MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI
|
|
- Jerzy Sadowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości rachunek zbiorów, relacje, funkcje. Aspekty kombinatoryki: obiekty kombinatoryczne pojęcie obiektu, reprezentacje, metody przeliczania obiektów kombinatorycznych. Równania rekurencyjne. Zagadnienia istnienia obiektów o zadanych własnościach. Algorytmy kombinatoryczne. Grafy: reprezentacje i własności grafów, grafy eulerowskie i hamiltonowskie, drzewa, grafy planarne, kolorowanie grafów, digrafy, skojarzenia. szersze znaczenie: LOGIKA - nauka podająca prawa i reguły poprawnego myślenia oraz poprawnego wypowiadania myśli. Trzy główne działy: logika formalna, semiotyka, metodologia nauk semiotyka: nauka o języku jako środku formułowania i przekazywania myśli metodologia nauk: nauka o ogólnych metodach naukowych LOGIKA FORMALNA (symboliczna, matematyczna) problematyka rachunku logicznego i języka tych rachunków oraz zagadnienia struktury i własności systemów dedukcyjnych. Logika klasyczna (dwuwartościowa): system logiczny, w którym zdaniom przypisuje się jedną z dwu wartości logicznych - prawdę () lub fałsz (). Barbara Głut
2 Wszystkie czysto formalne aspekty myślenia mają swoje odpowiedniki w języku. Rozważa się więc sformalizowaną część języka naturalnego. Dla języka ustala się alfabet (symbole). Z symboli alfabetu tworzy się wyrażenia. Interesujące są jedynie wyrażenia poprawnie zbudowane (zbudowane zgodnie z wymogami składni, sensowne). Wyrażenia dzieli się na kategorie składniowe (syntaktyczne). Dwa wyrażenia należą do tej samej kategorii składniowej wtedy i tylko wtedy, gdy po zastąpieniu jednego przez drugie z wyrażeń sensownych otrzymujemy wyrażenie sensowne. (uwaga na wyrażenia wieloznaczne!) Na przykład: Kraków, Warszawa należą do tej samej kategorii składniowej, bo po zastąpieniu jednego przez drugi w zdaniu Kraków jest miastem otrzymamy - Warszawa jest miastem, tj. wyrażenie sensowne. Kraków, jest nie należą do tej samej kategorii składniowej, bo Jest jest miastem nie jest wyrażeniem sensownym. Podobnie: symbole arytmetyczne 2 i 5 należą do tej samej kategorii, a 2 i = nie = = 6 - zdanie poprawne, choć fałszywe = + 4 = 6 - bez sensu Barbara Głut 2
3 Podstawowe kategorie składniowe: WYRAŻENIA NAZWOWE WYRAŻENIA ZDANIOWE OPERATORY FUNKTORY A) Do kategorii WYRAŻEŃ NAZWOWYCH zalicza się wyrażenia, które mogą być podmiotem lub orzecznikiem zdań typu M jest N. Mogą więc należeć do tej kategorii rzeczowniki, przymiotniki, zaimki i inne odpowiednio zbudowane wyrażenia złożone. B) Do kategorii WYRAŻEŃ ZDANIOWYCH zalicza się: zdania, zmienne zdaniowe, funkcje zdaniowe. ZDANIE W języku naturalnym (np. polskim) przez zdanie rozumie się poprawnie zbudowane wyrażenie zawierające podmiot, orzeczenie itp. Rodzaje zdań: - oznajmujące -pytające - rozkazujące. Z logicznego punktu widzenia interesujące jedynie zdania oznajmujące i to tylko te, którym możemy nadać wartość logiczną (!), czyli w logice klasycznej - wartość prawdy lub fałszu. (zasada dwuwartościowości) Barbara Głut 3
4 Np.: zdanie w powyższym sensie: w przeciwieństwie do: Kraków leży nad Wisłą. Miasto leży nad rzeką. bo: drugie, choć poprawne w sensie gramatycznym, ale nie możemy stwierdzić prawdziwości (nadać wartości logicznej). Ta nieformalna definicja odnosi się również do języków sztucznych. W matematyce (w języku matematyki): = = 7 zdania x + 5 = 7 nie, ale tak, po podstawieniu w miejsce x symbolu konkretnej liczby ZMIENNA ZDANIOWA jest to zmienna, za którą można podstawiać dowolne zdanie. FUNKCJA ZDANIOWA jest to wyrażenie zawierające zmienne, z którego otrzymujemy zdania po podstawieniu za zmienne odpowiednich stałych. np.: Żadne S nie jest P a + b = b + a x + 4 = 7 Funkcje zdaniowe nazywa się także: formami zdaniowymi lub warunkami. Barbara Głut 4
5 OPERATORY Wjęzykach, w których wprowadza się zmienne i funkcje zdaniowe mogą wystąpić jeszcze wyrażenia innej kategorii składniowej tj. operatory. Operatorami są np.: kwantyfikatory, symbole abstrakcji {x: }, znaki dodawania i mnożenia zbiorów itp.. Wspólną cechą operatorów jest to, że ich częściami są wskaźniki. Można też powiedzieć, że operatory wiążą zmienne. Operatory, tak jak funktory występują łącznie z wyrażeniami określonych kategorii składniowych i tworzą wraz z nimi wyrażenia złożone określonej kategorii. Np. kwantyfikator operator zdaniotwórczy o jednym argumencie zdaniowym, symbol abstrakcji operator nazwotwórczy o jednym argumencie zdaniowym itd. FUNKTORY Funktory są wyrażeniami, które w połączeniu z pewnymi innymi wyrażeniami, zwanymi ich argumentami, tworzą złożone wyrażenia sensowne. Funktory dzieli się na kategorie składniowe ze względu na: kategorię składniową wyrażenia złożonego, które dany funktor tworzy wraz ze swymi argumentami, liczbę argumentów, kategorie składniowe kolejnych argumentów. Funktory tworzące wraz ze swymi argumentami wyrażenia zdaniowe nazywa się funktorami zdaniotwórczymi. Funktory tworzące wraz ze swymi argumentami wyrażenia nazwowe nazywa się funktorami nazwotwórczymi. Barbara Głut 5
6 Np.: funktory zdaniotwórcze o jednym argumencie zdaniowym - wyraz nie w zdaniu Nie mam., spójnik negacji w zdaniu ( ) o dwóch argumentach zdaniowych - spójnik i łączący dwa wyrażenia zdaniowe, spójnik koniunkcji o dwóch argumentach nazwowych: wyraz oświeca w zdaniu Słońce oświeca ziemię, symbol < w zdaniu 2 < 3 funktor nazwotwórczy o jednym argumencie nazwowym sin w wyrażeniu sin(3 ) Funktory ekstensjonalne - czyli takie, które sprawiają, że wartość logiczna złożonego wyrażenia utworzonego przy ich pomocy zależy wyłącznie od wartości logicznej zdań składowych ( z pominięciem wszelkich innych czynników, w szczególności ich treści). Uzależniają w stały, sobie tylko właściwy sposób wartość logiczną zdań złożonych od wartości zdań składowych. Barbara Głut 6
7 Negacja: funktor zdaniotwórczy jednoargumentowy, używane symbole: ~ p - p Np p... Wyrażenie zbudowane ze znaku negacji i następującego po nim wyrażenia zdaniowego nazywamy negacją lub zaprzeczeniem. Czytamy: nie p, nieprawda, że p, nie jest tak, że p Pozostałe używane stałe - funktory dwuargumentowe Koniunkcja: używane symbole: p q p q K pq p & q p q Wyrażenie zdaniowe utworzone z dwóch wyrażeń zdaniowych połączonych znakiem koniunkcji nazywa się koniunkcją lub iloczynem logicznym. Człony koniunkcji nazywamy czynnikami. Czytamy p i q. Barbara Głut 7
8 Alternatywa: używane symbole: p q p q A pq p + q Wyrażenie zdaniowe utworzone z dwóch wyrażeń zdaniowych połączonych znakiem alternatywy nazywa się alternatywą lub sumą logiczną. Człony alternatywy nazywamy składnikami. Czytamy p lub q. Implikacja: używane symbole: p q p q C pq p q Wyrażenie zdaniowe utworzone z dwóch wyrażeń zdaniowych połączonych znakiem implikacji nazywa się implikacją lub okresem warunkowym. Pierwszy człon implikacji nazywamy poprzednikiem, a drugi następnikiem. Czytamy Jeżeli p to q. Barbara Głut 8
9 Równoważność: używane symbole: p q p q E pq p q Wyrażenie zdaniowe utworzone z dwóch wyrażeń zdaniowych połączonych znakiem równoważności nazywa się równoważnością. Pierwszy człon równoważności nazywamy lewą stroną równoważności, a drugi prawą stroną. Czytamy p wtedy i tylko wtedy, gdy q. Inne funktory: dysjunkcja (funktor Sheffera), binegacja (funktor jednoczesnego zaprzeczenia, funktor Łukasiewicza), alternatywa wykluczająca itd. Barbara Głut 9
10 Klasyczny rachunek zdań prawa i schematy logiczne, w których oprócz stałych logicznych występują tylko zmienne zdaniowe Alfabet języka rachunku zdań: zmienne zdaniowe -o określonej wartości logicznej {, } oznaczone symbolami liter p, q, r, p, p 2... spójniki logiczne (funktory zdaniotwórcze, stałe rachunku zdań) o symbolach... symbol pomocniczy -nawiasy ( ) V = { p, q, r,..., p, p 2,... } X = {,,,, } Z = { (, ) } A = V X Z alfabet języka rachunku zdań Wyrażenie: dowolny, skończony, niepusty ciąg symboli alfabetu np.: ((p q) r (p r) ( p) p q r (p r) p Wyrażenie poprawnie zbudowane (sensowne - syntaktycznie) gdy spełniony jeden z warunków: o jest jedną z liter, 2 o jeśli wyrażenia α oraz β są poprawnie zbudowane, to wyrażenie α α β α β α β α β (α) są również poprawnie zbudowane. F - zbiór formuł rachunku zdań Barbara Głut
11 Matrycowe ujęcie logiki zdań polega na podaniu liczbowych (,) charakterystyk dla poszczególnych związków prawdziwościowych zachodzących między zdaniami oraz na zastosowaniu tych charakterystyk do rozstrzygania formuł logiki zdań. metoda zero-jedynkowa: dla oznaczania prawdziwości zdania dla oznaczania fałszywości zdania Matryca negacji: p p Matryca koniunkcji: p q p q Koniunkcja jest prawdziwa wtedy i tylko wtedy, gdy oba jej czynniki są prawdziwe. Barbara Głut
12 Matryca alternatywy: p q p q Alternatywa jest fałszywa wtedy i tylko wtedy, gdy oba jej składniki są fałszywe. Matryca implikacji: p q p q Implikacja jest fałszywa wtedy i tylko wtedy, gdy jej poprzednik jest prawdziwy, a następnik fałszywy. Barbara Głut 2
13 Matryca równoważności: p q p q Równoważność jest prawdziwa wtedy i tylko wtedy, gdy obie jej strony mają taką samą wartość logiczną. Matryca dysjunkcji : p q p q Dysjunkcję nazywa się też funktorem Sheffera. Czytamy: nie zarazem p i q. Ma tę samą wartość logiczną co wyrażenie (p q). Barbara Głut 3
14 Matryca binegacji: p q p q Binegację nazywa się też funktorem jednoczesnego zaprzeczenia lub funktorem Łukasiewicza. Czytamy: ani p ani q. Ma tę samą wartość logiczną co wyrażenie (p q). Matryca alternatywy wykluczającej: p q p q Czytamy: albo p albo q. Ma tę samą wartość logiczną co wyrażenie (p q). Barbara Głut 4
15 wartościowanie zmiennych: dowolna funkcja określona na V o wartościach w zbiorze Y = {,} ω : V {, } ω(p) = dla oznaczenia prawdy, ω(p) = dla oznaczenia fałszu wartościowanie formuł : funkcja ω * : F {, } taka, że: (i) jeśli α jest zmienną zdaniową (α V), to ω * (α) = ω(α), (ii) jeśli α F jest postaci α lub α α 2 lub α α 2 lub α α 2, gdzie α oraz α 2 są formułami, a ω * (α ) i ω * (α 2 ) są już zdefiniowane, to odpowiednio: ω * (α) = ω * ( α ) = ω * (α ) ω * (α) = ω * (α α 2 ) = min(, + ω * (α 2 ) ω * (α ) ) ω * (α) = ω * (α α 2 ) = min(ω * (α ), ω * (α 2 ) ) ω * (α) = ω * (α α 2 ) = max(ω * (α ), ω * (α 2 ) ). Obliczanie wartości ω * (α) oznacza wyznaczanie wartości logicznej formuły: { p, p 2,..., p n } {, } Istnieje dokładnie 2 n wartościowań formuły zawierającej zmienne zdaniowe { p, p 2,..., p n }. Istnieje dokładnie n 2 2 n argumentowych funktorów. Czyli istnieją cztery funktory jednoargumentowe i szesnaście funktorów dwuargumentowych. A A A 2 A 3 Barbara Głut 5
16 B B B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B B B 2 B 3 B 4 B 5 Pytanie: czy można zapisać wszystkie funktory używając jedynie zbioru X = {,,,, }? Tak - np. dysjunkcja B 4 równoważna (p q) binegacja B 8 równoważna (p q) alternatywa wykluczająca B 6 równoważna (p q)... Pytanie: czy można zmniejszyć zbiór X = {,,,, }? Barbara Głut 6
17 Czy można wyeliminować symbol? ( p q ) = ( p q ) ( q p ) Czy można wyeliminować symbol? ( p q ) = ( p q ) Czy można wyeliminować symbol lub? ( p q ) = ( p q ) ( p q ) = ( p q ) ( p q ) = ( p q ) ( p q ) = ( p q ) Czyli można przyjąć za zbiór X : X = {,, } lub X = {, } lub X = {, } lub X = {, } A może wystarczy jeden funktor? Odpowiedź tak w dwóch przypadkach - funktor dysjunkcji funktor binegacji p p p p q (p q) (p q) p p p p q (p q) (p q) Barbara Głut 7
Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do
Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie
Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0
ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Matematyka ETId Elementy logiki
Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,
Rachunek logiczny. 1. Język rachunku logicznego.
Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były
Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Podstawowe Pojęcia. Semantyczne KRZ
Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga
Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:
1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych
Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut
Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,
Wstęp do logiki. Klasyczny Rachunek Zdań II
Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:
Klasyczny rachunek zdań 1/2
Klasyczny rachunek zdań /2 Elementy logiki i metodologii nauk spotkanie VI Bartosz Gostkowski Poznań, 7 XI 9 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe
Kultura logiczna Klasyczny rachunek zdań 1/2
Kultura logiczna Klasyczny rachunek zdań /2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 22 III 2 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe
Kultura logiczna Klasyczny rachunek zdań 2/2
Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór
LOGIKA Klasyczny Rachunek Zdań
LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć
Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów
Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź
WSTĘP ZAGADNIENIA WSTĘPNE
27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
Logika pragmatyczna dla inżynierów
Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny
Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a
Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a tak jest alboŝe tak a tak nie jest. Wartość logiczna zdania jest czymś obiektywnym, to
Rachunek zdań i predykatów
Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)
Logika Matematyczna (2,3)
Logika Matematyczna (2,3) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 11, 18 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (2,3) 11, 18 X 2007 1 / 34 Język KRZ
Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:
Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH
5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.
Drzewa Semantyczne w KRZ
Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium
RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.
Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana
Klasyczny rachunek predykatów
Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:
0. ELEMENTY LOGIKI. ALGEBRA BOOLE A
WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy
1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów
1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)
Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu
Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit
Michał Lipnicki (UAM) Logika 11 stycznia / 20
Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates
Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy logiki. Klasyczny rachunek zdań. 1 Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy
Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.
Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność
LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:
LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.
Metodologia prowadzenia badań naukowych Semiotyka, Argumentacja
Semiotyka, Argumentacja Grupa L3 3 grudnia 2009 Zarys Semiotyka Zarys Semiotyka SEMIOTYKA Semiotyka charakterystyka i działy Semiotyka charakterystyka i działy 1. Semiotyka Semiotyka charakterystyka i
Lekcja 3: Elementy logiki - Rachunek zdań
Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie
Wstęp do logiki. Semiotyka cd.
Wstęp do logiki Semiotyka cd. Gramatyka kategorialna jest teorią formy logicznej wyrażeń. Wyznacza ją zadanie sporządzenia teoretycznego opisu związków logicznych takich jak wynikanie, równoważność, wzajemna
Wykład 1. Informatyka Stosowana. 1 października Informatyka Stosowana Wykład 1 1 października / 26
Wykład 1 Informatyka Stosowana 1 października 2018 Informatyka Stosowana Wykład 1 1 października 2018 1 / 26 Wykłady : 45h (w semestrze zimowym) (Egzamin) 30h (w semetrze letnim) (Egzamin) 3h lekcyjne
Wykład 1. Informatyka Stosowana. 2 października Informatyka Stosowana Wykład 1 2 października / 33
Wykład 1 Informatyka Stosowana 2 października 2017 Informatyka Stosowana Wykład 1 2 października 2017 1 / 33 Wykłady : 45h (w semestrze zimowym) (Egzamin) 30h (w semetrze letnim) (Egzamin) 3h lekcyjne
Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Wykład 1. Informatyka Stosowana. 3 października Informatyka Stosowana Wykład 1 3 października / 26
Wykład 1 Informatyka Stosowana 3 października 2016 Informatyka Stosowana Wykład 1 3 października 2016 1 / 26 Wykłady : 45h (w semestrze zimowym) ( Egzamin) 30h (w semetrze letnim ) ( Egzamin) Zajęcia praktyczne:
Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę
Lista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy logiki. Klasyczny rachunek zdań. Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Spójniki
Zagadnienia podstawowe dotyczące metod formalnych w informatyce
Zagadnienia podstawowe dotyczące metod formalnych w informatyce! Logika Analiza języka i czynności badawczych (np. rozumowanie, definiowanie, klasyfikowanie) w celu poznania takich reguł posługiwania się
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Wprowadzenie do logiki Zdania, cz. I Wprowadzenie do Klasycznego Rachunku Zdań
Wprowadzenie do logiki Zdania, cz. I Wprowadzenie do Klasycznego Rachunku Zdań Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan gry: 1 Czym są zdania? Co znaczą i co oznaczają?
ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje
ĆWICZENIE 2 Klasyczny Rachunek Zdań (KRZ): wynikanie logiczne, wnioskowanie, niezawodny schemat wnioskowania, wnioskowanie dedukcyjne, równoważność logiczna, iniowalność spójników za mocą formuły. DEF.
Składnia rachunku predykatów pierwszego rzędu
Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka
Rachunek zdao i logika matematyczna
Rachunek zdao i logika matematyczna Pojęcia Logika - Zajmuje się badaniem ogólnych praw, według których przebiegają wszelkie poprawne rozumowania, w szczególności wnioskowania. Rachunek zdao - dział logiki
Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I
Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...
Adam Meissner.
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu
Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę
Sylabus dla przedmiotu Logika i ogólna metodologia nauk
Sylabus dla przedmiotu Logika i ogólna metodologia nauk 1. Definicja pojęcia logika Wprowadzenie w tematykę przedmiotu (szkic czym jest logika, jak należy ją rozumieć, przedmiot logiki, podział logika
ROZDZIAŁ 1. Rachunek funkcyjny
ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast
Przewodnik do ćwiczeń z logiki dla prawników
Przewodnik do ćwiczeń z logiki dla prawników redakcja naukowa Andrzej Malinowski Andrzej Malinowski, Michał Pełka, Radosław Brzeski Zamów książkę w księgarni internetowej SERIA AKADEMICKA 6. WYDANIE WARSZAWA
Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.
Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym
W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Elementy logiki
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Elementy logiki 1. Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa.
4 Klasyczny rachunek zdań
4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo
Wstęp do logiki. Klasyczny Rachunek Predykatów I
Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać
Języki programowania zasady ich tworzenia
Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie
Przewodnik do ćwiczeń z logiki dla prawników
Przewodnik do ćwiczeń z logiki dla prawników redakcja naukowa Andrzej Malinowski Andrzej Malinowski, Michał Pełka, Radosław Brzeski SERIA AKADEMICKA 7. WYDANIE Przewodnik do ćwiczeń z logiki dla prawników
Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.
Logika, II rok Etnolingwistyki UAM, 20 VI 2008. Imię i Nazwisko:.............................. GRUPA: I Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.
Znak, język, kategorie syntaktyczne
Składnia ustalone reguły jakiegoś języka dotyczące sposobu wiązania wyrazów w wyrażenia złożone. Językoznawstwo zajmuje się m.in. opisem składni poszczególnych języków, natomiast przedmiotem syntaktyki
http://www-users.mat.umk.pl/~pjedrzej/wstep.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego, wypracowanie podstawowych umiejętności przeprowadzania
Logika Matematyczna 16 17
Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24
Instrukcja do testu z matematyki zdania logiczne, wyrażenia algebraiczne, równania kwadratowe Zakres materiału
Instrukcja do testu z matematyki zdania logiczne, wyrażenia algebraiczne, równania kwadratowe Zakres materiału Nazwisko i imię... Klasa... Wersja testu... Test zawiera 12 zadań, doktórychsą 3 odpowiedzi
Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki
Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)
dr ANNA NIEWULIS CENTRUM NAUCZANIA MATEMATYKI i KSZTAŁCENIA na ODLEGŁOŚĆ pokój 310
dr ANNA NIEWULIS CENTRUM NAUCZANIA MATEMATYKI i KSZTAŁCENIA na ODLEGŁOŚĆ pokój 310 LITERATURA Praca zbiorowa pod. red. B. Wikieł Matematyka, Podstawy z elementami matematyki wyższej W.Krysicki, L.Włodarski
Schematy Piramid Logicznych
Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:
Kryteria oceniania z matematyki zakres podstawowy Klasa I
Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,
Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne
Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.
DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:
DODATEK 1: DOWODY NIEKTÓRYCH TWIERDZEŃ DOTYCZACYCH SEMANTYKI KLASYCZNEGO RACHUNKU ZDAŃ 2.2. TWIERDZENIE O DEDUKCJI WPROST (wersja semantyczna). Dla dowolnych X F KRZ, α F KRZ, β F KRZ zachodzą następujące
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP 1 Pojęcie dowodu w KRP Pojęcia: formuły zdaniowej języka Klasycznego Rachunku
RACHUNEK PREDYKATÓW 7
PODSTAWOWE WŁASNOŚCI METAMATEMATYCZNE KRP Oczywiście systemy dedukcyjne dla KRP budowane są w taki sposób, żeby wszystkie ich twierdzenia były tautologiami; można więc pokazać, że dla KRP zachodzi: A A
Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub
Dalszy ciąg rachunku zdań
Dalszy ciąg rachunku zdań Wszystkie możliwe funktory jednoargumentowe p f 1 f 2 f 3 f 4 0 0 0 1 1 1 0 1 0 1 Wszystkie możliwe funktory dwuargumentowe p q f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f
Semantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
Logika Matematyczna. Zadania Egzaminacyjne, 2007
Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.
Kultura logicznego myślenia
Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Definicja: alfabetem. słowem długością słowa
Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania
Dowody założeniowe w KRZ
Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody
Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1
Elementy rachunku lambda λ 1 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = 2 + 3 g(2) = 2 + 3 λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2 Rachunek
Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty
Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest