Nie ma techniki bez matematyki Mikroskop elektronowy. Przemysław Borys Wydział Chemiczny Politechniki Śląskiej
|
|
- Ignacy Pluta
- 7 lat temu
- Przeglądów:
Transkrypt
1 Nie ma techniki bez matematyki Mikroskop elektronowy Przemysław Borys Wydział Chemiczny Politechniki Śląskiej
2 Wstęp Gdzie w chemii można spotkać matematykę?
3 Matematyka w chemii przykłady: Mechanika kwantowa i chemia obliczeniowa (równania Schrodingera, Hartree-Focka, itd.)
4 Matematyka w chemii przykłady: Przewidywanie struktury przestrzennej białek o znanej sekwencji aminokwasów (Monte Carlo, błądzenie przypadkowe) ΔE p( x ) exp kb T ( )
5 Matematyka w chemii przykłady: Dokowanie białek ΔE p( x ) exp kb T ( )
6 Matematyka w chemii przykłady: Mechanika płynów w zagadnieniach inżynierii (równania Naviera-Stokesa)
7 Matematyka w chemii przykłady: Zagadnienia transportu dyfuzyjnego (równania Ficka, Smoluchowskiego, Fokkera-Plancka-Kołmogorowa, elektrodyfuzja, stochastyczne i ułamkowe równania różniczkowe) c F 2 = η c+ D c t
8 Matematyka w chemii przykłady: Przewodnictwo ciepła w procesach technologicznych
9 Matematyka w chemii przykłady: Kinetyka reakcji chemicznych (równania różniczkowe)
10 Matematyka w chemii przykłady: Funkcjonowanie aparatury używanej przez chemików: spektroskopia (transformata Fouriera) (slajd+1) F ( j ω)= f ( t )e i ωt dt
11 Co robi transformata Fouriera? (dygresja rozbija sygnał na składowe częstotliwościowe)
12 Matematyka w chemii przykłady: Funkcjonowanie aparatury używanej przez chemików: analiza rentgenostrukturalna (odwrotna transformata Fouriera, twierdzenie Borela o splocie), mikroskopy elektronowe (SEM, TEM równania Maxwella), itd. 1 i k r f ( r )= F ( k ) e dk x dk y dk z 3 ( 2 π)
13 Część zasadnicza #1 Ograniczenia możliwości mikroskopu świetlnego.
14 Oto znany wszystkim mikroskop świetlny
15 Jego schemat w optyce geometrycznej (promienie równoległe do osi optycznej wpadają w ognisko F; promienie przechodzące przez środek soczewki niezmienione)
16 Granica dyfrakcyjna powiększenia mikroskopu optycznego W przypadku gdy oglądane pod mikroskopem obiekty zaczynają mieć rozmiary zbliżone do długości fali, dyfrakcja staje się zauważalna. Stosowanie optyki geometrycznej, na której oparte są konstrukcje soczewkowe mikroskopów, staje się nieadekwatne.
17 Przykład: widok chromosomów dla długości fali rzędu 0.5μm. Rozmyte.
18 Skąd się bierze limit dyfrakcyjny? Żeby zrozumieć granicę dyfrakcyjną rozdzielczości mikroskopu świetlnego, trzeba przypomnieć Zasadę Huygensa: każdy punkt czoła fali świetlnej można traktować jako źródło wtórnej fali kulistej.
19 Dyfrakcja wody na dwóch szczelinach
20 Rozdzielczość obrazu za szczeliną Oto co dzieje się z promieniem światła na wąskim obiekcie, np. na szczelinie: Za szczeliną fale wtórne (zasada Huygensa [-2]) interferują! Jak obliczyć dla danego kąta θ superpozycję (złożenie, sumę wypadkową) tych fal?! Punktów jest nieskończenie wiele! Odpowiedź: rachunek różniczkowy i całkowy.
21 Dyfrakcja na szczelinie o skończonej szerokości...po prostych obliczeniach dostajemy wzór dyfrakcyjny Fraunhofera na natężenie światła w zależności od kąta: E0 λ π d sin θ E= sin cos [ kr ω t ] λ π d sin θ [ ] E0 natężenie światła padającego, d szerokość szczeliny, θ kąt emisji ze szczeliny, ω częstotliwość promieniowania, k wektor falowy (to teraz nieistotne). Dla małego d, argument w nawiasie sinusa jest mały, sinus przybliżamy jego argumentem (slajd+1), a wówczas czynnik πd sin θ skraca się we wzorze na E. E nie zależy od θ!!! Zamiast promienia biegnącego w kierunku θ, są promienie we wszystkich kierunkach! Dla dużych d z kolei mianownik pod szybko tłumi prążki dyfrakcyjne w innych kierunkach i można stosować optykę geometryczną (slajd+2).
22 Dlaczego sinus dla małego argumentu równa się argumentowi? Dokładna rozumowanie wymaga matematyki i rachunku granic, ale popatrzmy na obrazek: W zakresie x od 0 do 0.5 linia zielona i czerwona pokrywa się! x (argument) ma tą samą wartość co sin(x)
23 Dyfrakcja vs. szerokość szczeliny
24 Część zasadnicza #2 Elektrony zamiast fal świetlnych
25 Rada na ograniczoną rozdzielczość mikroskopu świetlnego Nie można zmniejszać długości fali, bo wejdziemy w końcu w zakres fal rentgenowskich, które są przenikliwe i nie ma dla nich soczewek. Rada: wykorzystać elektrony i dualizm korpuskularno-falowy. Niech elektron będzie falą o długości rentgenowskiej, a jego tor zamiast soczewką, zakrzywimy magnetycznie!
26 Materia ma charakter falowy! Za szczelinami elektrony nie grupują się w dwa skupiska, ale interferują jak fale! (slajd+1,+2)
27 Prążki dyfrakcyjne lasera na dwóch szczelinach
28 Interferencja fal wodnych, przypomnienie
29 Hipoteza de Broglie λ=h / p 2 mv p=mv E= 2 p= 2 me E=eU, U =200 kv λ =2 pm
30 Działo elektronowe Jak wyemitować elektrony z działa (katody)? Jak pokonać pracę wyjścia z metalu? Rozkład Maxwella dla energii kinetycznej (trochę matematyki potrzeba, żeby go wyprowadzić).
31 ...ile ruchu (energii) z temperaturą pojawia się w garnku z wodą?
32 Jak wygląda działo elektronowe?
33 Część zasadnicza #3 Soczewki magnetyczne
34 Jak skonstruować soczewkę magnetyczną? jak elektromagnes...
35 Żeby opisać działanie soczewki magnetycznej, potrzebujemy znać rozkład pola magnetycznego B, które ona wytwarza. Potrzebujemy równań Maxwella (bardzo strasznych co to jest rot lub div, lub???): B (SEM Faraday'a) rot E= t E (pr. Ampere'a) rot B =μ 0 J +μ 0 ϵ0 t ρq (pr. Gaussa) div E= ϵ 0 (pr. Gaussa dla B) div B =0
36 Pochodna Pochodna to zwykły iloraz różnic funkcji i (wybranego) argumentu, ale obliczany dla granicy nieskończenie małej zmiany. f (x, y, z ) f ( x+ Δ x, y, z ) f (x, y, z ) =lim Δ x 0 x Δx Dysponując pochodną i wartością f(x,y,z) dla pewnego x, można wyznaczyć f(x+δx,y,z), następnie f(x+2δx,y,z), itd., można wyznaczyć całą funkcję f(x,y,z). Tak samo wyliczamy B.
37 Rotacja Znaczenie rotacji daje Twierdzenie Stokesa, które zredukowane do nieskończenie małego kwadratu wyraża: rot B= [ B x (x, y) Bx ( x+δ x, y+δ y) ] Δ x+ [ B y (x+δ x, y) B y (x, y+δ y) ] Δ y rot B= B x ΔxΔ y Rotacja mierzy wirowość. Jest niezerowa gdy pole wiruje wokół osi, a zeruje się gdy wirowanie zanika. Stąd jej nazwa. ^ rot B= k Bx By ^ +k y x
38 Dywergencja Znaczenie dywergencji wyraża Twierdzenie (nie prawo!) Gaussa. Dla sześcianu o nieskończenie małych bokach dx,dy,dz napiszemy: div B Δ x Δ y Δ z= [ B x (x+δ x) B x (x)] Δ y Δ z+ [ B y ( y+δ y) B y ( y)] Δ x Δ z+ [ B z (z+δ z) B z ( z)] Δ x Δ y Bx B y Bz div B = + + x y z
39 Pole B w soczewce magnetycznej Po łatwych obliczeniach (dla braku źródeł prądu i ładunku, po zredukowaniu równań Maxwella do równania Laplace'a, po przejściu do współrzędnych cylindrycznych i scałkowaniu) dostajemy wyrażenie na pole magnetyczne B (promieniowe), wytwarzane w soczewce magnetycznej: r Bz Br = 2 z
40 Siła Lorentza i dynamika elektronu (slajd+1) F = e v B d v F =m a =m dt Kiedy elektron wpada do soczewki magnetycznej wzdłuż jej osi, siła Lorentza w reakcji na prędkość osiową vz i promieniowe pole magnetyczne Br generuje przyspieszenie po obwodzie jej przekroju (prędkość vθ). Prędkość vθ wraz z polem Bz skutkuje przyspieszeniem w kierunku promieniowym (prędkość vr)
41 Diagram sił w soczewce Siła Lorentza F = e v B Sposób wyznaczania wektora wynikowego iloczynu wektorowego:
42 Równania wyjściowe dv r mv 2θ m = ev θ B z + dt r dv θ m = ev z B r dt (Siła Lorentza i odśrodkowa) (Siła Lorentza)
43 Obliczenie prędkości z poprzednich równań daje: e v θ= r Bz 2m eb z ωθ = nie zależy od r!!! 2m 2 e 2 2 rb z dz m vr = (p. slajd+1) 4 vz
44 Prędkość vr, a ogniskowa Δr h h f h vr = = = = vz Δt Δt f Δt f 2 2 e e 2 2 hb z dz 2 B 2z dz vr m m f= = = Nie zależy od r (czy h)!! 2 2 hv z 4 vzh 4 vz
45 Mamy soczewkę! Elektrony skupiają się w punkcie odległy o f od soczewki. Skupiają się tam niezależnie od promienia r pod jakim wpadły do soczewki względem osi układu. Tak samo działa soczewka optyczna! Mamy więc soczewkę (magnetyczną), która może uformować obraz z rozproszonych na preparacie fal elektronowych.
46 Soczewki mikroskopu optycznego i elektronowego (SEM/TEM)
47 Wyraźniejszy schemat SEM
48 Przykładowe obrazy TEM i SEM
49 Koniec Dziękuję za uwagę!
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Bardziej szczegółowoOptyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Bardziej szczegółowoFale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
Bardziej szczegółowoPrawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Bardziej szczegółowoRównania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Bardziej szczegółowoFizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
Bardziej szczegółowoPODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Bardziej szczegółowoWykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoDualizm korpuskularno falowy
Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p
Bardziej szczegółowoWykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Bardziej szczegółowoOPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Bardziej szczegółowoFALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Bardziej szczegółowoEfekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Bardziej szczegółowoPromieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Bardziej szczegółowoDr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Bardziej szczegółowoprzenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Tęcza pierwotna i wtórna Dyfrakcja i interferencja światła Politechnika Opolska Opole
Bardziej szczegółowoPromieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Bardziej szczegółowoPrędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Bardziej szczegółowoŚwiatło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym
Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)
Bardziej szczegółowoLXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Bardziej szczegółowoPole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Bardziej szczegółowoPole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Bardziej szczegółowoOptyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Bardziej szczegółowoWYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Bardziej szczegółowoĆwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Bardziej szczegółowoZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Bardziej szczegółowoRys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoEfekt naskórkowy (skin effect)
Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,
Bardziej szczegółowoREZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
Bardziej szczegółowoNr lekcji Pole elektryczne (Natężenie pola elektrostatycznego. Linie pola elektrostatycznego)
Nr lekcji 1 2 3 4 5 6 7 8 9 10 11 12 Tematy lekcji 9.1. Ładunki elektryczne i ich oddziaływanie (Elektryzowanie ciał. Oddziaływanie ładunków elektrycznych) 9.2. Prawo Coulomba 9.3. Pole elektryczne (Natężenie
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowo39 DUALIZM KORPUSKULARNO FALOWY.
Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)
Bardziej szczegółowoZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA
ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO
Bardziej szczegółowoVII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoElementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy
Bardziej szczegółowoOPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja
Bardziej szczegółowoDrgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Bardziej szczegółowoPrzedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1
Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne
Bardziej szczegółowoPlan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Bardziej szczegółowo= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Bardziej szczegółowocz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość
Bardziej szczegółowoZagadnienia na egzamin ustny:
Zagadnienia na egzamin ustny: Wstęp 1. Wielkości fizyczne, ich pomiar i podział. 2. Układ SI i jednostki podstawowe. 3. Oddziaływania fundamentalne. 4. Cząstki elementarne, antycząstki, cząstki trwałe.
Bardziej szczegółowoWykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Bardziej szczegółowoZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13
1 ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem. 2 2012/13 Ruch falowy 1. Co to jest fala mechaniczna? Podaj warunki niezbędne do zaobserwowania rozchodzenia się fali mechanicznej. 2. Jaka wielkość
Bardziej szczegółowoFizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Bardziej szczegółowoStara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Bardziej szczegółowoRÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Bardziej szczegółowoλ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o
W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac
Bardziej szczegółowo18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Bardziej szczegółowoŚwiatło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Bardziej szczegółowoPole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Bardziej szczegółowoElementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera
Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy
Bardziej szczegółowoInterferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Bardziej szczegółowoWidmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Bardziej szczegółowoFeynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Bardziej szczegółowogęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Bardziej szczegółowoWykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Fizyka II Rok akademicki: 2013/2014 Kod: EIB-1-240-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:
Bardziej szczegółowoCiało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Bardziej szczegółowoOptyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Bardziej szczegółowoZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 1. Rachunek niepewności pomiaru 1.1. W jaki sposób podajemy wynik pomiaru? Co jest źródłem rozbieżności pomiędzy wartością uzyskiwaną w eksperymencie
Bardziej szczegółowoSzczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.
Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału
Bardziej szczegółowoKsięgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Bardziej szczegółowoRozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Bardziej szczegółowoAnaliza wektorowa. Teoria pola.
Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy
Bardziej szczegółowoRównania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Bardziej szczegółowofalowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoĆw.6. Badanie własności soczewek elektronowych
Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki
Bardziej szczegółowoPROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Bardziej szczegółowoSiły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Bardziej szczegółowoĆwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoFale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.
Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.
Bardziej szczegółowoOptyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017
Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej
Bardziej szczegółowoWprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Bardziej szczegółowoPodstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Bardziej szczegółowoRównania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
Bardziej szczegółowoMikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Bardziej szczegółowoOscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Bardziej szczegółowoŁadunek elektryczny jest skwantowany
1. WSTĘP DO MECHANIKI KWANTOWEJ 1.1. Budowa materii i kwantowanie ładunku Materia w skali mikroskopowej nie jest ciągła lecz zbudowana z atomów mówimy, że jest skwantowana Powierzchnia platyny Ładunek
Bardziej szczegółowoWykład VI Dalekie pole
Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie
Bardziej szczegółowoNatura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
Bardziej szczegółowoFizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Bardziej szczegółowoV OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki
Bardziej szczegółowoElektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Bardziej szczegółowoWłasności falowe materii
Część 3 Własności falowe materii 1. Rozpraszanie promieni X 2. Fale De Brogliea 3. Rozpraszanie elektronu 4. Ruch falowy 5. Transformata Fouriera 6. Zasada nieokreśloności 7. Cząsteczka w pudle 8. Prawdopodobieństwo,
Bardziej szczegółowo1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Bardziej szczegółowo