WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Pomiar refrakcji molowej i sprawdzenie jej addytywności)
|
|
- Łukasz Kosiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie nr 1b WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Pomiar refrakcji molowej i sprawdzenie jej addytywności) I. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie refrakcji molowej wody i glicerolu oraz sprawdzenie właściwości addytywnych refrakcji molowej roztworów glicerolowowodnych. II. Zagadnienia wprowadzające 1. Prawa odbicia i załamania światła.. Współczynnik załamania światła. 3. Refrakcja molowa. 4. Addytywność refrakcji molowej substancji i roztworów. Literatura obowiązująca: 1. Praca zbiorowa, Chemia fizyczna, PWN, S. Danek, Chemia fizyczna, PZWL, E. Szymański, Ćwiczenia laboratoryjne z chemii fizycznej, cz.1, Wyd. UMCS Lublin, 1991.
2 Budowa cząsteczki III. Cześć teoretyczna Promień świetlny przechodząc przez granicę dwóch ośrodków różniących się prędkością rozchodzenia się światła, ulega częściowemu odbiciu i załamaniu. Zgodnie z prawem Sneliusa, dla danej pary ośrodków stosunek sinusa kąta padania do sinusa kąta załamania jest wielkością stałą, zwaną współczynnikiem załamania światła lub współczynnikiem refrakcji, i równą stosunkowi prędkości rozchodzenia się światła w tych ośrodkach. Prawo to opisuje następujące równanie: sinα c =n= sin β c 1 (1) w którym α i β są odpowiednio kątem padania i załamania promienia świetlnego, n jest współczynnikiem załamania światła, c 1 i c są prędkościami rozchodzenia się światła w obu ośrodkach. Współczynnik załamania danego ośrodka wyznaczony względem próżni nazywa się bezwzględnym współczynnikiem załamania światła (N). Wartość tę wyznacza się z reguły jedynie dla gazów. Dla cieczy i ciał stałych wyznacza się współczynniki załamania względem powietrza. W warunkach laboratoryjnych dokonuje się tych pomiarów dla linii D widma sodowego. Badanie współczynnika załamania jest wykorzystywane między innymi do określenia budowy związków chemicznych. Zgodnie z równaniem Lorenza- Lorentza, daną substancję chemiczną charakteryzuje refrakcja właściwa r w oraz molowa R: n 1 1 r w = n () + d n R= n 1 M + d gdzie: n jest współczynnikiem załamania światła, M jest masą molową, a d gęstością badanej substancji. Jednostką refrakcji molowej jest m 3 /mol. Współczynnik załamania światła jest wielkością niemianowaną. Refrakcja molowa jest wielkością stałą i charakterystyczną dla danego związku chemicznego. Nie zależy od temperatury i od ciśnienia, zależy natomiast od długości fali świetlnej, dla której jest wyznaczana. Refrakcja molowa substancji chemicznej jest wielkością addytywną, to znaczy jest sumą refrakcji molowych wiązań, atomów i grup atomów występujących w cząsteczce danego związku, czyli: (3)
3 Ćwiczenie nr 1b Pomiar refrakcji molowej i sprawdzenie jej addytywności R = n i R i (4) gdzie n i jest liczbą określonych wiązań, atomów lub grup atomów w cząsteczce a refrakcje molowe odpowiadające tym fragmentom cząsteczki mają wartości R i. W tabelach 1 i zebrano wartości refrakcji atomów i ich grup oraz wiązań pomiędzy wybranymi atomami dla linii D widma sodowego. Tabela 1. Refrakcje atomów i grup atomów dla linii D widma sodowego. Nazwa Symbol R D 10 6 [m 3 /mol] węgiel C,418 wodór H 1,100 tlen w grupie karbonylowej =O,11 tlen w grupie hydroksylowej O 1,55 tlen w eterach >O 1,643 azot w aminach I-rz. alifatycznych NH,3 azot w aminach II-rz. alifatycznych NH,50 azot w aminach III-rz. alifatycznych N,840 siarka w merkaptanach SH 7,690 wiązanie podwójne 1,733 wiązanie potrójne,336 pierścień benzenowy 5,00 Tabela. Refrakcje molowe wiązań dla linii D widma sodowego. Symbol R D 10 6 [m 3 /mol] Symbol R D 10 6 [m 3 /mol] C H 1,68 C=S 11,91 C N 1,57 N H 1,76 C=N 3,76 O H 1,80 C F 1,44 Si C,5 C Cl 6,51 Si H 3,17 C Br 9,39 P C 3,58 C I 14,61 P H 4,01 C C 1,96 P O 3,10 C=C 4,17 S H 4,80 C C 6,4 S O 4,94 C O 1,54 S O 0,0 C=O 3,3 N N 1,99 3
4 Budowa cząsteczki Korzystając z refrakcji molowej atomów i wiązań można obliczyć refrakcję molową związku chemicznego, gdy znana jest jego budowa. Refrakcję można wyznaczyć także doświadczalnie, mierząc w danej temperaturze współczynnik załamania światła i gęstość danej substancji. Porównując wyznaczoną doświadczalnie wartość refrakcji molowej z wartościami obliczonymi teoretycznie dla prawdopodobnych struktur badanego związku, można określić jego rzeczywistą strukturę. Właściwości addytywne ma również refrakcja molowa roztworu co oznacza, że jest ona sumą udziałów refrakcji molowych poszczególnych jego składników. Dla roztworu dwuskładnikowego właściwości addytywne refrakcji molowej opisuje następujące równanie: R roztw. = x 1 R 1 + x R (5) gdzie: x 1 i x są ułamkami molowymi substancji 1 i będących składnikami roztworu, a R 1 i R odpowiadają ich refrakcjom molowym. Wartość refrakcji molowej roztworu dwuskładnikowego wyznaczyć można również doświadczalnie mierząc współczynnik załamania światła tego roztworu n roztw.. Korzystamy wówczas z następującej zależności: n roztw. 1 x1m 1 + xm R = roztw. (6) nroztw. + d roztw. gdzie: x 1 i x są ułamkami molowymi składników, M 1 i M są ich masami molowymi, a d roztw. jest gęstością roztworu. 4
5 Ćwiczenie nr 1b Pomiar refrakcji molowej i sprawdzenie jej addytywności IV Część doświadczalna A. Aparatura i odczynniki 1. Aparatura: refraktometr Abbego, ultratermostat, kolbki miarowe o poj. 5 cm 3 5 szt., pipety miarowe o poj., 5 i 10 cm 3 3 szt.. Odczynniki: glicerol cz.d.a., woda destylowana. B. Przygotowanie termostatu do pracy włączyć termostat do sieci, ustawić niewielki przepływ wody, ustawić żądaną temperaturę (0 o C) na termometrze kontaktowym (temperaturę sprawdzamy na termometrze kontrolnym). C. Przygotowanie roztworów glicerolu w wodzie W kolbkach o pojemności 5 cm 3 przygotować wodne roztwory glicerolu o stężeniach 5, 10, 0, 30 i 40% wag. (nie więcej niż po 10g każdego z roztworów). D. Pomiary współczynnika załamania światła Przy pomocy refraktometru Abbego zmierzyć współczynniki załamania światła każdego z przygotowanych roztworów oraz glicerolu i wody. Każdy pomiar powtórzyć trzykrotnie. Wyniki zapisać w tabeli 3. 5
6 Budowa cząsteczki Tabela 3. % wag. x glic. n d [g/cm 3 ] R d 10 6 [m 3 /mol] R t 10 6 [m 3 /mol] woda 0 0, , ,063 1,0554 1,0804 1,1160 glicerol 1 1,613 E. Opracowanie wyników wyrazić stężenia przygotowanych roztworów w ułamkach molowych glicerolu x glic., obliczyć doświadczalną wartość refrakcji molowej wody ze wzoru (3) (patrz: część teoretyczna ćw. 1a), obliczyć doświadczalne wartości refrakcji molowych badanych roztworów glicerolowowodnych ze wzoru (6), sporządzić wykres zależności współczynnika załamania światła od wartości ułamka molowego glicerolu w badanych roztworach, czyli funkcji n = f(x glic. ); sporządzić wykres zależności refrakcji molowej roztworu od jego stężenia, czyli funkcji R roztw. = f(x glic. ), obliczyć doświadczalne wartości refrakcji molowych wody i glicerolu w oparciu o funkcję R roztw. = f(x glic. ). W tym celu należy wyznaczyć parametry regresji liniowej R roztw. =f(x glic. ), czyli parametry a i b funkcji R roztw = a x glic. +b. Zgodnie z równaniem (5) możemy napisać: skoro: możemy zapisać: R = x R + x R (7) roztw. H O HO glic. glic. x = 1 x (8) HO glic. 6
7 Ćwiczenie nr 1b Pomiar refrakcji molowej i sprawdzenie jej addytywności ( Rglic RH O ) xglic RH O Rroztw... + = (9) Tak więc parametry a i b funkcji R roztw. = f(x glic. ) są równe odpowiednio: a = Rglic R H O i b =. RH O (10) Doświadczalne wartości refrakcji molowych (R d ) wody i glicerolu wynoszą odpowiednio: R d H d O = b i R glic. = a + b (11) obliczyć teoretyczne wartości refrakcji molowych (R t ) wody i glicerolu korzystając z zamieszczonych w tabelach 1 lub wartości refrakcji przypisanych poszczególnym atomom i wiązaniom wchodzącym w skład tych związków, obliczyć teoretyczne wartości refrakcji molowych (R t ) roztworów glicerolowowodnych korzystając ze wzoru (5) i przyjmując za R 1 i R wartości teoretyczne refrakcji molowych wody i glicerolu obliczone w poprzednim punkcie, wyniki obliczeń zapisać w tabeli 3 i porównać wartości refrakcji molowych obliczone teoretycznie z wyznaczonymi doświadczalnie. F. Obsługa Refraktometru Abbego Refraktometr Abbego jest przyrządem umożliwiającym pomiar współczynnika załamania światła w cieczy, o ile odpowiadająca mu wartość jest mniejsza od współczynnika załamania światła w szkle. Podstawowym elementem refraktometru jest pryzmat refraktometryczny w obudowie z poziomo ustawioną płaszczyzną pomiarową. Takie położenie płaszczyzny pomiarowej zabezpiecza przed spływaniem badanej cieczy z pryzmatu. Nad pryzmatem znajduje się pryzmat górny umieszczony w zawiasowo zamocowanej obudowie, służący do oświetlania substancji mierzonych w świetle przechodzącym. Podczas pomiaru wiązka promieni skierowana zostaje do pryzmatu przez okienko oświetlające pryzmat górny. Po załamaniu na płaszczyźnie pomiarowej przedostaje się do wnętrza kadłuba refraktometru, gdzie po przejściu przez pryzmat kierujący trafia do zespołu pryzmatów Amiciego. Po przejściu przez pryzmat Amiciego wiązka promieni pada na obiektyw i zostaje zogniskowana w górnym okienku pola widzenia okularu. W dolnym okienku pola widzenia okularu widoczna jest podziałka współczynników załamania. Próbkę umieszcza się na pryzmacie pomiarowym i podświetla zewnętrznym źródłem światła (np. światło dzienne lub zwykła lampka biurowa) poprzez odpowiednie ustawienie chromowanego reflektora. Regulacja pryzmatów achromatycznych za pomocą pokrętła dyspersji umożliwia otrzymanie pomiaru dla właściwej długości fali (589 nm dla pomiarów standardowych). Pojedynczy wizjer 7
8 Budowa cząsteczki służy do obserwacji linii granicznej i odczytywania wyniku pomiaru ze zintegrowanej skali (współczynnik refrakcji). Refraktometr można skonfigurować zarówno do pomiarów dla światła przechodzącego jak i odbitego (dla próbek niehomogenicznych lub nieprzeźroczystych). Obudowy obu pryzmatów (zarówno nieruchomego jak i unoszonego do góry) są wyposażone w końcówki do podłączenia obiegu termostatującego celem utrzymania zadanej temperatury pryzmatów i próbki badanej. Temperatura pryzmatu jest monitorowana elektronicznie i prezentowana na zasilanym bateriami wyświetlaczu. Przy dobrej kontroli temperatury i precyzyjnej kalibracji możliwe jest dokonywanie pomiarów współczynnika refrakcji do 4 miejsca po przecinku. Wygodne jest utrzymywać temperaturę 0 C, dzięki czemu nie ma potrzeby stosowania współczynnika korygującego. Rys. 1. Refraktometr Abbe 5. Pomiar próbek ciekłych Przed przystąpieniem do właściwych pomiarów należy termostatować refraktometr przez kilka minut w odpowiedniej dla danego ćwiczenia temperaturze. Aby zmierzyć współczynnik załamania światła (n D ) badanej próbki cieczy należy: 8
9 Ćwiczenie nr 1b Pomiar refrakcji molowej i sprawdzenie jej addytywności Obrócić pokrętło blokujące i unieść górny pryzmat. Umieścić za pomocą pipety kilka kropli cieczy badanej na dolnym pryzmacie, opuścić górny pryzmat i zablokować pokrętłem. Próbka nie może zawierać bąbelków powietrza i powinna równomiernie pokrywać powierzchnię pryzmatu. Dla próbek przezroczystych (najczęściej jednorodnych próbek płynów) stosuje się pomiar dla światła przechodzącego. W tym celu należy otworzyć przesłonę na górnym pryzmacie i zamknąć reflektor (lusterko) pryzmatu dolnego. Przy takim ustawieniu światło przechodzi przez górny pryzmat i próbkę. Dla próbek nieprzezroczystych stosuje się pomiar dla światła odbitego, ale linia graniczna jest gorzej widoczna. Należy zamknąć przesłonę na górnym pryzmacie i otworzyć reflektor (lusterko) pryzmatu dolnego. Przy takim ustawieniu światło odbija się od dolnej płaszczyzny próbki. 9
10 Budowa cząsteczki Patrząc przez wizjer obracać go w celu uzyskania ostrego obrazu skali i ekranu linii granicznej. Obracając pokrętło dyspersji usunąć z ekranu kolory: niebieski w jednym kierunku i czerwony w kierunku przeciwnym ustawiając ostrą linię graniczną. Obracając pokrętło pomiarowe ustawić linię graniczną (krawędź pomiędzy jasnym i ciemnym obszarem) na przecięciu linii krzyża pomiarowego. Obracając kolektor światła ustawić optymalną jasność skali. Zanotować wynik odczytany ze skali współczynnika refrakcji oraz temperaturę. Po dokonaniu pomiarów usunąć próbki z pryzmatów możliwie szybko przy pomocy chusteczki nasączonej alkoholem i wytrzeć do sucha. 10
11 Ćwiczenie nr 1b Pomiar refrakcji molowej i sprawdzenie jej addytywności Uwaga! Niedopuszczalne jest pozostawienie próbki pomiędzy pryzmatami na dłuższy czas i doprowadzenie do jej wyschnięcia, gdyż może to spowodować sklejenie się pryzmatów. Po każdym pomiarze pryzmaty refraktometru należy przetrzeć ściereczką zwilżoną etanolem i osuszyć. Pryzmatów nie należy pocierać szorstkimi materiałami, gdyż może to prowadzić do zarysowania powierzchni pryzmatu i w konsekwencji rozmycia linii granicznej oraz większego zanieczyszczenia próbek. Do czyszczenia pryzmatów nie zaleca się stosowania agresywnych rozpuszczalników, takich jak aceton należy używać alkoholi lub innych łagodnych rozpuszczalników. 11
WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Refrakcja molowa a budowa związku chemicznego)
Ćwiczenie nr 1a WYKORZYSTANIE POMIARU REFRAKCJI MOLOWEJ DO BADAŃ FIZYKOCHEMICZNYCH (Refrakcja molowa a budowa związku chemicznego) I. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie refrakcji molowej
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
REFRAKTOMETRIA. 19. Oznaczanie stężenia gliceryny w roztworze wodnym
REFRAKTOMETRIA 19. Oznaczanie stężenia gliceryny w roztworze wodnym Celem ćwiczenia jest zaobserwowanie zmiany współczynnika refrakcji wraz ze zmianą stężenia w roztworu. Odczynniki i aparatura: 10% roztwór
Refraktometria. sin β sin β
Refraktometria Prędkość rozchodzenia się promieni świetlnych zależy od gęstości optycznej ośrodka oraz od długości fali promienienia. Promienie świetlne padając pod pewnym kątem na płaszczyznę graniczących
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr
Badanie właściwości optycznych roztworów.
ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria
Ćwiczenie Nr 8 Współczynnik załamania refraktometr Abbego
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 8 Współczynnik załamania refraktometr Abbego Zagadnienia: załamanie światła na anicy dwóch ośrodków, prawo Snelliusa, zjawisko całkowitego
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości
TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI
Ćwiczenie nr 7 TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Celem ćwiczenia jest zapoznanie się z podstawami teorii procesów transportu nieelektrolitów przez błony.
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.
0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie
RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM
RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM Cel ćwiczenia: wyznaczenie diagramu fazowego ciecz para w warunkach izobarycznych. Układ pomiarowy i opis metody: Pomiary wykonywane są metodą recyrkulacyjną
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza
ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia
Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Zagadnienia: polaryzacja światła, metody otrzymywania światła spolaryzowanego, budowa polarymetru, zjawisko
20. Oznaczanie stężenia acetonu w czterochloroetanie
REFRAKTOMETRIA 20. Oznaczanie stężenia acetonu w czterochloroetanie Odczynniki i aparatura: Aceton Czterochloroetan Refraktometr Pulfricha PR-2 Wykonanie ćwiczenia: 1. 15 minut przed pomiarami włączyć
ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne
ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli
Laboratorium techniki światłowodowej. Ćwiczenie 6. Pomiary współczynnika załamania i współczynnika dyspersji
Laboratorium techniki światłowodowej Ćwiczenie 6. Pomiary współczynnika załamania i współczynnika dyspersji Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1.
Wyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
K02 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K2 Instrukcja wykonania ćwiczenia Wyznaczanie krytycznego stężenia micelizacji (CMC) z pomiarów napięcia powierzchniowego Zakres zagadnień obowiązujących
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fizyczny charakter wiązań w cząsteczkach. 2. Elektryczne momenty dipolowe cząsteczek.
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania
WYZNACZANIE STAŁEJ DYSOCJACJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII ABSORPCYJNEJ
Ćwiczenie nr 13 WYZNCZNIE STŁEJ DYSOCJCJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII BSORPCYJNEJ I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie metodą spektrofotometryczną stałej dysocjacji słabego kwasu,
Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS037; KN037; LS037; LN037 Ćwiczenie Nr Wyznaczanie współczynnika załamania
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
OZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ POLIMERU WSTĘP Lepkość roztworu polimeru jest z reguły większa od lepkości rozpuszczalnika. Dla polimeru lepkość graniczna [η ] określa zmianę lepkości roztworu przypadającą
Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej.
PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Polarymetr Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia 74 Data oddania Data zaliczenia OCENA Ćwiczenie 74 Cel ćwiczenia:
Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła
Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika
Pomiar dyspersji materiałów za pomocą spektrometru
Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia
Pomiar dyspersji materiałów za pomocą spektrometru
Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia
ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza
ĆWICZENIE 72A ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE 1. Wykaz przyrządów Spektroskop Lampy spektralne Spektrofotometr SPEKOL Filtry optyczne Suwmiarka Instrukcja wykonawcza 2. Cel ćwiczenia
Spektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
A4.04 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.04 Instrukcja wykonania ćwiczenia Wyznaczanie cząstkowych molowych objętości wody i alkoholu Zakres zagadnień obowiązujących do ćwiczenia 1. Znajomość
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik ćwiczenie nr 26 Zakres zagadnień obowiązujących do ćwiczenia 1. Prawo Lamberta
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną. opiekun mgr K.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie stałej szybkości i rzędu reakcji metodą graficzną opiekun mgr K. Łudzik ćwiczenie nr 27 Zakres zagadnień obowiązujących do ćwiczenia 1. Zastosowanie
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Izoterma rozpuszczalności w układzie trójskładnikowym ćwiczenie nr 28 Zakres zagadnień obowiązujących do ćwiczenia 1. Stan równowagi układu i rodzaje równowag
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Parachora kilku związków organicznych. opracowała dr hab. Małgorzata Jóźwiak
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Parachora kilku związków organicznych opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr 5 Zakres zagadnień obowiązujących do ćwiczenia: 1. Zjawisko napięcia
Wyznaczanie wartości współczynnika załamania
Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Zależność napięcia powierzchniowego cieczy od temperatury. opracowała dr hab. Małgorzata Jóźwiak
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Zależność napięcia powierzchniowego cieczy od temperatury opracowała dr hab. Małgorzata Jóźwiak ćwiczenie nr 4 Zakres zagadnień obowiązujących do ćwiczenia
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego
Wyznaczanie współczynnika załamania światła
Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z
Refraktometr laboratoryjny RL-3 POLSKIE ZAKŁADY OPTYCZNE S. A. Grochowska 316/320 ² Warszawa
Refraktometr laboratoryjny RL-3 POLSKIE ZAKŁADY OPTYCZNE S. A. Grochowska 36/320 ²04-839 Warszawa Refraktometr laboratoryjny RL3 PRZEZNACZENIE Refraktometr laboratoryjny RL3 przeznaczony jest do pomiaru
ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi.
ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE I. Zestaw przyrządów: 1. Mikroskop z wymiennymi obiektywami i okularami.. Oświetlacz mikroskopowy z zasilaczem. 3. Skala mikrometryczna. 4. Skala milimetrowa na statywie.
I PRACOWNIA FIZYCZNA, UMK TORUŃ
I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG
2. METODY WYZNACZANIA MASY MOLOWEJ POLIMERÓW dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej
Badanie kinetyki inwersji sacharozy
Badanie kinetyki inwersji sacharozy Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie stałej szybkości, energii aktywacji oraz czynnika przedwykładniczego reakcji inwersji sacharozy. Opis metody: Roztwory
K05 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K05 Instrukcja wykonania ćwiczenia Wyznaczanie punktu izoelektrycznego żelatyny metodą wiskozymetryczną Zakres zagadnień obowiązujących do ćwiczenia 1. Układy
A4.06 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego A4.06 Instrukcja wykonania ćwiczenia Lepkościowo średnia masa cząsteczkowa polimeru Zakres zagadnień obowiązujących do ćwiczenia 1. Związki wielkocząsteczkowe
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
ZLEŻNOŚĆ PRĘŻNOŚCI PRY OD TEMPERTURY - DESTYLCJ WSTĘP Zgodnie z regułą faz w miarę wzrostu liczby składników w układzie, zwiększa się również liczba stopni swobody. Układ utworzony z mieszaniny dwóch cieczy
WYZNACZANIE OGNISKOWYCH SOCZEWEK
WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej
PL B1. Sposób oznaczania stężenia koncentratu syntetycznego w świeżych emulsjach chłodząco-smarujących
PL 214125 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214125 (13) B1 (21) Numer zgłoszenia: 389756 (51) Int.Cl. G01N 33/30 (2006.01) G01N 33/26 (2006.01) Urząd Patentowy Rzeczypospolitej
Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej
Doświadczalne wyznaczanie ogniskowej cienkiej skupiającej Wprowadzenie Soczewka ciało przezroczyste dla światła ograniczone zazwyczaj dwiema powierzchniami kulistymi lub jedną kulistą i jedną płaską 1.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Zastosowanie destylacji z parą wodną do oznaczania masy cząsteczkowej cieczy niemieszającej się z wodą opracował prof. B. Pałecz ćwiczenie nr 35 Zakres zagadnień
9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru
II Pracownia Fizyczna 9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampa spektralna rtęciowa z zasilaczem 3. Pryzmaty szklane,
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. opracowali dr L.Bartel, dr M.Wasiak
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Równowaga ciecz para w układzie dwuskładnikowym opracowali dr L.Bartel, dr M.Wasiak ćwiczenie nr 32 Zakres zagadnień obowiązujących do ćwiczenia 1. Równowaga
1. PRZYGOTOWANIE ROZTWORÓW KOMPLEKSUJĄCYCH
1. PRZYGOTOWANIE ROZTWORÓW KOMPLEKSUJĄCYCH 1.1. przygotowanie 20 g 20% roztworu KSCN w wodzie destylowanej 1.1.1. odważenie 4 g stałego KSCN w stożkowej kolbie ze szlifem 1.1.2. odważenie 16 g wody destylowanej
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Skręcenie wektora polaryzacji w ośrodku optycznie czynnym
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
INSTRUKCJA. Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk
INSTRUKCJA Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk Analiza gazów analizatorami fizycznymi. Interferometr. Strona 2 1. WSTĘP Sposób badania gazów i
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1
Badanie współczynników lepkości cieczy przy pomocy wiskozymetru rotacyjnego Rheotest 2.1 Joanna Janik-Kokoszka Zagadnienia kontrolne 1. Definicja współczynnika lepkości. 2. Zależność współczynnika lepkości
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie momentu dipolowego cieczy polarnych. opracował dr P. Góralski
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie momentu dipolowego cieczy polarnych opracował dr P. Góralski ćwiczenie nr 15 Zakres zagadnień obowiązujących do ćwiczenia 1. Polaryzacja jako
Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru
Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną. Zakres wymaganych
STOLIK OPTYCZNY 1 V Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej.
STOLIK OPTYCZNY 1 V 7-19 Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej. 6 4 5 9 7 8 3 2 Rys. 1. Wymiary w mm: 400 x 165 x 140, masa 1,90 kg. Na drewnianej podstawie
PRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW
PRZEWODNOŚĆ ROZTWORÓW ELEKTROLITÓW Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przewodności elektrolitycznej κ i molowej elektrolitu mocnego (HCl) i słabego (CH3COOH), graficzne wyznaczenie wartości
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie lepkości wodnych roztworów sacharozy. opracowała dr A. Kacperska
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie lepkości wodnych roztworów sacharozy opracowała dr A. Kacperska ćwiczenie nr 20 Zakres zagadnień obowiązujących do ćwiczenia 1. Oddziaływania
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych opracował dr P. Góralski ćwiczenie nr 2 Zakres zagadnień obowiązujących do
Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu
Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Analiza spektralna i pomiary spektrofotometryczne
Analiza spektralna i pomiary spektrofotometryczne Zagadnienia: 1. Absorbcja światła. 2. Współrzędne trójchromatyczne barwy, Prawa Gassmana. 3. Trójkąt barw. Trójkąt nasyceń. 4. Rozpraszanie światła. 5.
ośrodka drugiego względem pierwszego. sinα (1) n 2,1 =
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ POMIARU POZORNEJ GRUBOŚCI PŁYTKI ZA PO- MOCĄ MIKROSKOPU ORAZ ZA POMOCĄ REFRAKTOMETRU ABBEGO DLA CIECZY. I. Cel ćwiczenia: zapoznanie z prawami załamania
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 10 Wyznaczanie współczynnika załamania światła metodą najmniejszego odchylenia w pryzmacie Kalisz, luty 2005 r. Opracował:
Ć W I C Z E N I E N R O-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O- WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ SPEKTROMETRU
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA
ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wpływ stężenia kwasu na szybkość hydrolizy estru ćwiczenie nr 25 opracowała dr B. Nowicka, aktualizacja D. Waliszewski Zakres zagadnień obowiązujących do
WYZNACZANIE ROZMIARÓW
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej
ĆWICZENIE 1 WYZNACZANIE DŁUGOŚCI FALI ZA POMOCĄ SPEKTROSKOPU
ĆWICZENIE WYZNACZANIE DŁUGOŚCI FALI ZA POMOCĄ SPEKTROSKOPU Jeżeli gazy zaczynają świecić, na przykład w wyniku podgrzania, to możemy zaobserwować charakterystyczne kolorowe prążki podczas obserwacji tzw.
KOROZJA. Korozja kontaktowa z depolaryzacja tlenową 1
KOROZJA Słowa kluczowe do ćwiczeń laboratoryjnych z korozji: korozja kontaktowa depolaryzacja tlenowa depolaryzacja wodorowa gęstość prądu korozyjnego natęŝenie prądu korozyjnego prawo Faradaya równowaŝnik
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Wykonywanie badań analitycznych Oznaczenie kwalifikacji: A.60 Numer zadania: 02
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Lepkościowo średnia masa cząsteczkowa polimeru. opiekun ćwiczenia: dr A.
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Lepkościowo średnia masa cząsteczkowa polimeru ćwiczenie nr 21 opiekun ćwiczenia: dr A. Kacperska Zakres zagadnień obowiązujących do ćwiczenia 1. Związki
POMIAR LEPKOŚCI WYZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ
Ćwiczenie nr 11 POMIAR LEPKOŚCI WYZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ I. Cel ćwiczenia Celem ćwiczenia jest nabycie podstawowych wiadomości i umiejętności związanych z pomiarami lepkości cieczy przy
KINETYKA INWERSJI SACHAROZY
Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa
Sporządzanie roztworów buforowych i badanie ich właściwości
Sporządzanie roztworów buforowych i badanie ich właściwości (opracowanie: Barbara Krajewska) Celem ćwiczenia jest zbadanie właściwości roztworów buforowych. Przygotujemy dwa roztwory buforowe: octanowy
Laboratorium Podstaw Biofizyki
CEL ĆWICZENIA Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu oraz wyznaczenie równania izotermy Freundlicha. ZAKRES WYMAGANYCH WIADOMOŚCI I UMIEJĘTNOŚCI: widmo absorpcyjne, prawo Lamberta-Beera,
XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017
IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 2 maja 217 Im. Jana Kasprowicza INOWROCŁAW XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY
S P E K T R O S K O P S Z K O L N Y P R Y Z M A T Y C ZN Y 1
Przeznaczenie S P E K T R O S K O P S Z K O L N Y P R Y Z M A T Y C ZN Y 1 Spektroskop szkolny służy do demonstracji i doświadczeń przy nauczaniu fizyki, zarówno w gimnazjach jak i liceach. Przy pomocy
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących
Pomiar prędkości światła
Tematy powiązane Współczynnik załamania światła, długość fali, częstotliwość, faza, modulacja, technologia heterodynowa, przenikalność elektryczna, przenikalność magnetyczna. Podstawy Będziemy modulować
Rys. 1. Schemat układu pomiarowego do wyznaczania składowych pola magnetycznego Ziemi
Ćwiczenie 5. Wyznaczanie pola magnetycznego iemi. Literatra. Sz.Szczeniowski, izyka dośw., cz., PWN, W-wa, rozdz. V.. Ćwiczenia laboratoryjne z fizyki. Cz praca zbiorowa pod redakcją. Krk i J. Typka. Wydawnictwo
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych
CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw