEORETYCZNE
http://www.clausius-tower-society.koszalin.pl/index.html
yłd rc zminy objętości czynni roboczego rc techniczn w ułdzie otwrtym n przyłdzie turbiny RównowŜność prcy i ciepł w obiegu zmniętym I zsd termodynmii dl zminy stnu msy ontrolnej Szczególne przypdi I zsdy
ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB
pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:
5. Obiegi wielostopniowe (kaskadowe). Metoda obliczania obiegów kaskadowych.
. Chrw, Pdtawy Krge, wyład 8.. Obeg weltwe (aadwe). etda blczaa begów aadwych. W ażdym, dwle mlwaym begu rgeczym mża wyróżć te, w tórych wytwarzaa jet mc chłdcza rzez realzację jedyczeg rceu termdyamczeg.
Pompy wirowe z wirnikami zamkniętymi. z króćcami kołnierzowymi. Połączenie: kołnierze zgodne z PN 10, EN Przeciwkołnierze: (na zamównienie)
udo. Silnik elektryczny z przedłużonym łem, n którym osdzony jest irnik. Korpus pompy z króćcem ssnym usytuonym osioo i króćcem tłocznym usytuonym promienioo ku górze. Podstoe ymiry i chrkterystyki zgodne
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP
CZAKI THERMO-PRODUCT ul. 19 Kwietni 58 05-090 Rszyn-Ryie tel. (22) 7202302 fx. (22) 7202305 www.zki.pl hndlowy@zki.pl PRZEŁĄCZNIK MIEJSC POMIAROWYCH PMP-201-10 INSTRUKCJA OBSŁUGI GWARANCJA Spis treśi 1.
ELEMENTY RACHUNKU WEKTOROWEGO
Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn
4. Podzielnica uniwersalna 4.1. Budowa podzielnicy
4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
2 0 0 M P a o r a z = 0, 4.
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z
ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT
ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł
Zasada wariacyjna mechaniki kwantowej
Zsd wry meh wtwe uł eerg: K ( [ ] Hˆ ( K de rmwe (łwe z wdrtem fu przyprz dw est wrt zew eerg w ste psym t fu. Jest t p e gze d p fu. u przyprz dwue wrt zbwe zb wrt fu. Argumetm s zby. D fułu rgumetm s
Sprawdzanie transformatora jednofazowego
Sprawdanie transformatora jednofaowego SPRAWDZANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego.
Wiązki gaussowskie scalony Strona 1 z 9 Wiązki gaussowskie
Wiąi gussowsi sclony Sron 9 Wiąi gussowsi. rdmio opisu: pol rochodi się w irunu osi, ogrnicon do oolicy osi opycnj: D y x ol lrycn możn rołożyć n słdow ( i poprcną: ). odobni dywrgncję możn rołożyć n sm
G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC
Fle w ośrodu o struturze periodycznej: N ogół roziry nieciągłości ośrod
WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych
PODSTAWY BAZ DANYCH Wykłd 2 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy bz dnych" 1 Pojęcie krotki - definicj Definicj. Niech dny będzie skończony zbiór U := { A 1, A 2,..., A n }, którego