Dowód pierwszego twierdzenia Gödela o. Kołmogorowa
|
|
- Kinga Jaworska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Dowód pierwszego twierdzenia Gödela o niezupełności arytmetyki oparty o złożoność Kołmogorowa Grzegorz Gutowski SMP II rok opiekun: dr inż. Jerzy Martyna II UJ 1
2 1 Wstęp Pierwsze twierdzenie o niezupełności arytmetyki zostało udowodnione przez Kurta Gödela w roku 1931[1]. Gödel pokazał, że pod pewnymi dodatkowymi warunkami (ω - niesprzeczności) dowolna niesprzeczna teoria formalna zawierająca arytmetykę musi być niezupełna. Późniejsze wyniki innych matematyków osłabiły założenia i uprościły dowód tego twierdzenia. W najmocniejszym wariancie można pokazać, że dowolna niesprzeczna teoria formalna zawierająca arytmetykę jest nierozstrzygalna, a dodatkowo jeśli jest aksjomatyzowalna, to jest niezupełna. Złożoność Kołmogorowa została wprowadzona przez rosyjskiego matematyka Andreia Kołmogorowa w 1965 roku. Służy ona do charakteryzacji skończonych obiektów matematycznych przedstawionych jako ciągi binarne. Można ją intuicyjnie opisać jako miarę komplikacji obiektu. Im bardziej obiekt jest skomplikowany, tym jego złożoność jest większa. Złożoność Kołmogorowa znalazła zastosowania w informatyce i rachunku prawdopodobieństwa. Korzystając ze złożoności Kołmogorowa można udowodnić pewną prostą wersję pierwszego twierdzenia Gödela. Można mianowicie pokazać pewną klasę zdań nad językiem arytmetyki, które są niezależne od każdej aksjomatyzowalnej teorii zawierającej arytmetykę. Pokazanie takich zdań dowodzi, że taka teoria jest teorią niezupełną. Ten ciekawy dowód zostanie przedstawiony po wprowadzeniu niezbędnych definicji i udowodnieniu podstawowoych twierdzeń dotyczących złożoności Kołmogorowa. 2 Złożoność Kołmogorowa 2.1 Definicje Definicja 1 Wprowadza się następujący porządek na zbiorze {0, 1} x y ( x < y ) ( x = y x leks y) gdzie x jest długością słowa x, a leks jest zwykłym porządkiem leksykograficznym. W dalszej części, jeżeli nie jest zaznaczone inaczej, to do porównywania ciągów binarnych jest wykorzystywany ten porządek. Definicja 2 Maszyną Turinga M nazywamy siódemkę uporządkowaną: Gdzie: M = (Q, Σ, Γ, σ, q 0,, F ) str. 1
3 Q - zbiór stanów Σ Γ - alfabet wejściowy Γ - alfabet taśmy q 0 - stan początkowy Γ Σ - znak spacji F Q - zbiór stanów końcowych σ: Q F Q Γ {L, R} - funkcja przejścia, która może być funkcją częściową Sposób obliczania na Maszynie Turinga nie zostanie szczegółowo opisany w tej pracy. Po więcej informacji na ten temat można sięgnąć do [2]. W dalszych rozważaniach zakłada się, że Σ = {0, 1}, a Γ = {0, 1, } Definicja 3 Wprowadza się następujące kodowanie maszyny Turinga do ciągu binarnego: Jeżeli Q = {q 1, q 2,..., q n }, q 0 = q s, F = {q i1, q i2,..., q it }, Γ = {γ 1, γ 2, γ 3 } (γ 1 to 0, γ 2 to 1, a γ 3 to ), a {L, R} = {d 1, d 2 }, to funkcję przejścia σ można opisać jako zbiór przejść: σ(q i, γ j ) = (q k, γ l, d m ) i zakodować każde takie przejście jako ciąg binarny: 110 i 10 j 10 k 10 l 10 m Natomiast ciąg binarny kodujący całą maszynę Turinga to: 0 n 10 s 10 i 1 10 i it skonkatenowany ze wszystkimi przejściami funkcji σ. Ponieważ w zależności od kolejności numeracji stanów i występowania przejść w konkatenacji może powstać wiele różnych ciągów binarnych opisujących tą samą maszynę Turinga jako jej opis wybiera się najmniejszy z tych ciągów. Definicja 4 Wprowadza się numerację maszyn Turinga, według kolejności ich kodów względem wcześniej wprowadzonego porządku na ciągach binarnych. W tej numeracji maszyną M 1 jest maszyna o najmniejszym kodzie binarnym. M 2 to maszyna, która ma drugi w kolejności najmniejszy kod binarny, itd. str. 2
4 Definicja 5 Mając daną maszynę Turinga M działającą nad alfabetem {0,1} i oznaczając M(x) funkcję częściową {0,1} {0,1} określoną przez maszynę M definiuje się złożonośc Kołmogorowa na maszynie M jako gdzie y jest długością ciągu y. K M (x) = min{ y : M(y) = x} M(y) może być nieokreślone dla konkretnego y, gdyż maszyna M może się nie zatrzymać dla wejścia y. Zbiór { y : M(y) = x} może być zbiorem pustym i należy przyjąc, że min( ) = +. Definicja 6 Maszyna Turinga M jest asymptotycznie niegorsza od maszyny Turinga N jeżeli istnieje stała c taka że K M (x) K N (x) + c dla wszystkich ciągów x. Definicja 7 Maszyna Turinga U jest asymptotycznie optymalna, jeżeli jest asymptotycznie niegorsza od każdej maszyny Turinga M. Definicja 8 Przez < a, b > oznacza się ciąg binarny reprezentujący parę uporządkowaną (a, b) powstający w następujący sposób: Każdy bit reprezentacji a jest podwajany, wynik jest konkatenowany z ciągiem 01 i z reprezentacją b. Łatwo zauważyć, że z tak zakodowanej pary można odczytać zarówno pierwszą, jak i drugą współrzędną, oraz że zachodzi równość: < a, b > = 2 a b Twierdzenie 9 Istnieje asymptotycznie optymalna maszyna Turinga. Dowód: Oznaczmy przez U dowolną maszynę uniwersalną działającą na wprowadzonym kodowaniu pary uporządkowanej, czyli taką, że: i N : U(< i, x >) = M i (x) Dla dowolnej maszyny Turinga M zachodzi M = M i dla pewnego i. Dla każdego skończonego ciągu binarnego x zachodzi: K M (x) = K Mi (x) = min{ y : M i (y) = x} = = min{ < i, y > 2 i 2: M i (y) = x} = = min{ < i, y > 2 i 2: U(< i, y >) = x} K U (x) 2 i 2 Zatem jeżeli przyjmiemy jako c = 2 i + 2 to otrzymamy: K U (x) K M (x) + c Czyli maszyna U jest asymptotycznie niegorsza od dowolnej maszyny M, co oznacza że jest asymptotycznie optymalna. str. 3
5 Definicja 10 Złożoność Kołmogorowa ciągu x definiuje się jako K(x) = K U (x) przy ustalonej maszynie asymptotycznie optymalnej U. Wybór maszyny U jest dla definicji istotny tylko co do stałej, więc w dalszych rozważaniach przyjmuje się, że naszą maszyną U jest dowolna maszyna uniwersalna. 2.2 Podstawowe własności Lemat 11 Istnieje stała c, taka że dla każdego skończonego ciągu binarnego x zachodzi: K(x) x + c Dowód: Wystarczy skonstruować maszynę M o następującej własności: M(x) = x. Weźmy jako M pierwszą w ciągu maszyn maszynę o tej własności. M = M i dla pewnego i, a więc: x : U(< i, x >) = M i (x) = M(x) = x Wystarczy zatem przyjąć jako c = 2 log 2 i + 2, gdyż mamy wtedy: min{ y : U(y) = x} < i, x > = x + 2 log 2 i + 2 = x + c Lemat 12 Dla każdej liczby naturalnej n istnieje ciąg binarny x długości n, którego złożoność Kołmogorowa jest większa lub równa n. Dowód: Dla dowodu nie wprost przyjmijmy, że istnieje taka liczba naturalna n, że wszystkie ciągi binarne długości n mają złożoność Kołmogorowa mniejszą od n. Rozważmy dwa zbiory: Zachodzi: Zatem: Tak więc: X = {x: x = n} Y = {y: y < n} x X : K(x) < n K(x) = min{ y : U(y) = x} (K(x) < n) y Y : U(y) = x X U [Y ] A to jest niemożliwe, gdyż zbiór X jest 2 n elementowy, a zbiór Y jest 2 n 1. Zatem istnieje ciąg binarny x długości n, którego złożoność Kołmogorowa jest większa lub równa n. str. 4
6 W ten sam sposób można dowieść, że dla każdej liczby naturalnej n istnieje conajmniej 2 n ciągów binarnych, których złożoność Kołmogorowa jest większa lub równa n 1. 3 Niezupełność arytmetyki Definicja 13 Teorią formalną nazywamy dowolny zbiór formuł elementarnych domknięty dedukcyjnie. Teorię nazywamy: aksjomatyzowalną, jeżeli zbiór formuł (numerów im odpowiadających) jest rekurencyjnie przeliczalny. rozstrzygalną, jeżeli zbiór formuł (numerów im odpowiadających) jest rekurencyjny. niesprzeczną, jeżeli dla każdej formuły α bez zmiennych wolnych najwyżej jedna z formuł α lub α należy do teorii. zupełną, jeżeli dla każdej formuły α bez zmiennych wolnych conajmniej jedna z formuł α lub α należy do teorii. Twierdzenie 14 Dowolna niesprzeczna, aksjomatyzowalna teoria formalna zawierająca arytmetykę jest niezupełna. Dowód: Dowód przebiega poprzez wskazanie nieskończonej rodziny zdań niezależnych od tak określonej teorii. Można mianowicie pokazać, że tylko dla skończenie wielu stałych c istnieje ciąg x taki że formuła K(x) > c jest twierdzeniem teorii. Będziemy korzystać z faktu, iż każda aksjomatyzowalna teoria ma swój enumerator, czyli taką maszynę M, która wypisuje na taśmie wszystkie twierdzenia teorii. Rozważmy teraz maszynę N, która realizuje następujący algorytm: 1. Wczytaj liczbę naturalną c zapisaną dwójkowo. 2. Przeglądaj taśmę wynikową maszyny M, aż do napotkania pierwszego twierdzenia postaci K(x) > d, gdzie x jest dowolnym ciągiem binarnym, a d jest liczbą naturalną większą lub równą c. 3. Wypisz ciąg binarny x. Zakładając dla dowodu nie wprost, że istnieje dla dowolnie dużych c formuła postaci K(x) > c będąca twierdzeniem teorii, pętla z kroku 2 musi się zakończyć. Zatem maszyna N dla dowolnej liczby naturalnej c zwraca ciąg x, str. 5
7 o którym jako o pierwszym wiadomo w wyniku przeglądania wyjścia maszyny M, że jego złożoność Kołmogorowa jest większa od c. Dla pewnej liczby naturalnej i zachodzi: N = M i. Zatem dla każdej liczby c mamy że złożoność Kołmogorowa ciągu x = N(c) jest mniejsza lub równa < i, c >. Podsumowując mamy dwa oszacowania na złożoność Kołmogorowa ciągu x = N(c): K(x) > c K(x) < i, c > = 2 i c = loc 2 c + d, gdzie stała d nie zależy od liczby c. Stwierdzenie, że dla dowolnie dużych c maszyna N znajdzie ciąg x, który ma spełniać obie te nierówności prowadzi do sprzeczności, gdyż dla wystarczająco dużej liczby c musi zachodzić c > log 2 c + d bez względu na wielkość stałej d, która zależy tylko od numeru maszyny N. A w takim wypadku nie mogą zachodzić obie nierówności limitujące K(x), co dowodzi, że istnieje tylko skończenie wiele stałych c, dla których istnieje ciąg binarny x taki że formuła K(x) > c jest twierdzeniem teorii. Na mocy lematu 12 można stwierdzić, że dla dowolnie dużej stałej c istnieją ciągi binarne, które mają złożoność Kołmogorowa większą niż c, ale tylko dla skończenie wielu c, możemy udowodnić taki fakt o jakimkolwiek ciągu. Zatem istnieją formuły, które są niezależne od rozważanej teorii, co oznacza, że jest ona niezupełna. 4 Zakończenie Korzystając ze złożoności Kołmogorowa można otrzymać dość słabą wersję pierwszego twierdzenia Gödla, ale użyta metoda jest relatywnie łatwa. Wynik można osiągnąć po zdefiniowaniu tylko kilku pojęć i wykorzystaniu podstawowych wiadomości z teorii języków formalnych i teorii obliczalności. Ciekawym aspektem dowodu jest podanie konkretnych formuł o wyraźnej treści matematycznej, które są niezależne od systemu aksjomatycznego. Literatura [1] K. Gödel : Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I Monasch. Math. Phys. 38 (1931) str. 6
8 [2] P.G. Odifreddi : Classical recursion theory Elsevier, Amsterdam [3] M. Li, P. Vitányi : An Introduction to Kolmogorov Complexity and Its Applications Springer-Verlag, New York str. 7
Początki informatyki teoretycznej. Paweł Cieśla
Początki informatyki teoretycznej Paweł Cieśla Wstęp Przykładowe zastosowanie dzisiejszych komputerów: edytowanie tekstów, dźwięku, grafiki odbiór telewizji gromadzenie informacji komunikacja Komputery
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Maszyna Turinga języki
Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.
Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne
Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem
Teorioinformacyjne twierdzenie Gödla,
Teorioinformacyjne twierdzenie Gödla, czyli co ma logika do statystyki? Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN Temat referatu Twierdzenie, o którym opowiem, jest pomysłem
Złożoność informacyjna Kołmogorowa. Paweł Parys
Złożoność informacyjna Kołmogorowa Paweł Parys Serock 2012 niektóre liczby łatwiej zapamiętać niż inne... (to zależy nie tylko od wielkości liczby) 100...0 100 100... 100 100 100 25839496603316858921 31415926535897932384
Struktura danych. Sposób uporządkowania informacji w komputerze.
Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Teoria obliczeń czyli czego komputery zrobić nie mogą
Teoria obliczeń czyli czego komputery zrobić nie mogą Marek Zaionc Uniwersytet Jagielloński Materiały do wykładu: P. Odifreddi, Classical Recursion Theory, North Holland 1989. J.H. Hopcroft, J.D. Ullman
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
Rekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Problemy Decyzyjne dla Systemów Nieskończonych
Problemy Decyzyjne dla Systemów Nieskończonych Ćwiczenia 1 17 lutego 2012 Na tych ćwiczeniach zajmiemy się pojęciem well quasi-ordering (WQO) bardzo przydatnym do analizy nieskończonych ciągów. Definicja
CO TO SĄ BAZY GRÖBNERA?
CO TO SĄ BAZY GRÖBNERA? Wykład habilitacyjny, Toruń UMK, 5 czerwca 1995 roku Andrzej Nowicki W. Gröbner, 1899-1980, Austria. B. Buchberger, Austria. H. Hironaka, Japonia (medal Fieldsa). Bazy, o których
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
1 Funkcje uniwersalne
1 1 Funkcje uniwersalne 1.1 Konstrukcja funkcji uniweralnej Niech P będzie najmniejszym zbiorem liczb spełniającym warunki 1) 0, 2, 0, 0, 2, 1, 0, 2, 2 P, 2) 0, n, 3, k P dla wszystkich n > 0 oraz k takich,
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Symbol, alfabet, łańcuch
Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Paradygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 2/14 Funkcji podłogi z logarytmu można użyć do wyliczenia liczby cyfr liczby naturalnej k (k>0): w układzie dziesiętnym log 10 (k)
Kody blokowe Wykład 2, 10 III 2011
Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
Schematy Piramid Logicznych
Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 4a: Rozwiązywanie rekurencji http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Czas działania programu Dla konkretnych
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Wstęp do Techniki Cyfrowej... Teoria automatów
Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:
Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Maszyny Turinga. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Maszyny Turinga Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Maszyny Turinga Funkcje rekurencyjne 1 / 29 Wprowadzenie
Logika Matematyczna (10)
Logika Matematyczna (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Rezolucja w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (10) Rezolucja w KRZ 1 / 39 Plan
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka
Instytut Matematyki, Politechnika Lódzka Graf losowy jako granica Fraisse Przez K graf oznaczmy rodzinȩ wszystkich skończonych grafów (np. na N). Niech G bȩdzie granic a Fraisse rodziny K graf. Strukturȩ
zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy
5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:
Złożoność obliczeniowa. wykład 1
Złożoność obliczeniowa wykład 1 Dwa wykłady: wtorek / środa różnice niewielkie Sprawy organizacyjne wtorek: trochę szybciej, parę dodatkowych rzeczy dedykowana grupa ćw. M. Pilipczuka - ale śmiało mogą
Dialog z przyroda musi byc prowadzony w jezyku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania.
Wydział Fizyki Uniwersytetu Warszawskiego a. Tw. Gödla kontra Matrix b. Moim zdaniem Rys. źródło: Internet W jaki sposób policzyć ilość operacji logicznych w mózgu? Mózg a komputer "When will computer
Twierdzenia Gödla. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Twierdzenia Gödla Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Twierdzenia Gödla Funkcje rekurencyjne 1 / 21 Wprowadzenie
Kompresja bezstratna. Entropia. Kod Huffmana
Kompresja bezstratna. Entropia. Kod Huffmana Kodowanie i bezpieczeństwo informacji - Wykład 10 29 kwietnia 2013 Teoria informacji Jeśli P(A) jest prawdopodobieństwem wystapienia informacji A to niech i(a)
Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1
Obliczanie 1 Obliczanie Co to jest obliczanie? Czy wszystko można obliczyć? Czy to, co intuicyjnie uznajemy za obliczalne można obliczyć za pomocą mechanicznej procedury? 2 Czym jest obliczanie? Dawid
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Teoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
Topologia zbioru Cantora a obwody logiczne
Adam Radziwończyk-Syta Michał Skrzypczak Uniwersytet Warszawski 1 lipca 2009 http://students.mimuw.edu.pl/~mskrzypczak/dokumenty/ obwody.pdf Zbiór Cantora Topologia Definicja Przez zbiór Cantora K oznaczamy
Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018
Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Wstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?
Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN
6.4 Podstawowe metody statystyczne
156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Logika i Struktury Formalne Nazwa w języku angielskim : Logic and Formal Structures Kierunek studiów : Informatyka
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Lista zadań - Relacje
MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,
n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :
4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,