II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki. Janusz Czelakowski. Wykład 8. Arytmetyka

Wielkość: px
Rozpocząć pokaz od strony:

Download "II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki. Janusz Czelakowski. Wykład 8. Arytmetyka"

Transkrypt

1 II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki Janusz Czelakowski Wykład 8. Arytmetyka Jak dobrze wiadomo, jednym z kluczowych praw zachodzących w dziedzinie liczb naturalnych jest Zasada Indukcji. Powiada ona, Ŝe jeŝeli P(n) jest dowolną własnością liczb naturalnych, to zdanie (IP) P(0) ( n)(p (n) P (n + 1)) ( n)p (n) jest prawdziwe dla liczb naturalnych. Czym jest jednak własność P? JeŜeli weźmiemy P(n) : JeŜeli dana osoba ma n włosów na głowie, to osoba ta jest prawie łysa, to zapewne uznamy prawdziwość zdań P(0) oraz ( n)(p (n) P (n + 1)). JeŜeli zatem uznajemy prawdziwość (IP), to prawdziwe jest zdanie ( n)p (n), co jest jawnym absurdem. Zatem naleŝy zachować pewną ostroŝność przy definiowaniu własności liczb naturalnych. MoŜna powiedzieć, Ŝe P powinno być własnością o treści matematycznej, pozbawioną nieostrych terminów w rodzaju bycie prawie łysym. Co to znaczy? Rozwiązania są dwa. Pierwsze polega na utoŝsamieniu własności liczb naturalnych z podzbiorem zbioru liczb naturalnych. W efekcie otrzymujemy Zasadę Indukcji Zupełnej: (CIP) Dla kaŝdego podzbioru X N, jeŝeli 0 N oraz dla kaŝdej liczby n N, n X implikuje n + 1 X, to X = N. (CIP) nie jest zdaniem pierwszego rzędu, poniewaŝ występuje tu kwantyfikator ogólny wiąŝący zmienną X przebiegającą wszystkie podzbiory zbioru N liczb naturalnych. W formułach pierwszego rzędu dopuszczalna jest jedynie kwantyfikacja po indywiduach, tj. elementach uniwersum (w tym przypadku po liczbach naturalnych), a nie po podzbiorach uniwersum. (9) jest przykładem zdania drugiego rzędu. Rodzi to powaŝne trudności natury logicznej, o czym niŝej. Inne rozwiązanie polega na przyjęciu za własności liczb naturalnych formuł pierwszego rzędu (z parametrami) ze ściśle określonego języka L opisującego liczby naturalne. Jaki to ma być język? PoniŜej przedstawimy garść uwag. Niech L będzie językiem i niech A będzie modelem dla L. Niech σ (x 1,, x m, y 1,, y n ) będzie ustaloną formułą o zmiennych wolnych x 1,, x m, y 1,, y n. Piszemy: y = y 1,, y n. Niech ponadto e = e 1,, e n będzie ustalonym ciągiem elementów A długości n. Definiujemy m-argumentową relacje na zbiorze A: R σ, e := { a 1,, a m A m : A σ (x 1,, x m, y 1,, y n ) [a 1,, a m, e 1,, e n ] R σ, e nazywamy relacją (parametycznie) definiowalną w modelu A przez σ (przy ustalonych wartościach parametrów y 1,, y n, tj. gdy nadano im wartości e = e 1,, e n ). Ile jest relacji definiowalnych w modelu A? Nie więcej niŝ formuł języka i skończonych ciągów e elementów modelu A. Zatem, jeŝeli język L jest przeliczalny i model A jest przeliczalny, istnieje co najwyŝej א 0 definiowalnych relacji na A. 1

2 W szczególnym przypadku, gdy m = 1, tj., gdy σ = σ (x, y 1,, y n ), relacja definiowalna przez σ (przy ustalonej wartości parametrów) jest 1-argumentowa, a wiec jest podzbiorem zbioru A. Mówimy wtedy o definiowalnych podzbiorach modelu A. Zatem, gdy L jest przeliczalny i model A jest przeliczalny, istnieje co najwyŝej א 0 definiowalnych podzbiorów modelu A. Zatem: m-argumentowa relacja R na A jest parametrycznie definiowalna w A, gdy istnieją formuła σ (x 1,, x m, y 1,, y n ) języka L oraz ciąg e = e 1,, e n elementów modelu takie, Ŝe R = R σ, e. Podzbiór X A jest parametrycznie definiowalny w A, gdy istnieją formuła σ (x, y 1,, y n ) języka L oraz ciąg e = e 1,, e n elementów modelu takie, Ŝe X = {a A : A σ (x, y 1,, y n ) [a, e 1,, e n ]}. Język arytmetyki L = {+,, S, 0} liczy 4 elementy, gdzie + i są binarnymi symbolami funkcyjnymi (symbolami dodawania i mnoŝenia), S jest unarnym symbolem funkcyjnym (symbolem operacji następnika), 0 jest symbole stałej (cyfrą zero). Elementarna arytmetyka Peany posiada następujące aksjomaty: (1) ( x) (0 S(x)) (zero nie ma poprzednika) (2) ( xy)(s(x) S(y) x y) (operacja następnika jest funkcją róŝnowartościową) (3) ( x) (x + 0 x) (4) ( xy)( x + S(y) S(x + y)) (5) ( x) (x 0 0) (6) ( xy)( x S(y) (x y) + x) oraz, dla kaŝdej formuły ϕ (x, y 1,, y n ) języka L w której zmienna x nie występuje jako zmienna związana, następujący aksjomat: (7 ϕ ) ( y 1,, y n )(ϕ (0, y 1,, y n ) ( x)(ϕ (x, y 1,, y n ) ϕ (S(x), y 1,, y n )) ( x)(ϕ (x, y 1,, y n ) ). (3) i (4) tworzą rekurencyjną definicję dodawania wyraŝoną w terminach 0 i S, natomiast (5) i (6) stanowią rekurencyjną definicję mnoŝenia w terminach 0, S i +. Nieskończona lista aksjomatów (7 ϕ ), po jednym dla kaŝdej formuły ϕ (x, y 1,, y n ), nazywa się schematem indukcji. Podformuła ϕ (S(x), y 1,, y n ) formuly (7 ϕ ) jest skrótem dla ϕ (x /S(x), y 1,, y n ). Podobnym skrótem jest podformuła ϕ (0, y 1,, y n ). Nieskończony zbiór złoŝony ze wszystkich powyŝszych aksjomatów nazywamy elementarna arytmetyką Peany i oznaczamy przez PA. Standardowy model arytmetyki N = (N; +,, S, 0) jest utworzony ze zbioru N liczb naturalnych (z zerem) i wyposaŝony w zwykłe operacje dodawania + i mnoŝenia liczb naturalnych oraz operację następnika S, przyporządkowującą kaŝdej liczbie n liczbę 2

3 n + 1. Ponadto wyróŝniona jest liczba zero jako stała. N jest modelem arytmetyki; jednak dowód tego faktu wymaga uŝycia środków logicznych silniejszych niŝ arytmetyka Peany (o tym później). Wszystkie inne modele arytmetyki Peany nie-izomorficzne z N nazywamy modelami niestandardowymi. Niech A = (A; +,, S, 0) będzie dowolnym modelem arytmetyki Peany. (Elementy zbioru A nie muszą być liczbami naturalnymi. 0 jest zerem w sensie A.) Dla zadanej formuły ϕ (x, y 1,, y n ) i ustalonego ciągu e = e 1,, e n elementów uniwersum A definiujemy Schemat indukcji pociąga, Ŝe: X ϕ, e := {a A : A ϕ (x, y 1,, y n ) [a, e 1,, e n ]}. (8 ϕ, e ) jeŝeli 0 X ϕ, e oraz dla kaŝdego a A, a X ϕ, e implikuje S(a) X ϕ, e, to X ϕ, e = A. Innymi słowy, znana ze szkoły zasada indukcji obowiązuje dla zbiorów definiowalnych w A. W szczególności, zasada indukcji obowiązuje dla definiowalnych zbiorów liczb naturalnych w standardowym modelu N. Jednak wiadomo, Ŝe w modelu standardowym zachodzi mocniejsza wersja zasady indukcji, zwana Zasadą Indukcji Zupełnej: (CIP) Dla kaŝdego podzbioru X N, jeŝeli 0 N oraz dla kaŝdej liczby n N, n X implikuje S(n) X, to X = N. Zdanie drugiego rzędu (CI) jest prawdziwe w modelu standardowym, nie jest jednak w pełni wyraŝone przez zdania elementarne. Mówiąc krótko, w elementarnej arytmetyce Peany dopuszczalna jest indukcja po podzbiorach definiowalnych modelu standardowego, a nie po wszystkich podzbiorów. Podzbiorów definiowalnych zbioru N jest przeliczalnie duŝo, natomiast wszystkich podzbiorów kontinuum. Zatem schemat (7 ϕ ) jest słabszy od zasady (9) (i to istotnie jak pokaŝemy dalej). W efekcie, istnieją niestandardowe modele arytmetyki. Niech Def N) będzie (przeliczalnym) zbiorem wszystkich definiowalnych podzbiorów zbioru liczb naturalnych N w standardowym modelu arytmetyki. (By wykazać, Ŝe Def N) jest faktycznie zbiorem, potrzebny jest aksjomat podzbiorów teorii Zermelo-Fraenkla.) Niech H będzie (jakąkolwiek) bijekcją ze zbioru N na zbiór Def N). (Bijekcja z N na Def N) oczywiście istnieje, bo oba zbiory są przeliczalne.) Definiujemy podzbiór A H N : dla dowolnej liczby naturalnej n, (*) n A H df n H(n). A H nie jest definiowalnym podzbiorem N. Istotnie, gdyby A H był definiowalny w N, to A H = H(n 0 ) dla pewnej liczby n 0. Stąd i na podstawie (*) otrzymujemy: n 0 H(n 0 ) n 0 A H n 0 H(n 0 ). Sprzeczność. A zatem zbiór A H nie jest definiowalny. Wynik powyŝszy moŝna uznać za paradoksalny: A H nie jest definiowalnym podzbiorem N, a przecieŝ prawa strona równowaŝności (*) jest formułą, która, w sposób całkowicie jasny i zrozumiały, definiuje tenŝe zbiór A H. 3

4 Rozwiązanie powyŝszego paradoksu jest proste formuła definiująca zbiór A H (tj. wyraŝająca prawa stronę równowaŝności (*)) nie jest formułą pierwszego rzędu języka arytmetyki, lecz języka teorii mnogości. PowyŜszy przykład jest ilustracją tzw. metody przekątniowej, wynalezionej przez Cantora, jako sposobu definiowania pojęć matematycznych. Znalazła ona szerokie zastosowanie w podstawach matematyki. Zupełną elementarną teorią liczb nazywamy zbiór wszystkich zdań pierwszego rzędu języka L prawdziwych w modelu standardowym, tj. zbiór Th(N). Zbiór konsekwencji zdaniowych C Sent (PA) jest podzbiorem zbioru Th(N) (poniewaŝ wszystkie aksjomaty PA są prawdziwe w N). Czy zachodzi równość C Sent (PA) = Th(N)? Odnotujmy tu podstawowy wynik: Twierdzenie 8.1. (Gödel 1931). Elementarna arytmetyka Peany PA jest teorią niezupełną. PoniewaŜ teoria Th(N) jest zupełna, z Twierdzenia Gödla wynika, Ŝe teoria zamknięta C Sent (PA) jest właściwym podzbiorem zbioru Th(N). MoŜna powiedzieć, Ŝe powyŝsze aksjomaty są za słabe, by wyprowadzić z nich wszystkie prawa teorii liczb, tj. wszystkie zdania naleŝące do Th(N). Jak moŝna próbować temu zaradzić? Jedna opcja to dodać nowe, nieznane dotąd aksjomaty do arytmetyki Peany. Tu czeka nas zimny prysznic: Twierdzenie 8.2. JeŜeli teoria T jest niesprzecznym rozszerzeniem elementarnej arytmetyki Peany przez dodanie skończonej liczby nowych aksjomatów (lub szerzej rekurencyjnej listy nowych aksjomatów), to T nie jest teoria zupełną. W myśl powyŝszego twierdzenia, nie ma moŝliwości przedstawienia wszystkich elementarnych praw teorii liczb w postaci rekurencyjnego systemu aksjomatycznego. (O rekurencyjności nie mówiliśmy dotąd; z grubsza, rekurencyjność zbioru aksjomatów polega na ustalenie pewnego algorytmu numerującego elementy tego zbioru w taki sposób, by w skończonej liczbie kroków algorytm pozwalał orzec, czy z góry zadane zdanie jest aksjomatem, czy nim nie jest. Np. powyŝszy zbiór aksjomatów elementarnej arytmetyki Peany jest rekurencyjny.) Z twierdzenia powyŝszego wynika, Ŝe zupełna teoria liczb nie posiada rekurencyjnego zbioru aksjomatów, a w szczególności nie jest ona skończonym rozszerzeniem PA. Mówiąc krótko - struktura zbioru Th(N) jest zbyt skomplikowana, by poddawała się rekurencyjnej aksjomatyzacji. W szczególności otrzymujemy, Ŝe teoria Th(N) nie jest skończenie aksjomatyzowalna. Istotnie, gdyby była, to dodając jej aksjomaty ϕ 1,, ϕ n do PA, otrzymalibyśmy, Ŝe zupełna teoria liczb jest skończonym rozszerzeniem PA. Lecz wtedy, zgodnie z powyŝszym twierdzeniem, Th(N) nie jest teorią zupełną, co jest wykluczone. Druga opcja, to zrezygnować ze schematu indukcji i wprowadzić zasadę indukcji zupełnej. Lecz wtedy wkraczamy na teren języków drugiego rzędu i trudności czysto logicznej natury. Problem w tym, Ŝe nie moŝna Ŝadną miarą określić logiki drugiego rzędu (tj., obowiązującej w zbiorze formuł drugiego rzędu) w postaci skodyfikowanego, rekurencyjnego systemu aksjomatów logicznych i reguł wnioskowania adekwatnego dla operacji logicznego wynikania (drugiego rzędu). Znaczy to, Ŝe dla logiki klasycznej drugiego rzędu nie ma odpowiednika Twierdzenia o Pełności dla logiki elementarne. (Jest to wniosek z pewnego innego twierdzenia Gödla.) W efekcie, nie istnieje rekurencyjny system aksjomatów drugiego rzędu, z którego moŝna wyprowadzić wszystkie elementarne prawa teorii liczb, tj. elementy zbioru Th(N). 4

5 Jeszcze inna opcją jest wprowadzenie niefinitystycznych reguł inferencji. Lecz wtedy pojęcie dowodu, przedstawione w Wykładzie 3, nie ma juŝ finitystycznego charakteru, tzn. dopuścić naleŝy dowody nieskończonej długości. (Długość dowodu jest wtedy przeliczalną liczba porządkową.) Najbardziej znanym rozwiązaniem jest wprowadzenie tzw. ω-reguły, obowiązującej w zbiorze formuł pierwszego rzędu języka arytmetyki. ω-reguła jest zbiorem wszystkich nieskończonych instrukcji postaci: Z nieskończonego zbioru przesłanek ϕ (0, y 1,, y n ), ϕ (1, y 1,, y n ), ϕ (2, y 1,, y n ),. wnioskuj ( x)ϕ (x, y 1,, y n ), gdzie ϕ (x, y 1,, y n ) jest dowolną formuła pierwszego rzędu języka L, natomiast 1, 2, 3 są kolejnymi liczebnikami: 1 := S (0), 2 := S (1), 3:= S (2) itd. ( ω-reguły nie naleŝy mylić ze schematem indukcji (7 ϕ ).) Niech X będzie zbiorem zdań języka arytmetyki. Powiemy, ze X jest zamknięty na ω- regułę, gdy dla dowolnej formuły ϕ (x) w jednej zmiennej wolnej x, jeŝeli wszystkie zdania z nieskończonej listy ϕ (0), ϕ (1), ϕ (2),. naleŝą do X, to zdanie ( x)ϕ (x) teŝ naleŝy do X. Kluczowa jest następująca obserwacja pochodząca od Grzegorczyka, Mostowskiego i Rylla-Nardzewskiego: Twierdzenie 8.3. Th(N) jest najmniejszym zbiorem zdań X języka arytmetyki zamkniętym na ω-regułę takim, Ŝe PA X. Innymi słowy, poprzez domknięcie zbioru PA na ω-regułę otrzymujemy wszystkie prawa zupełnej elementarnej teorii liczb.. Arytmetyka Peany PA jest zadana przez nieskończona listę aksjomatów (1) (6) oraz (7 ϕ ), gdzie ϕ przebiega formuły języka arytmetyki. Powstaje pytanie, czy powyŝszy zbiór aksjomatów moŝna zastąpić innym, lecz skończonym zbiorem. Innymi słowy pytamy, czy arytmetyka Peany jest skończenie aksjomatyzowalna. Odpowiedź jest zawarta w następującym twierdzeniu: Twierdzenie 8.4. (Ryll- Nardzewski 1952). PA nie jest skończenie aksjomatyzowalna. Dowód wykorzystuje niestandardowe modele arytmetyko Peany. Dodajmy, Ŝe pierwszy niestandardowy model arytmetyki elementarnej Peany został podany przez Skolema w roku Wymienimy kilka interesujących podteorii PA. JeŜeli zastąpimy schemat indukcji (7 ϕ ), pojedynczym aksjomatem (Q) ( x) (x 0 ( y)(x S(y)), to otrzymujemy skończenie aksjomatyzowalną teorię, oznaczona przez Q. Z Twierdzeń otrzymujemy, Ŝe: Zarówno Q jak i kaŝde jej skończone rozszerzenie nie jest zupełne. 5

6 JeŜeli L = {S, 0} jest fragmentem języka L otrzymanym przez odrzucenie symboli + oraz, to podteoria teorii PA zadana aksjomatami (1) i (2) oraz schematem (7 ϕ ) ograniczonym do formuł ϕ języka L, jest juŝ zupełna. Nazywa się ją teorią następnika. Nie jest ona skończenie aksjomatyzowalna. Addytywna teoria liczb (zwana teŝ arytmetyką Pressburgera) jest teorią zdefiniowaną aksjomatycznie w języku L := {+, S, 0} (bez symbolu mnoŝenia ). Jej aksjomatami sa zdania (1) (4) wraz ze schematem (7 ϕ ) ograniczonym do formuł ϕ języka L. Addytywna teoria liczb nie jest skończenie aksjomatyzowalna. Twierdzenie 8.5. (Pressburger 1929). Addytywna teoria liczb jest zupełna. Innymi słowy, wszystkie prawa teorii liczb wysłowione bez uŝycia symbolu mnoŝenia dają się wyprowadzić z powyŝszych aksjomatów addytywnej teorii liczb. 6

Struktury formalne, czyli elementy Teorii Modeli

Struktury formalne, czyli elementy Teorii Modeli Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j

Bardziej szczegółowo

Początki informatyki teoretycznej. Paweł Cieśla

Początki informatyki teoretycznej. Paweł Cieśla Początki informatyki teoretycznej Paweł Cieśla Wstęp Przykładowe zastosowanie dzisiejszych komputerów: edytowanie tekstów, dźwięku, grafiki odbiór telewizji gromadzenie informacji komunikacja Komputery

Bardziej szczegółowo

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią. Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Wstęp do Matematyki (4)

Wstęp do Matematyki (4) Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14

Logika i teoria mnogości Wykład 14 Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,

Bardziej szczegółowo

RACHUNEK PREDYKATÓW 7

RACHUNEK PREDYKATÓW 7 PODSTAWOWE WŁASNOŚCI METAMATEMATYCZNE KRP Oczywiście systemy dedukcyjne dla KRP budowane są w taki sposób, żeby wszystkie ich twierdzenia były tautologiami; można więc pokazać, że dla KRP zachodzi: A A

Bardziej szczegółowo

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1. 3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

Rekurencyjna przeliczalność

Rekurencyjna przeliczalność Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne

Bardziej szczegółowo

Zasady krytycznego myślenia (1)

Zasady krytycznego myślenia (1) Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone

Bardziej szczegółowo

Metalogika (12) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (12) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (12) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (12) Uniwersytet Opolski 1 / 204 Plan wykładu Plan

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat)

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

1 Funktory i kwantyfikatory

1 Funktory i kwantyfikatory Logika, relacje v07 egzamin mgr inf niestacj 1 1 Funktory i kwantyfikatory x X x X Φ(x) dla każdego x X (= dla wszystkich x) zachodzi formuła Φ(x) Φ(x) istnieje x X takie, że (= dla pewnego x) zachodzi

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Logika matematyczna wersja 0.94 (1 września 2005)

Logika matematyczna wersja 0.94 (1 września 2005) Witold Bołt Taduesz Andrzej Kadłubowski Logika matematyczna wersja 0.94 (1 września 2005) Spis treści Wstęp 2 1 Systemy relacyjne 2 2 Język, termy i formuły 3 2.1 Język........................................

Bardziej szczegółowo

Twierdzenie Łosia o ultraprodukcie

Twierdzenie Łosia o ultraprodukcie Twierdzenie Łosia o ultraprodukcie Stanisław Dercz 2010.03.22 Streszczenie Prezentujemy ciekawe twierdzenie teorii modeli, umożliwiające budowanie modeli teorii pierwszego rzędu. Wprowadzamy jedynie konieczny

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Twierdzenia Gödla. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM

Twierdzenia Gödla. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM Twierdzenia Gödla Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Twierdzenia Gödla Funkcje rekurencyjne 1 / 21 Wprowadzenie

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Semantyka rachunku predykatów

Semantyka rachunku predykatów Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Dowód pierwszego twierdzenia Gödela o. Kołmogorowa

Dowód pierwszego twierdzenia Gödela o. Kołmogorowa Dowód pierwszego twierdzenia Gödela o niezupełności arytmetyki oparty o złożoność Kołmogorowa Grzegorz Gutowski SMP II rok opiekun: dr inż. Jerzy Martyna II UJ 1 1 Wstęp Pierwsze twierdzenie o niezupełności

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie 3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Arytmetyka pierwszego rz du

Arytmetyka pierwszego rz du Arytmetyka pierwszego rz du B dziemy bada arytmetyk liczb naturalnych z z perspektywy logiki pierwszego rz du. Sªowo arytmetyka u»ywane jest w odniesieniu do ró»nych teorii dotycz cych liczb naturalnych.

Bardziej szczegółowo

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Pojęcie przestrzeni probabilistycznej

Pojęcie przestrzeni probabilistycznej Pojęcie przestrzeni probabilistycznej Definicja (przestrzeni probabilistycznej) Uporządkowany układ < Ω, S, P> nazywamy przestrzenią probabilistyczną jeśli (Ω) Ω jest niepustym zbiorem zwanym przestrzenia

Bardziej szczegółowo

Zbiory mocy alef zero

Zbiory mocy alef zero Uniwersytet Rzeszowski Wydział Matematyczno-Przyrodniczy Monika Łokaj Zbiory mocy alef zero Praca licencjacka wykonana w Instytucie Matematyki pod kierunkiem dra Michała Lorensa Praca została przyjęta

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018 Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu

Bardziej szczegółowo

Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)

Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) 1. Informacje ogólne koordynator modułu Tomasz

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Symbol, alfabet, łańcuch

Symbol, alfabet, łańcuch Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3.

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. 1 Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. Funkcje pierwotnie rekurencyjne. Problemy: Zapoznaj się z teorią funkcji pierwotnie rekurencyjnych. Ważne są definicje klasy

Bardziej szczegółowo

Zadania z forcingu. Marcin Kysiak. Semestr zimowy r. ak. 2002/2003

Zadania z forcingu. Marcin Kysiak. Semestr zimowy r. ak. 2002/2003 Zadania z forcingu Marcin Kysiak Semestr zimowy r. ak. 2002/2003 Dokument ten zawiera zadania omówione przeze mnie na ćwiczeniach do wykładu monograficznego dr. A. Krawczyka "Zdania nierozstrzygalne w

Bardziej szczegółowo

Logika Matematyczna (10)

Logika Matematyczna (10) Logika Matematyczna (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Rezolucja w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (10) Rezolucja w KRZ 1 / 39 Plan

Bardziej szczegółowo

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...

Bardziej szczegółowo

1.2.3 Funkcjonalna pełność

1.2.3 Funkcjonalna pełność 1.2.3 Funkcjonalna pełność Przedstawione przykłady sprawdzania tautologiczności formuł zamknietych metodą niewprost dobrze ilustrują, Ŝe załoŝenie niewrost o przypisaniu formule wartości fałszu, a następnie

Bardziej szczegółowo

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14 Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10

Bardziej szczegółowo

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1 Elementy rachunku lambda λ 1 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = 2 + 3 g(2) = 2 + 3 λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2 Rachunek

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Definicja: zmiennych zdaniowych spójnikach zdaniowych: Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

ZALICZENIE WYKŁADU: 30.I.2019

ZALICZENIE WYKŁADU: 30.I.2019 MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =

Bardziej szczegółowo

Wstęp do Matematyki (1)

Wstęp do Matematyki (1) Wstęp do Matematyki (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Wstęp do Matematyki (1) Wprowadzenie 1 / 41 Wprowadzenie

Bardziej szczegółowo

LOGIKA Dedukcja Naturalna

LOGIKA Dedukcja Naturalna LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów

Bardziej szczegółowo

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017 Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW

PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń

Bardziej szczegółowo

Matematyka II - Organizacja zajęć. Egzamin w sesji letniej

Matematyka II - Organizacja zajęć. Egzamin w sesji letniej Matematyka II - Organizacja zajęć Wykład (45 godz.): 30 godzin - prof. zw. dr hab. inż. Jan Węglarz poniedziałek godz.11.45 15 godzin - środa godz. 13.30 (tygodnie nieparzyste) s. A Egzamin w sesji letniej

Bardziej szczegółowo

Teoria automatów i języków formalnych. Określenie relacji

Teoria automatów i języków formalnych. Określenie relacji Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego

Bardziej szczegółowo

wypowiedzi inferencyjnych

wypowiedzi inferencyjnych Wnioskowania Pojęcie wnioskowania Wnioskowanie jest to proces myślowy, w którym na podstawie mniej lub bardziej stanowczego uznania pewnych zdań zwanych przesłankami dochodzimy do uznania innego zdania

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

Paradygmaty dowodzenia

Paradygmaty dowodzenia Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo