Ćwiczenie projektowe z przedmiotu Maszyny do Robót Ziemnych i Transportu
|
|
- Milena Wojciechowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie projektowe z przediotu Maszyny do Robót Zienych i Transportu Dobór ocy napędu i wytrzyałości taśy przenośnika w warunkach pracy ustaonej Zakres ćwiczeń projektowych Podstawowy zadanie projektanta jest właściwy dobór paraetrów konstrukcyjnych i techniczno-ruchowych przenośników takich jak szerokość i prędkość taśy, oc i okaizacja układu napędoweo oraz wytrzyałość noinana taśy Podczas ćwiczeń projektowych studenci otrzyają założenia projektowe w postaci następująco okreśoneo zadania transportoweo: Przenośnik transportuje... (ateriał transportowany) na odełość L =... pod kąte δ =... z wydajnością co najniej Q n =... t/h Następnie z wykorzystanie aorytu obiczenioweo naeży okreśić charakterystykę użytkową przenośnika poprzez dobór szerokości taśy, jej prędkości oraz ocy napędu i wytrzyałości taśy. Charakterystyka użytkowa przenośnika taśoweo: prędkość taśy szerokość taśy iczba i oc siników wytrzyałość taśy sprawozdaniu z ćwiczeń naeży zaieścić, poza założeniai projektowyi i charakterystyką użytkową przenośnika, wyniki obiczeń oporów ruchu, wykres sił w taśie oraz wnioski. v =... /s, B =..., N =... x... k, K =... kn/ v Rys. 1 Przykładowy wykres sił w taśie
2 Przenośnik taśowy - obiczenia 1 ykaz ważniejszych syboi i oznaczeń B szerokość taśy, [] C współczynnik uwzędniający skupione opory ruchu przenośnika przy noinany obciążeniu, D b średnica bębna, [] f współczynnik oporów ruchu przenośnika przy noinany obciążeniu, f u zwis taśy iędzy krążnikai, [] przyspieszenie zieskie, [/s ] H wysokość podnoszenia ub opuszczania ateriału transportowaneo, [] (różnica pozioów iędzy bębne czołowy i zwrotny) K jednostkowa siła rozciąająca taśę, [N/] k N współczynnik rezerwy ocy, k w współczynnik wypełnienia niecki da odcinków nachyonych, K n noinana wytrzyałość taśy na zerwanie, [kn/] K u dopuszczane naprężenie użyteczne w taśie w ruchu ustaony, [kn/] L dłuość przenośnika, [] kd rozstaw zestawów krążnikowych donych, [] k rozstaw zestawów krążnikowych órnych, [] N c całkowita oc napędu, [k] n d iczba donych zestawów krążnikowych w przenośniku, n iczba órnych, nośnych zestawów krążnikowych w przenośniku, N z znaionowa oc napędu, [k] N Zs oc znaionowa poszczeónych siników w przenośniku, [k] P u siła obwodowa na bębnie w ruchu ustaony, [kn] Q (t) chwiowa wydajność objętościowa, [ 3 /s] Q wydajność asowa, [k/s] Q h wydajność asowa, [k/h] Q zh noinana wydajność objętościowa, [ 3 /h] siła rozciąająca taśę, [kn] 1u siła w cięnie órny w ruchu ustaony, [kn] u siła w cięnie dony w ruchu ustaony, [kn] din iniana siła w taśie cięna doneo, [N] in iniana siła w taśie cięna órneo, [N] i siła w taśie w punkcie i, [kn] T o teperatura otoczenia, [ºC] v prędkość taśy, [/s] c całkowite opory ruchu, [N] D opory dodatkowe, [kn] d opory przesuwania cięna doneo, [kn] G opory łówne, [kn] opory przesuwania cięna órneo, [kn] H opory podnoszenia ateriału transportowaneo, [kn] opory skupione, [kn] z d iczba krążników w zestawie dony, z e iczba krążników w zestawie nadawowy, z iczba krążników w zestawie órny, nośny, α kąt opasania, [º] δ kąt nachyenia przenośnika, [º] η sprawność, η sprawność echanizu napędoweo, μ współczynnik tarcia,
3 Przenośnik taśowy - obiczenia Dobór prędkości i szerokości taśy.1 Dobór prędkość taśy v [/s] Tabea 1. Prędkości taś przenośników stosowanych w przeyśe Materiał transportowany Zastosowanie Miał węowy Popiół fitracyjny Śieci doowe Ceent kinkierowy Koks Eektrownie ysypiska (spaarnie) śieci Zakłady ceentowe Huty Koksownie ó surowa (iałka) żwir, piach Przeysł potasowy (kaień i zieia) Ceent, kreda Kaień wapienny Zboże ęie kaienny Marie Ruda ęie ó surowa (kruszona) Boksyt Fosforan surowy ęie brunatny Nadkład Koncentrat fosforanowy zboacanie iosy zbożowe Kopanie podziene Eektrownie Przeysł ceentowy Urządzenia przeładowcze kładowiska Duże odełości transportowania Kopanie odkrywkowe Prędkość taśy /s Powszechnie stosowane prędkości taśy Możiwe, dopuszczane prędkości taśy. Obiczenia jednostkowej wydajności objętościowej Obicz wydajność jednostkową na podstawie dobranej prędkości v i ęstości nasypowej ateriału transportowaneo (tabea.) i współczynnika nachyenia trasy k n (tabea 3.) Q Q n j v k [ 3 /h * s/] w 3
4 Przenośnik taśowy - obiczenia Tabea. Gęstość nasypowa ateriału transportowaneo Materiał transportowany [t/ 3 ] Materiał transportowany [t/ 3 ] Asfat, kruszony 0,7 Piryt 1,5, Baryt,9 Popiół, suchy 0,65 0,75 Bazat 1,6 1,8 Popiół, wiotny 0,9 Beton, okry 1,8,4 Ruda anezu,0,3 Boksyt, kruszony 1, 1,4 Ruda ananu,0, Boksyt, iałki 1,9,0 Ruda iedzi 1,8 1,9 Ceent 1, 1,5 Ruda iedzi 1,9,4 Cukier, rafinowany 0,8 0,9 Ruda żeaza 1,7,5 Cukier, surowy 0,9 1,1 iarczek aonu 0,75 0,95 Dooit 1,5,7 iarka 0,8 1,4 Drewno, kawałki 0,5 0,5 kaeń, kruszony 1,6 Fosforyt, drobny,0 ó kaienna 1, Fosforyt, kruszony 1, 1,4 ó, iałka 1, 1,3 Gips, kruszony 1,35 ó, surowa, Gips, proszek 0,95 1,0 tłuczka szkana 1,3 1,6 Gina sucha, skruszona 0,7 1,5 za uł błoto 1,0 Gina, wiotna 1,8 Śieci doowe 0,6 Grafit, proszek 0,5 Tłuczeń 1,5 1,8 Granit, kruszony 1,5 1,6 Torf 0,4 0,6 Kinkier 1, 1,5 Trociny 0, 0,35 Koks 0,45 0,6 apień, kruszony 1,3 1,6 Kukurydza 0,7 0,75 apno, kawałki 1,0 1,4 Kwarcyt 1,6 1,8 ęie brunatny, brykiety owane 0,7 0,85 Łupek, kruszony 1,4 1,6 ęie brunatny, okry 0,9 Mączka rybna 0,55 0,65 ęie brunatny, suchy 0,5 0,9 Mąka 0,5 0,6 ęie kaienny, drobny iałki 0,8 0,9 Nadkład 1,6 1,7 ęie kaienny, surowy 0,75 0,85 Nawóz sztuczny 0,9 1, Zboże 0,7 0,85 Odpady odewnicze 1, 1,6 Zieia, wiotna 1,5 1,9 Otoczaki 1,5 0 Zło 1,,0 Owoce 0,35 Żuże szaka 1,3 Piach, suchy 1,3 1,4 Żuże wiekopiecowy 1, 1,4 Piach, wiotny 1,4 1,9 Żwir z piache, okry,0,4 Piasek forierski 1, 1,3 Żwir, nie sortowany 1,8 Piaskowiec, kruszony 1,3 1,5 Żwir, sortowany, uyty (płukany) 1,5,5 Tabea 3. spółczynnik wypełnienia k w da nachyeń przenośnika = (0º 0º) [ 3 /h] [ ] H/L 0,035 0,070 0, ,174 0,08 0,4 0,76 0,310 0,34 k w 1,0 0,99 0,98 0,97 0,95 0,93 0,91 0,89 0,85 0,81 4
5 Przenośnik taśowy - obiczenia.3 Dobór szerokości taśy da układu trójkrążnikoweo Na podstawie znanej wartości wydajności jednostkowej dobierz kąt niecki i szerokość taśy B z tabei 4 Tabea 4. ydajność jednostkowa Q j [ 3 /h * s/] (da v=1 /s) zerokość taśy B [] Kąt usypu [ ] kąt niecki [ ] przypadku nieznajoości kąta usypu naeży przyjąć wartość 15. 5
6 Przenośnik taśowy - obiczenia 3 Obiczanie przenośników taśowych etodą podstawową 3.1 Mode przenośnika taśoweo ruchu ustaony (v=const) P u = C v P u sinδ P δ cosδ przenośniku taśowy: f i P u C f cos δ i sinδ i iła tarcia iła ciężkości P cosδ sin δ [N] 3. Masy eeentów ruchoych przenośnika - i Do obiczeń oporów ruchu uszą być znane asy wszystkich eeentów ruchoych na trasie przenośnika. Masę ruchoą stanowi nie tyko ateriał transportowany, ae także asa taśy i asa obracających się części krążników. Masa urobku obciążająceo 1 [] dłuości taśy przenośnika Masa urobku obciążająceo 1 [] dłuości taśy przenośnika oże być wyiczona z wydajności przenośnika i prędkości taśy wedłu poniższeo wzoru: Q 3.6 v [k/] Masa k obrotowych części krążników przypadająca na 1 [] dłuości przenośnika. Masę obrotowych części krążników przypadających na 1 [] dłuości przenośnika obicza się wzore: zk k [k/] k zk k zkd kd [k/] Masę taśy przypadającą na 1 [] dłuości przenośnika obicza się wzore: k kd kd k zkd kd [k/] t B 1000 tj [k/] 6
7 Przenośnik taśowy - obiczenia artości as obrotowych części krążników (w układach nieckowych) zerokość taśy B [] Średnica krążnika [] ,9 3, 4, Masa [k] - zk, zkd Iość krążników w zestawie 1 krążnik krążniki 3krążniki 5 krążników 88,9 3,9 4,7 5, ,6 6,6 7, ,6 8,7 9,6 88,9 4,5 5,5 6, ,6 7,8 8, ,9 10,4 11,1 88,9 5,5 6,3 7, ,0 9,0 9, ,8 1,1 13,1 88,9 6,7 7,4 8,3 9, ,8 10,6 11,6 1, ,3 14, 15,6 16, ,7 13, 13,6 14, ,9 17,8 18, 18, ,9 4,7 6,3 8, , 15,0 16,3 16, ,3 0,5,3 1, ,1 8,0 4,5 31, ,8 3,3 5,0 4, ,3 31,6 35,5 35, ,1 6,5 8,0 8, ,4 35,0 38,7 39, ,6 9,1 30,7 31, ,8 39,5 4,4 4, , 31,8 33,3 33, , 43,3 47,0 46,5 193,7 69,1 76,4 80,1 89, ,5 49,0 50,1 49,5 193,7 77,8 8,6 93, 95, ,7 51,5 53,5 53,0 193,7 86,6 91,4 93, 100, ,1 57,5 56,5 193,7 97, 97,6 107, ,5 59,1 60,0 193,7 103,0 106,4 113, ,0 65,5 65,0 193,7 109,0 11,5 11, ,5 68,0 193, ,0 16,5 7
8 Przenośnik taśowy - obiczenia Taśy z rdzenie tkaninowy - asa taśy tj jest suą asy rdzenia i okładek Grubość Masa Typ Masa taśy da zadanej rubości okładek [k/ ] rdzenia rdzenia taśy [] [k/ ] / / / / / / / / / / / / / / / / / / / / / / / / / / Taśy z rdzenie z inek staowych Typ Średnica Masa taśy da zadanej rubości okładek [k/ ] taśy inki T T T T T T T T T T T T T T T T T T T T T T
9 Przenośnik taśowy - obiczenia 3.3 Opory ruchu. Opory ruchu przenośnika taśoweo występujące przy stałej jeo prędkości (noinanej) ze wzędu na właściwości fizyczne ożna podzieić na opory wywołane: siłai tarcia, składowyi sił ciężkości, siłai bezwładności (w iejscu załadunku ateriału transportowaneo na taśę). Źródła oporów ruchu przenośnika. 1. Opory ruchu krążników.. Opory przeinania taśy. 3. Opory związane z faowanie urobku. 4. Opory w iejscu załadunku związane z rozpędzanie ładunku. 5. Opory w iejscu załadunku związane z tarcie. 6. Opory urządzeń czyszczących. 7. Opory przeinania taśy na bębnach. 8. Opory związane z podnoszenie urobku. Ze wzędów obiczeniowych opory ruchu przenośnika dziei się na: opory łówne G wywołane siłai tarcia równoiernie rozłożonyi wzdłuż dłuości przenośnika (np. opory obracania krążników, opory tarcia toczenia, opory przeinania taśy, opory faowania urobku itp.), opory skupione występujące w iejscach załadunku (np. opory wywołane siłai bezwładności, tarcie urobku o eeenty forujące pryzę ateriału transportowaneo na taśie) i w iejscach zetknięcia się taśy z innyi eeentai przenośnika (np. urządzeniai czyszczącyi, bębnai), opory podnoszenia H wynikają z siły rawitacji. Opory te są: dodatnie dy ładunek jest podnoszony, a ujene dy opuszczany. opory dodatkowe D wywołane zastosowanie w przenośniku specjaneo urządzenia (np. zarniaka, krążników z wyprzedzenie itp.). Najczęściej stosowaną etodą obiczania oporów ruchu przenośników taśowych o dłuościach [] i nachyeniach nie większych od 15º jest etoda tzw. podstawowa. Pozwaa ona z dostateczną dokładnością okreśić opory ruchu w DIN 101 pod warunkie trafneo dobrania wartości współczynnika tarcia f. 9
10 Przenośnik taśowy - obiczenia spółczynniki oporów ruchu Fikcyjny współczynnik tarcia f okreśany jako współczynnik oporu ruchu obejuje łącznie opory ruchu órnej i donej ałęzi przenośnika. artości współczynnika f podane w tabicy dotyczą obciążenia przenośnika ładunkie w zakresie % ustaoneo obciążenia noinaneo i strzałki uięcia taśy nie przekraczającej 1%. zrost naciąu taśy i zniejszenie strzałki uięcia, podobnie jak i zwiększenie średnicy krążników, powoduje zniejszenie wartości f. Dobrane z tabicy wartości współczynnika f + (taśa napędzana sinikie) i f - (taśa haowana eneratorowo) naeży ponożyć przez współczynnik c T zwiększając o przy spadku teperatury otoczenia. artości współczynnika oporów ruchu f. Napęd sinikowy Przenośniki wznoszące, pozioe ub nieznacznie opuszczające f + w zaeżności od prędkości taśy arunki ekspoatacji przenośnika v [/s] ykonanie norane, ładunek z przeciętny tarcie wewnętrzny 0,016 0,0165 0,017 0,018 0,0 0,0 Dobre ułożenie przenośnika, krążniki ekko obracające się, ładunek z 0,0135 0,014 0,015 0,016 0,017 0,019 ały tarcie wewnętrzny Niekorzystne warunki ruchowe, ładunek z duży tarcie 0,03 0,07 wewnętrzny Przenośniki oddziałowe w órnictwie podzieny 0,07 0,03 Haowanie eneratorowe Przenośniki transportujące sinie w dół arunki ekspoatacji przenośnika f - - Dobre ułożenie przenośnika przy noranych warunkach ruchowych, 0,01 0,016 ładunek z ały do średnieo tarcie wewnętrzny artości współczynnika c T w zaeżności od teperatury Teperatura ºC c T 1 1,01 1,04 1,10 1,16 1,7 Uwaa: Za wartość standardową uważa się f + = 0,0, a da órnictwa podzieneo 0,05. Jeżei jednak przenośnik pracuje w atosferze o podwyższonej wiotności i o duży zapyeniu, a jeo ułożenie odbiea od inii prostej, to wartość f + oże wzrosnąć nawet do 0,06. Podobny wzrost wartości f + wywołuje transport dużych brył (ax []), szczeónie dy bryły te przeieszczają się oddzienie. 10
11 Przenośnik taśowy - obiczenia Do obiczenia oporów skupionych potrzebna jest wartość współczynnika C. Opory skupione są wywoływane przede wszystki siłai bezwładności i siłai tarcia występującyi w rejonie punktu załadowczeo. artości współczynnika C w zaeżności od dłuości przenośnika L (w DIN 101) zestawiono w tabicy. Za poocą teo współczynnika ożna dość dokładnie obiczać przenośniki o dłuości powyżej 80 []. ykres współczynnika C w funkcji dłuości przenośnika L. sp. dłuości C,0 1,9 1,8 1,7 1,6 1,5 1,4 1,3 1, 1,1 1,05 1,03 1, Dłuość przenośnika L [] spółczynnik C w funkcji dłuości przenośnika L. L [] C 1,9 1,86 1,78 1,70 1,63 1,56 1,50 1,45 1,38 1,31 1,7 1,5 L [] C 1, 1,0 1,18 1,17 1,14 1,1 1,10 1,09 1,06 1,05 1,04 1,03 przypadku przenośników krótszych od 80 [] wartość współczynnika C naeży odczytać z tabicy: spółczynnik C w funkcji dłuości przenośnika L da przenośników o dłuości niejszej od 80 []. L [] C 9,0 7,6 5,9 4,5 3,6 3,,9,6,4,,0 11
12 Przenośnik taśowy - obiczenia Obiczanie oporów ruchu. Całkowity opór ruchu ożna obiczyć w wzoru: [N] H cos δ L f C t k C Na opór całkowity składa się sua poszczeónych oporów: D H G C Opory łówne wyiczane są z wzoru: [N] cos δ L f t k G Opory skupione okreśane są przy użyciu współczynnika C. [N] 1 C G Opory podnoszenia okreśane są zaeżnością: [N] H H Rozdzieając opory ruchu na ałąź órną i doną usiy uwzędnić zróżnicowane wartości f. Opory te będą zate okreśane zaeżnościai: [N] H cos δ L f C t t k [N] H cos δ L f C t t kd d d Jeżei nie zna się dokładnych wartości f i f d to ożna przyjąć: f f d f arunek sprawdzający: d C
13 Przenośnik taśowy - obiczenia 3.4 Obiczenie i dobór ocy napędu. Niezbędną oc potrzebną do napędu przenośnika, która poprzez jeden ub jednocześnie kika bębnów napędowych usi być przekazana taśie, wyznaczają całkowite opory ruchu C. N C v 1000 [k] Całkowita oc napędu niezbędna do utrzyania obciążoneo przenośnika wynosi: N NC ub NC N η [k] η w ruchu dzie sprawność napędu η naeży dobrać z tabicy: prawność napędu. Rodzaj napędu napęd jednobębnowy η + Eektrobęben 0,96 Eektroechaniczny (sinik eektryczny, sprzęło podatne, przekładnia) napęd wieobębnowy η + 0,94 0,9 napęd haujący η - Eektroechaniczny + sprzęło hydrokinetyczne 0,9 0,85 0,95 1,0 Hydrauiczny 0,86 0,80 Moc zainstaowanych siników jest z reuły większa od ocy wyaanej: N Z N C k N [k] dzie: k N = 1,05 1,1 współczynnik rezerwy ocy (przy dwóch bębnach napędowych k N = 1,05, przy trzech ub większej iczbie bębnów k N = 1,1) dzie: N Zs oc znaionowa poszczeónych siników dobierana z tabicy. zere ocy siników w DIN 4973 Moc sinika [k] N Z N Zs Moc sinika [k] Moc sinika [k]
14 Przenośnik taśowy - obiczenia 4 Obiczenia sił w taśie 4.1 przężenie cierne. Rozkład sił na bębnie napędowy przenośnika taśoweo 1 R b P P = 1 1 e μα ykorzystując wzór Euera obiczay siłę 1. Podstawiając 1 do wzoru otrzyujey: μα P, czyi P e 1 (na ranicy pośizu) μα e tosunek sił 1 / powinien być niejszy ub równy wartości e μα. zrost teo stosunku ponad wartość dopuszczaną prowadzi do powstania pośizu niesprężysteo (akropośizu) całej taśy wzęde bębna napędoweo, zniejszenia współczynnika tarcia, wzrostu teperatury co oże spowodować zniszczenie przenośnika taśoweo. Zwiększając μ, α poprzez zastosowanie wykładzin ciernych bębnów napędowych, napędów wieobębnowych uzyskuje się większą wartość 1 /. Kąt opasania α w napędzie dwubębnowy. 1 = 1 + artość współczynnika tarcia μ zaeży od wieu czynników, a w ty od typu taśy, rodzaju powierzchni bębna napędoweo i jej stanu, prędkości pośizu sprężysteo taśy i nacisków. artość μ aeje ze wzroste nacisków i zwiększa się ze wzroste pośizu sprężysteo. artość współczynnika tarcia μ przedstawia tabica. 14
15 Przenośnik taśowy - obiczenia artości współczynnika tarcia iędzy taśą, a bębne napędowy μ. tan Powierzchni Bęben staowy, ładki, Bez korozji Okładzina uowa, twardość 60 hore A, rubość 8 [] Okładzina poiuretanowa, twardość 75 shore A, rubość 11 [] Okładzina ceraiczna, rubość 11 [] uchy 0,35 0,4 0,4 0,45 0,35 0,4 0,4 0,45 Mokry czysty 0,1 0,35 0,35 0,35 0,4 Mokry zanieczyszczony 0,05 0,1 0,5 0,3 0, 0,35 4. iły występujące w taśie. Da ruchu ustaoneo P = c, zate c kp e [N] 1 spółczynnik k p, zabezpieczenia przed akropośizie układu cierneo taśa-bęben napędowy przyjuje się z przedziału k p [1. 1.3] da ruchu ustaoneo. Da urządzeń napinających nadążnych (w ty ciężarowych) ożna przyjąć k p =1.1. Da dłuich przenośników i nienadążnych urządzeń napinających naeży przyjować k p =1.4. c e k p d Anaizując powyższy wzór, projektant powinien ustaić wartość współczynnika tarcia µ i kąta opasania α oraz sprawdzić s z warunku zwisu taśy w punkcie przenośnika o najniejszej sie rozciąającej taśę. trzałka zwisu taśy wpływa na opory zinania taśy i faowania urobku. raz ze wzroste wartości f u zwiększają się opory ruchu przenośnika. iekość strzałki uięcia decyduje o prawidłowej pracy przenośnika. Naeży więc tak dobierać in, aby zachować zaeżność: f u k, kd 0,015 f u k, kd Uproszczony scheat uięcia taśy iędzy zestawai krążnikowyi 15
16 Przenośnik taśowy - obiczenia trzałka zwisu powinna być ty niejsza, i większa jest prędkość taśy i i większe są bryły transportowaneo urobku. Minianą siłę w taśie przeciwdziałającą zwisowi w órnej i donej ałęzi taśy okreśają zaeżności: in t 8 f u k t 8 0, 015 t kd t kd din [N] 8 fu 8 0, 015 Zate wartość siły 1 i 4 powinna być większa od in, a wartość i 3 powinna być większa od din. Jeżei powyższy warunek nie został spełniony naeży przeprowadzić korekcję sił w taśie. artość siły korekcyjnej jest równa: artości sił w taśie po korekcji: 1 = 1 + = + 3 = = 4 + k [N] = MAX( in - 1 ; in - 4 ; din - ; din - 3 ) [N] Korekcję przeprowadza się wyłącznie w przypadku Δ>0. iła aksyana występująca w taśie w ruchu ustaony wynosi: ax = MAX( 1 ; ; 3 ; 4 ) [N] ykres sił w taśie. Ponieważ ziana wartości sił iedzy punktai 3 i 41 jest iniową funkcją dłuości przenośnika L, ożna wierzchołki wektorów sił w punktach,3 i 4,1 połączyć inią prostą, Uzyskana obwiednia uożiwia okreśenie siły rozciąającej taśę w dowony punkcie np. w punkcie 5 będzie to siła, której wartość reprezentuje dłuość odcinka kn
17 Przenośnik taśowy - obiczenia 5 Dobór wytrzyałości taśy Taśy przenośnikowe są produkowane obecnie w tak wieu odianach (różnorodne własności wytrzyałościowe i fizykocheiczne), że ożiwe jest dobranie właściwej taśy. do różnych warunków ekspoatacji. Punkte wyjścia jest dobór odpowiedniej konstrukcji i typu rdzenia taśy, a następnie dobór rodzaju okładek i ich rubości. Naeży jednak paiętać, że wiee własności taś zaeży od obu składników. Dateo też porównuje się ważniejsze właściwości taś wykonywanych z dobraneo rdzenia, okładek oraz przekładek ochronnych. Przy doborze taśy konieczna jest wnikiwa anaiza techniczna, której cee jest: dobór najwłaściwszej konstrukcji rdzenia taśy uwzędniający wytrzyałość noinaną, wydłużenia i trwałość złącza, dobór ateriału i rubości okładek uwzędniający własności wytrzyałościowe, ścieraność, trudnopaność oraz odporność na działanie czynników cheicznych i fizycznych, dobór przekładek ochronnych uwzędniający przede wszystki odporność na przebicia, porównanie własności wybranych taś jako całości uwzędniające sztywność, zdoność przejowania enerii spadającej bryły, odporność na przecięcia, własności pane i eektryczne oraz przewidywaną trwałość taś i złączy. najszerszy zakresie dobór taśy przedstawia nora DIN 101. Metoda doboru wytrzyałości taśy wedłu tej nory uwzędnia następujące czynniki: spadek wytrzyałości statycznej w złączu taśy r p, aksyana siła w taśie w ruchu ustaony ax, współczynnik bezpieczeństwa w ruchu ustaony u, Dobierana wytrzyałość taśy usi spełnić następujące zaeżności: K N u 1 r p B ax [kn/] padek wytrzyałości statycznej w złączu taśy r p przyjowany jest z tabicy traty wytrzyałości w połączeniu w DIN 101. Materiał przekładek Rodzaj połączenia rdzenia B bawełna P poiaid E poiester t sta * łuszne tyko da połączeń schodkowych. ** z iczba przekładek traty wytrzyałości r p połączenia zakładkowe w taśach wieoprzekładkowych * 1/z ** połączenie bez straty przekładki 0 taśa jednoprzekładkowa 0,3 rozbierane echaniczne > 0.4 iczba stopni n 0 iczba stopni n 3 0,5(n - ) 17
18 Przenośnik taśowy - obiczenia Materiały przekładek Bawełna, Poiaid, Poiester, ta arunki pracy Ruch ustaony u dobre 6,7 średnie 8,0 złe 9,5 spółczynnik bezpieczeństwa taśy przed zerwanie u su, da taś o rdzeniu 1 rp tkaninowy pracujących w trudnych warunkach zaeca się przyjować z przedziału s u = [9 1]. Da taś z inkai staowyi s u = [7 9.5]. 6 Dobór średnic bębnów Do okreśenia inianej średnicy bębna nory podają prosty wzór: D b = c h r [] dzie: c - współczynnik średnicy bębna, wartość dobierana jest z tabicy, h r - rubość rdzenia taśy,. Materiał przenoszący siły wzdłużne w rdzeniu taśy c B - bawełna P - poiaid soid woven E - poiester t - inki staowe
19 Przenośnik taśowy - obiczenia iniana średnica bębna w (bez okładziny ciernej) D b = c h r ponad 100% 60% 100% 30% 60% 0% 30% Bęben rupy Bęben rupy Bęben rupy Bęben rupy A B C A B C A B C A B C Dobór rubości okładek taśy Miniana rubość okładki nośnej wynosi 1- /przekładkę. Da taś z inkai staowyi przyjuje się inianą rubość okładki równą 70% rubości rdzenia, ae nie niejszą niż 4. tosunek rubości okładki nośnej do bieżnej nie powinien być większy niż 3:1 arunki ekspoatacji Zakres Punkty ysokość spadku urobku na taśę w iejscu załadowczy Konstrukcyjne podparcie taśy w iejscu załadowczy Gęstość usypowa nosiwa 1,5 1 1,53,0 3,0 3 zestawy przeubowe, krążniki z pierśc. uowyi ub beki śizowe 1 zestawy przeubowe, krążniki z płaszcze staowy zestawy sztywne, krążniki z pierścieniai uowyi 3 zestawy sztywne, krążniki z płaszcze staowy 4 ρ 1000 k/ <ρ<1900 k/ 3 19
20 Przenośnik taśowy - obiczenia Zienność natężenia przepływu strui nosiwa łasności ścierne nosiwa Granuacja nosiwa ρ1900 k/ 3 3 ała 1 średnia duża 3 słabe 1 średnie duże 3 d ax 0,05 1 0,05<d ax <0,3 d ax 0,3 3 ua punktów ua punktów Dodatkowa rubość okładki nośnej, w nie niej niż 10 8 Dobór przełożenia przekładni Na podstawie dobranej wartości prędkości taśy v i średnicy bębnów napędowych D b naeży obiczyć przełożenie przekładni, wiedząc że prędkość synchroniczna stosowanych siników wynosi 1000 ub 1500 obr/in. Przykładowe stosowane przełożenia reduktorów: 1,5; 14; 16; 18; 0;,4; 5; 8; 31,5; 35,5; 39. Po wyborze przełożenia i korekcie prędkości taśy v naeży sprawdzić zdoność transportową przenośnika pod wzęde wydajności i ocy napędu. 9 pis iteratury Literatura podstawowa 1. Żur T., Hardyóra M.: Przenośniki taśowe w órnictwie. ydawnictwo Śąsk sp. z o. o., Katowice 1996 r.. Nora Gurtförderer für chüttüter - DIN 101. Literatura uzupełniająca 1. Aes R. Főrderurte Berechnunen Transportband-Dienst. ContiTechnik, Edition Hannover 1985 r.. Antoniak J.: Przenośniki taśowe. prowadzenie do teorii i obiczenia. ydawnictwo Poitechniki Giwickiej, Giwice 004 r. 3. Antoniak J.: ystey transportu przenośnikai taśowyi w órnictwie. ydawnictwo Poitechniki Giwickiej, Giwice 005 r. 4. Breidenbach H.: Foerderurt - Technik, Projektierun und Berechnun, BTR DUNLOP BELTING GROUP 5. Gładysiewicz L.: Przenośniki taśowe.teoria i obiczenia. rocław
Dobór mocy napędu i wytrzymałości taśmy przenośnika w warunkach pracy ustalonej
Dobór ocy napędu i wytrzyałości taśy przenośnika w warunkach pracy ustaonej Dr inż. Piotr Kuinowski Przenośnik taśowy - obiczenia piotr.kuinowski@entertech.co.p 1 ykaz ważniejszych syboi i oznaczeń B szerokość
... Nazwisko i imię Grupa Data i godz. Przenośnik transportuje węgiel kamienny. na odległość. pod kątem... z wydajnością co najmniej
......... Nazwisko i iię Grupa Data i odz. Przenośnik transportuje węie kaienny na odełość... pod kąte... z wydajnością co najniej... t/h Charakterystyka użytkowa przenośnika taśoweo: v... /s, B.... Obicz
Maszyny transportowe rok IV GiG
Ćwiczenia rok akademicki 2010/2011 Strona 1 1. Wykaz ważniejszych symboli i oznaczeo B szerokośd taśmy, [mm] C współczynnik uwzględniający skupione opory ruchu przenośnika przy nominalnym obciążeniu, D
Dobór mocy napędu i wytrzymałości taśmy przenośnika w warunkach pracy ustalonej
Dobór ocy napędu i wyrzyałości aśy przenośnika w warunkach pracy usaonej Dr inż. Pior Kuinowski Przenośnik aśowy - obiczenia 1 ykaz ważniejszych syboi i oznaczeń B szerokość aśy, [] współczynnik uwzędniający
Przenośnik transportuje...
......... Nazwisko i imię Grupa Data i godz. Przenośnik transportuje... na odległość... m pod kątem... z wydajnością co najmniej... t/h Charakterystyka użytkowa przenośnika taśmowego: v =... m/s, B =...
Przenośnik taśmowy Obliczenia
Przenośnik aśmowy obiczenia Kaedra Maszyn Górniczych, Przeróbczych i Transporowych AGH Przenośnik aśmowy Obiczenia Dr inż. Pior Kuinowski pk@imir.agh.edu.p e. (12617) 30 74 B-2 parer p.6 konsuacje: poniedziałek
Przenośnik zgrzebłowy - obliczenia
Przenośnik zgrzebłowy - obliczenia Katedra Maszyn Górniczych, Przeróbczych i Transportowych Przenośnik zgrzebłowy - obliczenia Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (67) 0 7 B- parter p.6 konsultacje:
Studium Podyplomowe
Katedra aszyn Górniczych, Przeróbczych i Transportowych Studium Podyplomowe http://www.kmg.agh.edu.pl/dydaktyka/studiumpodyplomowe Przenośnik taśmowy cz. Układy napędowe i napinające Dr inż. Piotr Kulinowski
Obliczenia mocy napędu przenośnika taśmowego
Materiały pomocnicze do laboratorium z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 3 Obliczenia mocy napędu przenośnika taśmowego Opracował: dr inż. Andrzej J. Zmysłowski Zakład Inżynierii Systemów
Jak prawidłowo dobrać wytrzymałość taśmy dla przenośnika?
Jak prawidłowo dobrać wytrzymałość taśmy dla przenośnika? czyli o czym należy przede wszystkim pamiętać podczas pracy z programem komputerowym QNK Dr inż. Piotr Kulinowski www.entertech.com.pl/qnk Krok
Przenośnik taśmowy cz.2
Przenośnik taśmowy cz.2 Katedra Maszyn Górniczych, Przeróbczych i Transportowych Przenośnik taśmowy cz.2 Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (617) 30 74 B-2 parter p.6 konsultacje: poniedziałek
taśmy wieloprzekładkowe TWP
taśmy wieloprzekładkowe TWP Na ilustracji: taśma stopniowana TWP (5-przekładkowa) ZASTOSOWANIE Taśmy do transportu materiałów luzem, małych i dużych gabarytów, do lekkich i ciężkich warunków eksploatacyjnych.
1. Wykaz ważniejszych symboli i oznaczeń
Projek przenośnika aśoweo Pior Kuinowski - pk@iir.ah.edu.p 1. ykaz ważniejszych syboi i oznaczeń B szerokość aśy, [] współczynnik uwzędniający skupione opory ruchu przenośnika przy noinany obciążeniu,
WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO
Ćwiczenie 0 WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO 0.1. Wiadomości oóne Wahadłem fizycznym nazywamy ciało sztywne, zawieszone na poziomej osi nie przechodzącej przez jeo środek
DRGANIA HARMONICZNE UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY
Część 2 1. DRGANIA UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY 1 1. 1. DRGANIA HARMONICZNE UKŁADÓW DYSKRETNYCH O WIELU STOPNIACH SWOBODY 1.1. Drgania własne nietłuione W anaizie drgań rozpatrywać będziey
Katedra Maszyn Górniczych Przeróbczych i Transportowych AGH
Obliczanie podstawowych parametrów przenośnika zgrzebowego. zakres podstawowych obliczeń parametrów przenośnika zgrzebowego (Redlera) w rch stalonym, o zadanej wydajności, dgości i nachyleni, wchodzą:
OPORY PRZEPŁYWU TRANSPORTU PNEUMATYCZNEGO MATERIAŁÓW WILGOTNYCH
/39 Soidification of Metas and Aoys, Year 999, Voume, Book No. 39 Krzepnięcie Metai i Stopów, Rok 999, Rocznik, Nr 39 PAN Katowice PL ISSN 008-9386 OPORY PRZEPŁYWU TRANSPORTU PNEUMATYCZNEGO MATERIAŁÓW
LABORATORIUM FIZYKI I
Punktacja: LABORAORIUM FIZYKI I Wydział: Grupa: Chemia B 51 Zespół: 3 Ćwiczenie nr: 13 Data: 1.1.01 Przyotowanie: Nazwisko i imię: Jan Kowaski emat ćwiczenia: Wyznaczanie wartości przyspieszenia ziemskieo
Mechanika Analityczna i Drgania
Mechanika naityczna i rgania Zasada prac przygotowanych dr inż. Sebastian akuła Wydział nżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mai: spakua@agh.edu.p dr inż. Sebastian akuła
Sprawdzenie stanu granicznego - wyparcie gruntu (UPL)
Projekt badawczy Narodowego Centru Nauki N N516 18 9 Projektowanie geotechniczne budowli według Eurokodu 7 PLATFORMA INFORMATYCZNA Przykład obliczeniowy Sprawdzenie stanu granicznego - wyparcie gruntu
Sterowanie napędów maszyn i robotów
Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego
Ogólne zasady konstrukcji
Ogólne zasady konstrukcji 1. Konstrukcja powinna spełniać wszystkie podstawowe warunki wynikające ze szczegółowych zasad w stopniu równy lub wyŝszy od załoŝonego. 2. Konstrukcja powinna być optyalna (polioptyalna)
Sterowanie napędów maszyn i robotów
Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład. Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego
Badania pasowego układu cięgnowego dźwigu
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Maszyn Roboczych Ciężkich Laboratorium Dźwigów Ćwiczenie W6 Badania pasowego układu cięgnowego dźwigu Wersja robocza Tylko do użytku
33/28 BADANIA MODELOWE CERAMICZNYCH FILTRÓW PIANKOWYCH. PIECH Krystyna ST ACHAŃCZYK Jerzy Instytut Odlewnictwa Kraków, ul.
33/28 Soidifikation or Metais and Aoys, No. 33, 1997 Krzcrmięcic Metai i Stopów, Nr 33, 1997 PAN- Oddział Katowice PL ISSN 020!1-9386 BADANIA MODELOWE CERAMICZNYCH FILTRÓW PIANKOWYCH PIECH Krystyna ST
Instytut Konstrukcji Maszyn, Instytut Pojazdów Szynowych 1
1. SPRZĘGŁO TULEJOWE. Sprawdzić nośność sprzęgła z uwagi na naciski powierzchniowe w rowkach wpustowych. Przyjąć, że p dop = 60 Pa. Zaproponować sposób zabezpieczenia tulei przed przesuwaniem się wzdłuż
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
III. Zasada zachowania momentu pędu
. Zasada zachowania oentu pędu 93. Stoik pozioy obraca się z prędkością kątową ω. Na środku stoika stoi człowiek i trzya w wyciągniętych rękach w odegłości od osi obrotu dwa ciężarki o asie każdy. Jak
Część 2 8. METODA CROSSA 1 8. METODA CROSSA Wprowadzenie
Część. ETOA CROSSA 1.. ETOA CROSSA.1. Wprowadzenie etoda Crossa pozwaa w łatwy sposób okreśić wartości sił wewnętrznych w układach niewyznaczanych, jednak dokładność obiczeń zaeży od iczby przeprowadzonych
Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7
Obiczanie naprężeń tycznych wywołanych momentem kręcającym w przekrojach: kołowym, pierścieniowym, protokątnym 7 Wprowadzenie Do obiczenia naprężeń tycznych wywołanych momentem kręcającym w przekrojach
NOWOŚĆ. WehoPipe RC System rur z PE100 Ø25-1600mm do układania nowych i renowacji istniejących rurociągów
NOWOŚĆ WehoPipe RC Syste rur z PE100 Ø25-1600 do układania nowych i renowacji istniejących rurociągów Techniki układania rur Techniki bezwykopowe coraz częściej zastępują tradycyjne etody wykopowe, ponieważ
Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.
Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,
ĆWICZENIE NR 2,3. Zakład Budownictwa Ogólnego
Zakład Budownictwa Ogólnego ĆWICZENIE NR 2,3 Materiały kaienne - oznaczenie gęstości objętościowej i porowatości otwartej - oznaczenie gęstości i porowatości całkowitej Instrukcja z laboratoriu: Budownictwo
CONVI OS. Zastosowanie. Konstrukcja taśmy. Taśmy przenośnikowe tkaninowo-gumowe ogólnego stosowania CONVI OS
CONVI OS Taśmy przenośnikowe tkaninowo-gumowe ogólnego stosowania CONVI OS Zastosowanie Taśmy przenośnikowe ogólnego stosowania CONVI OS przeznaczone są do transportu materiałów w temperaturach otoczenia
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
2P 2P 5P. 2 l 2 l 2 2l 2l
Przykład 10.. Obiczenie obciażenia granicznego Obiczyć obciążenie graniczne P gr da poniższej beki. Przekrój poprzeczny i granica pastyczności są stałe. Graniczny moment pastyczny, przy którym następuje
Sterowanie Napędów Maszyn i Robotów
Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące
Sterowanie Napędów Maszyn i Robotów
Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące
układ materialny wytworzony przez człowieka, wykonujący użyteczne działanie dzięki energii doprowadzonej z zewnątrz
Maszyna układ materialny wytworzony przez człowieka, wykonujący użyteczne działanie dzięki energii doprowadzonej z zewnątrz Pod względem energetycznym podział na: SILNIKI - pobierają energię z zewnętrznego
PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO
PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO Wskazujemy podstawowe wymagania jakie muszą być spełnione dla prawidłowego doboru pompy, w tym: dobór układu konstrukcyjnego pompy, parametry pompowanego
Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł
echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:
Dobór silnika serwonapędu. (silnik krokowy)
Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo
Projekt mechanizmu obrotu żurawia
Dźwignice Projekt mechanizmu obrotu żurawia Żuraw wieżowy Żuraw wieżowy - urządzenie dźwigowe otocznie zwane dźwigiem, zaiczane do największych maszyn roboczych. Może osiągać wysokość odnoszenia wonostojąco
Napęd pojęcia podstawowe
Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) moment - prędkość kątowa Energia kinetyczna Praca E W k Fl Fr d de k dw d ( ) Równanie ruchu obrotowego (bryły sztywnej) d ( ) d d d
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
DYNAMICZNE MODELOWANIE OPORÓW RUCHU PRZENOŚNIKA TAŚMOWEGO
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 58 Politechniki rocławskiej Nr 58 Studia i Materiały Nr 25 2005 * Piotr LIGOCKI, Bogusław KAROLESKIF przenośnik taśmowy, modelowanie,
2. Obliczenie sił działających w huśtawce
. Obiczenie sił działających w huśtawce Rozważone zostaną dwa aspekty rozwiązania tego zadania. Dokonanie obiczeń jest ważne ze wzgędu na dobór eementów, które zostaną wykorzystane w koncepcjach reguacji
BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO
BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest poznanie kinematyki i dynamiki ruchu w procesie przemieszczania wstrząsowego oraz wyznaczenie charakterystyki użytkowej
BADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW
ĆWICZEIA LABORATORYJE Z WIBROIZOLACJI: BADAIA CHARAKTERYSTYK STATYCZYCH WIBROIZOLATORÓW 1. WSTĘP Stanowisko laboratoryjne znajduje się w poieszczeniu hali technologicznej w budynku C-6 Politechniki Wrocławskiej.
Dane techniczne Profile i wyposażenie. Położenie rowka, wymiary zewnętrzne, podziałka
Profie i wyposażenie Profi tłoczny Oznaczenie A Mg Si 0,5 F 25 Numer materiału.206.72 Stan: po wyżarzaniu starzejącym (obowiązują tyko w kierunku tłoczenia) Wytrzymałość na rozc. Rm min. 245 N/mm 2 Granica
CEL PRACY ZAKRES PRACY
CEL PRACY. Analiza energetycznych kryteriów zęczenia wieloosiowego pod względe zastosowanych ateriałów, rodzajów obciążenia, wpływu koncentratora naprężenia i zakresu stosowalności dla ałej i dużej liczby
Przedsięwzięcia techniczne zmniejszające energochłonność górniczych przenośników taśmowych
prof. zw. dr hab. inż. JERZY ANTONIAK Politechnika Śląska, Gliwice Przedsięwzięcia techniczne zniejszające energochłonność górniczych przenośników taśowych Nazwa górnicze przenośniki taśowe obejuje przenośniki
Pracownia technologiczna sem. VII. Temat: Plastyczne surowce i masy ceramiczne
Iię i nazwisko 1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9.. 10.. Pracownia technologiczna se. VII Teat: Plastyczne surowce i asy ceraiczne Prowadzący: dr inŝ. Zofia Puff gr inŝ. Magdalena Gizowska Cele ćwiczenia
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej
KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki Technicznej Ćwiczenie 4 Badanie masowych momentów bezwładności Ce ćwiczenia Wyznaczanie masowego momentu bezwładności bryły metodą
POMIAR STRZAŁKI UGIĘCIA DŹWIGARA NOŚNEGO SUWNICY JEDNODŹWIGAROWEJ
INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT SPECJALNOŚĆ: SYSTEMY I URZĄDZENIA TRANSPORTOWE PRZEDMIOT: SYSTEMU I URZĄDZENIA TRANSPORTU BLISKIEGO LABORATORIUM POMIAR STRZAŁKI UGIĘCIA DŹWIGARA NOŚNEGO
w stanie granicznym nośności
Wytrzyałość ateriałów Hipotezy wytrzyałościowe 1 Podstawy wyiarowania w stanie graniczny nośności Wyiarowanie konstrukcji polega na doborze wyiarów i kształtu przekrojów eleentów. Podstawą doboru jest
ĆWICZENIE 2. POMIAR NATĘŻENIA POLA GRAWITACYJNEGO W SIEDLCACH PRZY POMOCY MODELU WAHADŁA MATEMATYCZNEGO. Wprowadzenie
ĆWICZENIE. POMIAR NATĘŻENIA POLA GRAWITACYJNEGO W SIEDLCACH PRZY POMOCY MODELU WAHADŁA MATEMATYCZNEGO Wprowadzenie Punkt materiany zaczepiony na nierozciąiwej nici o dłuości tworzy układ zwany wahadłem
KATALOG PRZENOŚNIKÓW TAŚMOWYCH
Zakład Metalowy Edward Bugno v. 1.1 KATALOG PRZENOŚNIKÓW TAŚMOWYCH tel/fax. 0-18/ 351-11-95 tel/fax. 0-18/ 351-11-95 zaklad@ebugno.pl Strona 1 z 14 Zakład Metalowy Edward Bugno ebugno powstał w 1989 roku.
( ) Płaskie ramy i łuki paraboliczne. η =. Rozważania ograniczymy do łuków o osi parabolicznej, opisanej funkcją
..7. Płaskie ramy i łuki paraboiczne Wstęp W bieżącym podpunkcie omówimy kika przykładów zastosowania metody sił do obiczeń sił wewnętrznych w płaskich ramach i łukach paraboicznych statycznie niewyznaczanych,
Dynamika punktu materialnego nieswobodnego
Dynaika punktu aterianego nieswobodnego dr inż. Sebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ai: spakua@agh.edu.p www: hoe.agh.edu.p/~spakua/ dr inż. Sebastian
gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )
RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:
Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami
Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych
WALCOWANIE 1. INFORMACJE MERYTORYCZNE 1.1. METODY WALCOWANIA
Ćwiczenie 4 WALCOWANIE Ceem ćwiczenia jest: - zapoznanie się z procesem wacowania wzdłużneo, - okreśenie wskaźników odkształcenia charakteryzujących proces wacowania, - wyznaczenie ranicznych kątów chwytu
Zakład Metalowy ebugno Edward Bugno Kwiatonowice, Zagórzany k/gorlic mail: v. 1.5
Zakład Metalowy ebugno Edward Bugno v. 1.5 KATALOG ZBIORCZY PODZESPOŁÓW DO PRZENOŚNIKÓW 1. Krążniki gładkie i zestawy krążnikowe 2. Rodzaje stosowanych piast do krążników 3. Rodzaje stosowanych końcówek
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA PODCZAS SKRAPLANIA PARY
Przenośnik taśmowy Wstęp
Przenośnik taśmowy wstęp Katedra Maszyn Górniczych, Przeróbczych i Transportowych AGH Przenośnik taśmowy Wstęp Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (12617) 30 74 B-2 parter p.6 konsultacje:
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne
Ć w i c z e n i e K 6. Wyznaczanie stałych materiałowych przy wykorzystaniu pomiarów tensometrycznych.
Akadeia Górniczo Hutnicza ydział Inżynierii Mechanicznej i Robotyki Katedra ytrzyałości, Zęczenia Materiałów i Konstrukcji Nazwisko i Iię: Nazwisko i Iię: ydział Górnictwa i Geoinżynierii Grupa nr: Ocena:
Łożyska walcowe wzdłużne
Łożyska walcowe wzdłużne Rodzaje wykonań... 864 Elementy... 865 Łożyska dwukierunkowe... 866 Ogólne dane techniczne... 867 Wymiary... 867 Tolerancje wymiarowe... 867 Niewspółosiowość... 868 Koszyki...
Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne
Spis treści PRZEDMOWA... 9 1. OGÓLNA CHARAKTERYSTYKA I KLASYFIKACJA PRZEKŁADNI ZĘBATYCH... 11 2. ZASTOSOWANIE I WYMAGANIA STAWIANE PRZEKŁADNIOM ZĘBATYM... 22 3. GEOMETRIA I KINEMATYKA PRZEKŁADNI WALCOWYCH
Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy
Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi
Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych
Napędy urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy mechanizm zamiany
Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Kamień naturalny: Oznaczanie Temat: odporności na ścieranie Norma: PN-EN 14157:2005
Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Kamień naturalny: Oznaczanie Temat: odporności na ścieranie Norma:
Sterowanie Napędów Maszyn i Robotów
Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2015 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące
SZKOŁA POLICEALNA dla dorosłych
SZKOŁA POLICEALNA dla dorosłych Kierunek kształcenia w zawodzie: dr inż. Janusz Walkowiak Przedmiot: I semestr Tematyka zajęć Ustalenie numeru identyfikacyjnego i odczytywanie danych z tablicy znamionowej
MECHANIKA BUDOWLI 11
Oga Kopacz, Adam Łodygowski, Wojciech awłowski, Michał łotkowiak, Krzysztof Tymper Konsutacje naukowe: prof. dr hab. JERZY RAKOWSKI oznań / MECHANIKA BUDOWLI rzykład iczbowy: Dana beka, po której porusza
Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu
Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1
dr inż. Paweł Strzałkowski
Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Badania mechanicznych i fizycznych właściwości kruszyw Część 1: Temat:
Porównanie europejskich i amerykańskich standardów doboru podzespołów przenośników taśmowych
Porównanie europejskich i amerykańskich standardów doboru podzespołów przenośników taśmowych Piotr Kulinowski, AGH Kraków IX Konferencja Powder&Bulk NOWOCZESNE TECHNOLOGIE W BRANŻY MATERIAŁÓW SYPKICH,
NAPĘDY MASZYN TECHNOLOGICZNYCH
WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA Instytut Technologii Mechanicznej ul. Piotrowo 3, 60-965 Poznań, tel. +48 61 665 2203, fax +48 61 665 2200 e-mail: office_mt@put.poznan.pl, www.put.poznan.pl MATERIAŁY
LINIOWA MECHANIKA PĘKANIA
Podstawowe informacje nt. LNOWA MECHANKA PĘKANA Wytrzymałość materiałów J. German PRZYKŁADY Przykład Przeanaizować szczeinę o długości, która tworzy kąt α z kierunkiem x, znajdującą się w nieograniczonym
Budowa przenośnika. Podział taśm ze względu na zastosowanie taśm
Przenośnik taśmowy elementy Katedra Maszyn Górniczych, Przeróbczych i Transportowych AGH Przenośnik taśmowy Elementy Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (12617) 30 74 B-2 parter p.6 konsultacje:
ANALIZA WYTRZYMAŁOŚCIOWA BĘBNA PĘDNEGO 4L-5000
ANALIZA WYTRZYMAŁOŚCIOWA BĘBNA PĘDNEGO 4L-5000 Marcel ŻOŁNIERZ*, Ewelina KOŁODZIEJ** * Instytut Mechanizacji Górnictwa, Politechnika Śląska ** Biuro Studiów i Projektów Górniczych w Katowicach Sp. z o.o.
PRZYKŁADY CHARAKTERYSTYK ŁOŻYSK
ROZDZIAŁ 9 PRZYKŁADY CHARAKTERYSTYK ŁOŻYSK ŁOŻYSKO LABORATORYJNE ŁOŻYSKO TURBINOWE Przedstawimy w niniejszym rozdziale przykładowe wyniki obliczeń charakterystyk statycznych i dynamicznych łożysk pracujących
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej
Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon
Cen-Trax Zestaw do naprowadzania taśmy
Cen-Trax Zestaw do naprowadzania taśmy Wprowadź taśmę z powrotem na właściwy tor mniej zniszczeń większa efektywność Schodzenie taśmy przenośnikowej z osi trasy przenośnika jest częstym zjawiskiem w transporcie
Rys. 1. Schemat napędu pośredniego typu T-T dla przenośnika taśmowego [3]: 1 napęd pośredni T-T, 2 przenośnik taśmowy główny
https://doi.org/0.056/komag09..6 Napęd pośredni T-T dla przenośnika taśmowego Zbigniew Szkudlarek Arkadiusz Sobolewski T-T intermediate drive for a belt conveyor Streszczenie: W artykule przedstawiono
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzain aturalny aj 009 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Wyznaczenie wartości prędkości i przyspieszenia ciała wykorzystując równanie ruchu. Wartość prędkości
Spis tabel Tabela 1. Tabela 2. Tabela 3. Tabela 4. Tabela 5. Tabela 6. Tabela 6. Tabela 7. Tabela 8. Tabela 9. Tabela 10.
Spis treści 1. Wstęp 1.1. Przedmiot opracowania 1.2. Podstawa opracowania 1.3. Zakres opracowania 1.4. Wykorzystane materiały 1.5. Opis obszaru objętego opracowaniem 2. Obliczenia charakterystycznych rozbiorów
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)
1 MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) 7. Przetworniki stosowane w medycynie: tupu sandwich, kompozytowe,
Cel ćwiczenia: Podstawy teoretyczne:
Cel ćwiczenia: Cele ćwiczenia jest zapoznanie się z pracą regulatorów dwawnych w układzie regulacji teperatury. Podstawy teoretyczne: Regulator dwawny (dwupołoŝeniowy) realizuje algoryt: U ( t) U1 U 2
ĆWICZENIE BADANIA WYDAJNOŚCI TRANSPORTU ŚLIMAKOWEGO
ĆWICZENIE BADANIA WYDAJNOŚCI TRANSPORTU ŚLIMAKOWEGO 1. Cel i zakres ćwiczenia Celem ćwiczenia jest poznanie budowy, zasady działania i wyznaczania podstawowych charakterystyk przenośników śrubowych, w
Ćw. 4. Wyznaczanie modułu Younga z ugięcia
KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga z ugięcia Wprowadzenie Ze wzgędu na budowę struktury cząsteczkowej, ciała stałe możemy podzieić na amorficzne oraz
Zespół Szkół Nr 1 im. Jana Kilińskiego w Pabianicach Przedmiot: Proces projektowania części maszyn
Zespół Szkół Nr im. Jana Kilińskiego w Pabianicach Projektowanie sprzęgieł Obliczanie sprzęgieł polega na wyznaczeniu przenoszonego momentu obrotowego (równego momentowi skręcającemu) i obliczeniu wymiarów.
SPRZĘGŁA MIMOŚRODOWE INKOMA TYP KWK Inkocross
- 2 - Spis treści 1.1 Sprzęgło mimośrodowe INKOMA Inkocross typ KWK - Informacje ogólne... - 3-1.2 Sprzęgło mimośrodowe INKOMA Inkocross typ KWK - Informacje techniczne... - 4-1.3 Sprzęgło mimośrodowe
Zastosowania frezarek bębnowych
DC FREZARKA BĘBNOWA Najlepszy wybór do prac na ścianach kamiennych i betonowych, profilowania powierzchni, prac melioracyjnych, zamarzniętej gleby, wydobywania kamienia i prac wyburzeniowych. Frezarki