Wymagania edukacyjne z matematyki
|
|
- Grzegorz Sobolewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie sprawdza, czy z trzech odcinków o danych długościach można zbudować trójkąt uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania wykorzystuje cechy przystawania trójkątów do rozwiązywania prostych zadań uzasadnia podobieństwo trójkątów, wykorzystując cechy podobieństwa zapisuje proporcje boków w trójkątach podobnych wykorzystuje podobieństwo trójkątów do rozwiązywania elementarnych zadań sprawdza, czy dane figury są podobne oblicza długości boków figur podobnych posługuje się pojęciem skali do obliczania odległości i powierzchni przedstawionych za pomocą planu lub mapy stosuje w zadaniach twierdzenie o stosunku pól figur podobnych wskazuje w wielokątach odcinki proporcjonalne rozwiązuje proste zadania, wykorzystując twierdzenie Talesa stosuje twierdzenie Pitagorasa wykorzystuje wzory na przekątną kwadratu i wysokość trójkąta równobocznego oblicza wartości funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym, gdy dane są boki tego trójkąta rozwiązuje trójkąty prostokątne 1 stosuje w zadaniach wzór na pole trójkąta: P ah oraz wzór na pole trójkąta równobocznego 2 o boku a: P 2 a 3 4 przeprowadza dowód twierdzenia o sumie miar kątów w trójkącie stosuje cechy przystawania trójkątów do rozwiązywania trudniejszych zadań geometrycznych wykorzystuje podobieństwo trójkątów do rozwiązywania praktycznych problemów przeprowadza dowód twierdzenia Talesa stosuje twierdzenia o związkach miarowych podczas rozwiązywania zadań, które wymagają przeprowadzenia dowodu rozwiązuje zadania wymagające uzasadnienia i dowodzenia z zastosowaniem twierdzenia Talesa i twierdzenia odwrotnego do twierdzenia Talesa stosuje własności podobieństwa figur podczas rozwiązywania zadań problemowych oraz zadań wymagających przeprowadzenia dowodu stosuje własności czworokątów podczas rozwiązywania zadań, które wymagają przeprowadzenia dowodu rozwiązuje zadania o znacznym stopniu trudności dotyczące przystawania i podobieństw figur
2 FUNKCJE WYKŁADNICZE I LOGARYTMY oblicza potęgi o wykładnikach wymiernych zapisuje daną liczbę w postaci potęgi o wykładniku wymiernym zapisuje daną liczbę w postaci potęgi o danej podstawie upraszcza wyrażenia, stosując prawa działań na potęgach (proste przypadki) porównuje liczby przedstawione w postaci potęg (proste przypadki) wyznacza wartości funkcji wykładniczej dla podanych argumentów sprawdza, czy punkt należy do wykresu funkcji wykładniczej wyznacza wzór funkcji wykładniczej i szkicuje jej wykres, znając współrzędne punktu należącego do jej wykresu szkicuje wykres funkcji wykładniczej, stosując przesunięcie o wektor i określa jej własności szkicuje wykres funkcji, będący efektem jednego przekształcenia wykresu funkcji wykładniczej i określa jej własności oblicza logarytm danej liczby stosuje równości wynikające z definicji logarytmu do prostych obliczeń wyznacza podstawę logarytmu lub liczbę logarytmowaną, gdy dana jest jego wartość rozwiązuje równania wykładnicze, stosując logarytm oblicza logarytm iloczynu, ilorazu i potęgi, stosując odpowiednie twierdzenia o logarytmach upraszcza wyrażenia, stosując prawa działań na potęgach porównuje liczby przedstawione w postaci potęg odczytuje rozwiązania nierówności na postawie wykresów funkcji wykładniczych podaje odpowiednie założenia dla podstawy logarytmu lub liczby logarytmowanej podaje przybliżoną wartość logarytmów dziesiętnych z wykorzystaniem tablic stosuje twierdzenie o logarytmie iloczynu, ilorazu i potęgi do uzasadnienia równości wyrażeń wykorzystuje własności funkcji wykładniczej i logarytmu do rozwiązywania zadań o kontekście praktycznym dowodzi twierdzenia o logarytmach wykorzystuje twierdzenie o zmianie podstawy logarytmu w zadaniach rozwiązuje zadania o znacznym stopniu trudności dotyczące funkcji wykładniczej i logarytmicznej CIĄGI wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego początkowych wyrazów szkicuje wykres ciągu wyznacza wzór ogólny ciągu, mając danych kilka jego początkowych wyrazów wyznacza początkowe wyrazy ciągu określonego wzorem ogólnym lub słownie wyznacza, które wyrazy ciągu przyjmują daną wartość podaje przykłady ciągów monotonicznych, których wyrazy spełniają dane warunki uzasadnia, że dany ciąg nie jest monotoniczny, mając dane jego kolejne wyrazy wyznacza wyraz an 1 ciągu określonego wzorem ogólnym podaje przykłady ciągów arytmetycznych wyznacza wyrazy ciągu arytmetycznego, mając dany pierwszy wyraz i różnicę wyznacza wzór ogólny ciągu arytmetycznego, mając dane dowolne dwa jego wyrazy sprawdza, czy dany ciąg jest arytmetyczny (proste przypadki) wyznacza wzór ogólny ciągu geometrycznego, mając dane dowolne dwa jego wyrazy sprawdza, czy dany ciąg jest geometryczny (proste przypadki) stosuje średnią arytmetyczną do wyznaczania wyrazów ciągu arytmetycznego (proste przypadki) określa monotoniczność ciągu arytmetycznego i geometrycznego oblicza sumę n początkowych wyrazów ciągu arytmetycznego i geometrycznego podaje przykłady ciągów geometrycznych wyznacza wyrazy ciągu geometrycznego, mając dany pierwszy wyraz i iloraz
3 stosuje monotoniczność ciągu geometrycznego do rozwiązywania prostych zadań stosuje własności ciągu arytmetycznego lub geometrycznego do rozwiązywania prostych zadań oblicza wysokość kapitału przy różnym okresie kapitalizacji oblicza oprocentowanie lokaty (proste przypadki) wyznacza wzór ogólny ciągu spełniającego podane warunki bada monotoniczność ciągów rozwiązuje zadania z parametrem dotyczące monotoniczności ciągu wyznacza wartości zmiennych tak, aby wraz z podanymi wartościami tworzyły ciąg arytmetyczny lub geometryczny sprawdza, czy dany ciąg jest arytmetyczny sprawdza, czy dany ciąg jest geometryczny rozwiązuje równania z zastosowaniem wzoru na sumę wyrazów ciągu arytmetycznego rozwiązuje równania z zastosowaniem wzoru na sumę wyrazów ciągu geometrycznego określa monotoniczność ciągu arytmetycznego i geometrycznego stosuje własności ciągu arytmetycznego i geometrycznego w zadaniach rozwiązuje zadania związane z kredytami dotyczące okresu oszczędzania i wysokości oprocentowania rozwiązuje zadania o podwyższonym stopniu trudności dotyczące monotoniczności ciągu wyznacza wyrazy ciągu określonego rekurencyjnie dowodzi wzór na sumę n początkowych wyrazów ciągu arytmetycznego stosuje średnią geometryczną do rozwiązywania zadań rozwiązuje zadania o znacznym stopniu trudności dotyczące ciągów PLANIMETRIA(2) podaje i stosuje wzory na długość okręgu, długość łuku, pole koła i pole wycinka koła określa wzajemne położenie okręgów, mając dane promienie tych okręgów oraz odległość ich środków oblicza pola figur, stosując zależności między okręgami (proste przypadki) określa liczbę punktów wspólnych prostej i okręgu przy danych warunkach stosuje własności stycznej do okręgu do rozwiązywania prostych zadań rozpoznaje kąty wpisane i środkowe w okręgu oraz wskazuje łuki, na których są one oparte stosuje twierdzenie o kącie środkowym i kącie wpisanym, opartych na tym samym łuku (proste przypadki) podaje różne wzory na pole trójkąta oblicza pole trójkąta, dobierając odpowiedni wzór (proste przypadki) rozwiązuje zadania dotyczące okręgu wpisanego w trójkąt prostokątny lub równoboczny rozwiązuje zadania związane z okręgiem opisanym na trójkącie podaje wzory na pole równoległoboku, rombu i trapezu wykorzystuje funkcje trygonometryczne do wyznaczania pól czworokątów (proste przypadki) oblicza odległość punktów w układzie współrzędnych oblicza odwód wielokąta, mając dane współrzędne jego wierzchołków stosuje wzór na odległość między punktami do rozwiązywania prostych zadań wyznacza współrzędne środka odcinka, mając dane współrzędne jego końców rysuje figury symetryczne w danej symetrii osiowej konstruuje figury symetryczne w danej symetrii środkowej określa liczbę i wskazuje osi symetrii figury wskazuje środek symetrii figury znajduje obrazy figur geometrycznych w symetrii osiowej względem osi układu współrzędnych znajduje obrazy figur geometrycznych w symetrii środkowej względem środka układu współrzędnych stosuje własności symetrii osiowej i środkowej do rozwiązywania prostych zadań stosuje wzory na długość okręgu, długość łuku okręgu, pole koła i pole wycinka koła do obliczania pól i obwodów figur oblicza pole figury, stosując zależności między okręgami
4 stosuje własności stycznej do okręgu do rozwiązywania trudniejszych zadań stosuje twierdzenie o kącie środkowym i kącie wpisanym, opartych na tym samym łuku oraz wnioski z tego twierdzenia do rozwiązywania zadań o większym stopniu trudności stosuje różne wzory na pole trójkąta i przekształca je wykorzystuje umiejętność wyznaczania pól trójkątów do obliczania pól innych wielokątów rozwiązuje zadania związane z okręgiem wpisanym w dowolny trójkąt i opisanym na dowolnym trójkącie stosuje własności środka okręgu opisanego na trójkącie w zadaniach z geometrii analitycznej wykorzystuje funkcje trygonometryczne do wyznaczania pól czworokątów stosuje wzór na odległość między punktami oraz środek odcinka do rozwiązywania trudniejszych zadań stosuje własności symetrii osiowej i środkowej do rozwiązywania trudniejszych zadań Uczeń otrzymuje ocenę celującą jeśli dodatkowo: dowodzi twierdzenia dotyczące kątów w okręgu dowodzi wzoru na pole trójkąta rozwiązuje zadania z planimetrii o znacznym stopniu trudności stosuje przesunięcie figury o wektor do rozwiązywania zadań podaje środek obrotu i kąt obrotu w prostych sytuacjach opisuje równaniem okrąg o danym środku i przechodzący przez dany punkt wyznacza środek i promień okręgu, mając jego równanie RACHUNEK PRAWDOPODOBIEŃSTWA stosuje zasadę mnożenia w typowych sytuacjach przedstawia drzewo ilustrujące zbiór wyników danego doświadczenia w prostych sytuacjach oblicza liczbę permutacji elementów danego zbioru w prostych sytuacjach stosuje definicję silni oblicza liczbę wariacji bez powtórzeń w prostych sytuacjach oblicza liczbę wariacji z powtórzeniami w prostych sytuacjach określa zbiór wszystkich zdarzeń elementarnych danego doświadczenia określa zbiór zdarzeń elementarnych sprzyjających danemu zdarzeniu losowemu określa zdarzenia przeciwne, zdarzenia niemożliwe i zdarzenia pewne stosuje klasyczną definicję prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń losowych w prostych, typowych sytuacjach podaje rozkład prawdopodobieństwa dla rzutów kostką lub monetą oblicza prawdopodobieństwo zdarzenia przeciwnego stosuje twierdzenie o prawdopodobieństwie sumy zdarzeń w prostych sytuacjach wykorzystuje kombinatorykę do obliczania prawdopodobieństw zdarzeń losowych zapisuje zdarzenia w postaci sumy, iloczynu oraz różnicy zdarzeń oblicza prawdopodobieństwa zdarzeń losowych, stosując klasyczną definicję prawdopodobieństwa stosuje twierdzenia o prawdopodobieństwie sumy zdarzeń i różnicy zdarzeń stosuje własności prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń rozwiązuje zadania o znacznym stopniu trudności dotyczące prawdopodobieństwa przeprowadza dowody twierdzeń dotyczących prawdopodobieństwa zdarzeń STATYSTYKA oblicza średnią arytmetyczną, wyznacza medianę i dominantę oblicza średnią arytmetyczną, wyznacza medianę i dominantę danych przedstawionych na diagramie w prostych przypadkach oblicza wariancję i odchylenie standardowe oblicza średnią ważoną liczb z podanymi wagami oblicza średnią arytmetyczną, wyznacza medianę i dominantę danych przedstawionych na diagramie
5 wykorzystuje średnią arytmetyczną, medianę, dominantę i średnią ważoną do rozwiązywania zadań oblicza wariancję i odchylenie standardowe zestawu danych przedstawionych w tabeli interpretuje średnią arytmetyczną, medianę, dominantę i średnią ważoną Uczeń otrzymuje ocenę celującą jeśli dodatkowo: rozwiązuje zadania o znacznym stopniu trudności dotyczące statystyki STEREOMETRIA wskazuje w wielościanach proste prostopadłe, równoległe i skośne wskazuje w wielościanach rzut prostokątny danego odcinka określa liczbę ścian, wierzchołków i krawędzi graniastosłupów i ostrosłupów sporządza rysunek wielościanu wraz z oznaczeniami oblicza pola powierzchni bocznej i całkowitej graniastosłupów i ostrosłupów prostych rysuje siatkę graniastosłupa lub ostrosłupa prostego, mając dany jej fragment oblicza długości przekątnych graniastosłupów prostych w prostych przypadkach stosuje definicje i własności funkcji trygonometrycznych do obliczania pól powierzchni graniastosłupów i ostrosłupów w prostych sytuacjach oblicza objętości graniastosłupów i ostrosłupów prawidłowych wskazuje kąt między przekątną graniastosłupa a płaszczyzną podstawy tego graniastosłupa wskazuje kąt między danym odcinkiem w ostrosłupie a płaszczyzną podstawy tego ostrosłupa wskazuje kąt między sąsiednimi ścianami wielościanów rozwiązuje typowe zadania dotyczące kąta między prostą a płaszczyzną oblicza pola powierzchni i objętości brył obrotowych w prostych sytuacjach wyznacza skalę podobieństwa brył podobnych przeprowadza wnioskowania dotyczące położenia prostych w przestrzeni stosuje i przekształca wzory na pola powierzchni i objętości wielościanów oblicza pola powierzchni i objętości wielościanów z zastosowaniem funkcji trygonometrycznych i twierdzeń planimetrii wyznacza, w trudniejszych przypadkach, kąt między danym odcinkiem w ostrosłupie a płaszczyzną podstawy tego ostrosłupa rozwiązuje, w trudniejszych przypadkach, zadania z wykorzystaniem miary kąta między prostą a płaszczyzną oblicza miarę kąta dwuściennego między ścianami wielościanu oblicza pola powierzchni i objętości brył obrotowych z zastosowaniem funkcji trygonometrycznych i twierdzeń planimetrii wykorzystuje podobieństwo brył do rozwiązywania zadań rozwiązuje zadania o znacznym stopniu trudności dotyczące stereometrii przeprowadza dowody twierdzeń dotyczących związków miarowych w wielościanach i bryłach obrotowych POWTÓRZENIE WIADOMOŚCI Wymagania dotyczące powtarzanych wiadomości zostały opisane przy poszczególnych działach.
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,
Wymagania edukacyjne zakres podstawowy klasa 3A
Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent
Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D
Plan wynikowy klasa 3g - Jolanta Pająk Matematyka 3. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym
Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era
Wymagania edukacyjne z matematyki w klasie II A i II B Liceum Plastycznego Zakres podstawowy Przygotowane w oparciu o propozycję wydawnictwa Nowa Era Kryteria Znajomość pojęć, definicji, własności oraz
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując
WYMAGANIA EDUKACYJNE Z MATEMATYKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,
Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów
Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)
- 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają
Wymagania edukacyjne dla klas realizujących zakres podstawowy Uczący: Dariusz Drabczyk, Piotr Pyrdoł.
Wymagania edukacyjne dla klas realizujących zakres podstawowy Uczący: Dariusz Drabczyk, Piotr Pyrdoł. str 1 W klasach: 1e realizujemy działy: Liczby rzeczywiste Język matematyki Funkcja liniowa Funkcje
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Planimetria 1 12 godz.
Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie
klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności
I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
1 wyznacza współrzędne punktów przecięcia prostej danej
Wymagania edukacyjne z matematyki DLA II i III KLASY ZASADNICEJ SZKOŁY ZAWODOWEJ Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może je realizować jedynie
Matematyka CIĄGI. Zakres materiału i wymagania edukacyjne, KLASA TRZECIA poziom podstawowy. Temat lekcji Zakres treści Osiągnięcia ucznia.
Matematyka Zakres materiału i wymagania edukacyjne, KLASA TRZECIA poziom podstawowy CIĄGI 1. Pojęcie ciągu definicja ciągu wykres ciągu wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego początkowych
MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.
MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe 1. Potęga o wykładniku całkowitym.
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
83 Przekształcanie wykresów funkcji (cd.) 3
Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz
Matematyka na czasie
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klas gimnazjalnych: 2 i 3 Proponujemy, by omawiając dane zagadnienie programowe
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Matematyka. Wymagania edukacyjne na poszczególne oceny
Matematyka Wymagania edukacyjne na poszczególne oceny Klasa III - zakres rozszerzony Rachunek różniczkowy uzasadnia w prostych przypadkach, że funkcja nie ma granicy w punkcie, oblicza granice funkcji
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne
CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy 2
Agnieszka amińska, Dorota Ponczek Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy Temat lekcji Zakres treści Osiągnięcia uczeń: 1. Potęga o wykładniku całkowitym. Mnożenie i dzielenie
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2018/2019 - klasa 3a, 3b, 3c 1, Ciągi
Klasa II - zakres podstawowy i rozszerzony
Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo
RYTERIA OCENIANIA Z MATEMATYI w klasie 2a w roku szkolnym 2017/18 realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo wymagania konieczne (ocena 2); P wymagania podstawowe (ocena
Kształcenie w zakresie podstawowym. Klasa 3
Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328
Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)
ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era POTĘGI I PIERWIASTKI POTĘGI Na ocenę dopuszczającą uczeń: zna i rozumie pojęcie
Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym
Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA BRYŁY UCZEŃ ZNA: - pojęcie graniastosłupa, prostopadłościanu i sześcianu; - pojęcie graniastosłupa prostego i prawidłowego;
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
Okręgi i proste na płaszczyźnie
Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,
Wymagania edukacyjne klasa druga.
Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie