BAZA ZADAŃ KLASA 3 Ha 2014/2015
|
|
- Monika Podgórska
- 9 lat temu
- Przeglądów:
Transkrypt
1 BAZA ZADAŃ KLASA 3 Ha 2014/2015 GEOMETRIA 1 W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm Oblicz pole tego trójkąta 2 Oblicz pole wycinka koła o promieniu 8 cm wyznaczonego przez kąt a) b) c) 3 Pole wycinka koła wyznaczonego przez kąt jest równe Oblicz promień tego koła 4 Oblicz pole trójkąta równobocznego opisanego na okręgu o promieniu długości 5 Oblicz promień koła opisanego na trójkącie o bokach długości 7 cm, 6 cm i 12cm 6 Oblicz pole wycinka koła, jeżeli promień koła ma długość 9 cm, a kąt wycinka tego koła ma miarę Pole wycinka koła jest równe cm, a kąt wycinka tego koła ma miarę 48 Oblicz długość łuku wycinka 3 koła 8 Przyprostokątne trójkąta prostokątnego maja długości 6 i 8 Oblicz: a) promień okręgu opisanego na tym trójkącie b) promień okręgu wpisanego w ten trójkąt 9 Promień okręgu opisanego na trójkącie prostokątnym wynosi 5, a jedna z przyprostokątnych jest dwa razy dłuższa od drugiej Oblicz promień okręgu wpisanego w ten trójkąt 10 W trójkąt równoramienny o wysokości 4 i podstawie 6 wpisano okrąg Oblicz średnicę tego okręgu 11 Na okręgu o promieniu 2 opisano trójkąt równoramienny o kącie przy podstawie 30 Oblicz obwód tego trójkata GEOMETRIA ANALITYCZNA 1Wyznacz współrzędne wierzchołków trójkąta jeżeli środki jego boków mają współrzędne: 2 Podstawą trójkąta równoramiennego jest odcinek o końcach w punktach oraz Jedno z jego ramion zawiera się w prostej o równaniu Oblicz współrzędne trzeciego wierzchołka trójkąta 3 Wyznacz współrzędne punktu, który dzieli odcinek o końcach i w stosunku 4 Wykaż, że prosta jest styczna do okręgu 5 Wyznacz równanie prostej przechodzącej przez początek układu współrzędnych i przez środek okręgu o równaniu 6 Ile punktów wspólnych ma prosta z okręgiem, jeśli oraz 7 Punkty i są wierzchołkami trójkąta prostokątnego, w którym jest przeciwprostokątną Wyznacz współrzędne wierzchołka wiedząc, że leży on na osi 8 O ile procent pole koła o promieniu długości 8 jest większe od pola koła wyznaczonego przez okrąg o równaniu 9 Wyznacz odległość punktu od prostej o równaniu 10 Napisz równanie okręgu, którego środek należy do osi i który przechodzi przez punkty i 11 Wierzchołkami trójkąta są punkty Oblicz długość środkowej 12 Wyznacz równanie okręgu, który jest symetryczny do okręgu o równaniu względem prostej 13 W układzie współrzędnych na płaszczyźnie punkty i są przeciwległymi wierzchołkami kwadratu Wyznacz równanie prostej 14 W układzie współrzędnych dane są dwa punkty: i a) Wyznacz równanie symetralnej odcinka b) Prosta oraz prosta o równaniu przecinają się w punkcie Oblicz współrzędne punktu 15 Ostrokątny trójkąt równoramienny o podstawie jest wpisany w okrąg o równaniu Punkty i leżą na prostej o równaniu Oblicz współrzędne punktów:
2 16 Punkty są wierzchołkami trapezu Oblicz długość krótszej przekątnej tego trapezu 17 Dany jest jeden koniec odcinka i jego środek Wyznacz współrzędne drugiego końca tego odcinka 18 Określ wzajemne położenie prostych i o równaniach 19 Współrzędne przeciwległych wierzchołków prostokąta są równe Wyznacz współrzędne pozostałych wierzchołków prostokąta wiedząc, że wierzchołek leży na prostej 20 Punkty są wierzchołkami trójkąta równoramiennego, w którym Prosta zawierająca wysokość opuszczoną z wierzchołka ma równanie Oblicz pole trójkąta 21 Wyznacz równanie takiej prostej przechodzącej przez punkt, która wraz z osiami układu współrzędnych ogranicza trójkąt o polu równym 2 22 W okrąg o równaniu wpisano trójkąt równoboczny w którym Oblicz współrzędne pozostałych wierzchołków trójkąta 23 Środek okręgu przechodzącego przez punkty leży na osi Ox a) Wyznacz równanie tego okręgu b) Wyznacz równanie prostej prostopadłej do prostej i oddalonej od początku układu współrzędnych o 24 Wyznacz równania stycznych do okręgu równoległych do osi Oy 25 Punkt jest wierzchołkiem rombu, którego jeden z boków zawiera się w prostej o równaniu Środkiem symetrii tego rombu jest punkt Oblicz współrzędne pozostałych wierzchołków rombu i oblicz jego pole 26 Dane są punkty Wyznacz na prostej punkt, tak aby Dla wyznaczonego punktu C: a) wykaż, że trójkąt jest prostokątny; b) wyznacz równanie okręgu opisanego na trójkącie 27 Dane są punkty oraz Wyznacz wszystkie wartości, dla których proste i są prostopadłe 28 Określ wzajemne położenie okręgów i 29 Podaj współrzędne środka i długość promienia okręgu o równaniu: 30 Dane są dwa wierzchołki prostokąta oraz punkt należący do boku CD a) Wyznacz równanie prostej zawierającej bok CD; b) Oblicz współrzędne wierzchołka C; c) Oblicz współrzędne punktu S przecięcia się przekątnych tego prostokąta 31 Dany jest punkt i prosta o równaniu będąca symetralną odcinka Wyznacz współrzędne punktu Wykonaj obliczenia uzasadniające odpowiedź 32 Wyznacz równanie prostej, która przecina oś Ox pod kątem, a oś Oy w punkcie 33 Napisz równanie wysokości trójkąta o wierzchołkach opuszczonej z wierzchołka 34 Okrąg o równaniu i prosta przecinają się w punktach Wyznacz długość cięciwy tego okręgu 35 Na prostej wyznacz punkt, który jest równo odległy od początku układu współrzędnych oraz od punktu 36 Punkty są przeciwległymi wierzchołkami rombu Wyznacz równanie przekątnej tego rombu 37 Wyznacz równanie prostej równoległej do prostej przechodzącej przez punkt oraz równanie prostej prostopadłej do tych prostych przechodzącej przez punkt
3 38 W trójkącie równobocznym dane są wierzchołek i środek okręgu wpisanego Oblicz pole trójkąta 39 Wyznacz współrzędne wierzchołków trójkąta, którego boki zawarte są w prostych o równaniach: 40 Oblicz długość cięciwy, którą wycina z prostej okrąg o środku w punkcie i promieniu 10 STATYSTYKA OPISOWA 1 Średnia wieku w pewnej grupie studentów jest równa 23 lata Średnia wieku tych studentów i ich opiekuna jest równa 24 lata Opiekun ma 39 lat Oblicz, ilu studentów jest w tej grupie 2 Tabela przedstawia pewne dane i ich liczebność Wartość danej Liczebność Oblicz średnią arytmetyczną tych danych Podaj medianę Oblicz odchylenie standardowe 3 Przeprowadzono badania, dotyczące liczby osób jadących w samochodach osobowych w godzinach rannych, w kierunku centrum pewnego miasta Wyniki badań przedstawione są na diagramie kołowym a) Oblicz średnią liczbę osób jadących w samochodzie osobowym w godzinach rannych w kierunku centrum b) Oblicz prawdopodobieństwo, że w losowo wybranym samochodzie osobowym, w godzinach rannych, w kierunku centrum, były więcej niż 3 osoby c) Wiedząc, że samochodów osobowych, w których były 4 osoby, zaobserwowano o 350 więcej, niż samochodów w których było 5 osób, oblicz, ile wszystkich samochodów obserwowano w trakcie badań 4 Uczniowie napisali pracę kontrolną 30% uczniów otrzymało piątkę, 40% otrzymało czwórkę, 8 uczniów otrzymało trójkę, a pozostali ocenę dopuszczającą Średnia ocen wynosiła 3,9 Ilu uczniów otrzymało piątkę? 5 Średnia arytmetyczna liczb: jest równa 2 Oblicz 6 Uczeń otrzymał pięć ocen: Średnia arytmetyczna tych ocen jest równa 4 Oblicz i medianę tych pięciu ocen 7 Średnia wieku 15 mieszkańców pewnego bloku wynosi 33 lata Gdy do wolnego mieszkania wprowadził się nowy mieszkaniec, średnia zwiększyła się o 1 rok Ile lat ma nowy mieszkaniec? 8 Oblicz medianę danych: 0, 1, 3, 3, 1, 1, 2, 1 9 Zważono 150 losowo wybranych kostek masła produkowanego przez pewien zakład mleczarski Wyniki badań przedstawiono w tabeli Masa kostki masła [dag] Liczba kostek masła
4 Na podstawie danych przedstawionych w tabeli oblicz średnią arytmetyczną oraz odchylenie standardowe masy kostki masła 10 W pewnej szkole przeprowadzono ten sam sprawdzian z matematyki w trzech klasach 1a, 1b i 1c Na poniższym diagramie przedstawiono wyniki tego sprawdzianu z wyszczególnieniem liczby osób, które uzyskały poszczególne oceny a) Ilu uczniów pisało sprawdzian w poszczególnych klasach? b) Która z ocen była wystawiana najczęściej? c) W której klasie średnia ocen ze sprawdzianu była najwyższa? 11 Na diagramie poniżej przedstawiono procentowy podział miesięcznych zarobków w pewnej firmie a) Podaj medianę tych zarobków b )Wyznacz średnią kwotę miesięcznych zarobków w tej firmie 12 Tabela przedstawia wyniki uzyskane na sprawdzianie przez uczniów klasy III Oceny Liczba uczniów Oblicz średnią arytmetyczną i kwadrat odchylenia standardowego uzyskanych ocen 13 Mediana trzech liczb jest równa 4, a ich średnia arytmetyczna jest równa 5 Oblicz sumę największej i najmniejszej z tych liczb 14 Marek waha się, który obóz letni wybrać Aby podjąć najlepszą decyzję sporządził tabelkę i obliczył średnie ważone Który obóz powinien wybrać? Koszt (waga 0,4) Termin (waga 0,1) Towarzystwo (waga 0,3) Obóz wędkarski Obóz żeglarski Obóz rowerowy Atrakcyjność (waga 0,2) Średnia
5 RACHUNEK PRAWDOPODOBIEŃSTWA 1 Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia: na każdej kostce wypadła nieparzysta liczba oczek, suma wyrzuconych oczek jest nie mniejsza niż 8 Oblicz prawdopodobieństwo zdarzenia 2 Rzucamy trzy razy symetryczną sześcienną kostką do gry Oblicz prawdopodobieństwo otrzymania iloczynu oczek równego 12 3 Rzucamy dwa razy symetryczną, sześcienną kostką do gry Oblicz prawdopodobieństwo zdarzenia, polegającego na tym, że: a) suma liczb oczek jest liczbą nieparzystą, b) iloczyn oczek jest mniejszy od 10 c) za drugim razem wypadnie liczba parzysta d) różnica oczek w obu rzutach będzie mniejsza niż 3 4 Rzucamy dwiema sześciennymi kostkami a) Jakie jest prawdopodobieństwo, że różnica między liczbami oczek wyrzuconych na kostkach (od większej odejmujemy mniejszą) będzie równa 2? b) Jaka jest najbardziej prawdopodobna różnica między wynikami na kostkach (od większego odejmujemy mniejszy)? 5Rzucamy dwa razy symetryczną sześcienną kostką do gry Oblicz prawdopodobieństwo każdego z następujących zdarzeń: a) w każdym rzucie wypadnie nieparzysta liczba oczek b) suma oczek otrzymanych w obu rzutach jest liczbą większą od 9 c) suma oczek otrzymanych w obu rzutach jest liczbą nieparzystą i większą od 9 6 Rzucamy dwiema sześciennymi kostkami Jakie jest prawdopodobieństwo, że na pierwszej kostce wypadło dwa razy mniej oczek niż na drugiej? 7 Rzucamy 6 razy symetryczną 6-ścienną kostką do gry Oblicz prawdopodobieństwo: a) otrzymania co najmniej raz szóstki; b) otrzymania co najwyżej raz szóstki 8 Z pudełka, w którym jest 6 kul czarnych i 4 żółte, wyjęto dwa razy po jednej kuli ze zwracaniem Oblicz prawdopodobieństwo, że wyjęto kule jednakowych kolorów 9 W urnie znajduję się 5 kul białych i 3 czarne Wyjmujemy losowo 4 kule Oblicz prawdopodobieństwo, że wśród wyjętych są przynajmniej 2 kule czarne 10 W pudełku znajduje się 5 kul białych, 3 kule czerwone i 1 zielona Losujemy 1 kulę Oblicz prawdopodobieństwo wylosowania kuli białej 11 Mamy dwa pudełka z kulami W pudełku A znajdują się 3 kule zielone i 6 niebieskich, a w pudełku B 5 kul zielonych i 8 niebieskich Rzucamy kostką sześcienną do gry Jeżeli na kostce wypadną co najmniej 3 oczka, to losujemy kulę z pudełka A, w przeciwnym wypadku losujemy kulę z pudełka B Oblicz prawdopodobieństwo, że wylosujemy kulę niebieską 12 W wazonie stoi 12 czerwonych i 8 żółtych róż Pani Krystyna wyjęła losowo dwie róże z wazonu Oblicz prawdopodobieństwo, że wśród wybranych kwiatów jest przynajmniej jedna róża żółta 13 Paulina ma w szafie 20 bluzek w kilku kolorach W tabelce przedstawiono, jaki procent bluzek stanowią bluzki w danym kolorach Kolor bluzki % czerwony 15 niebieski 70 czarny 5 biały 10 Oblicz prawdopodobieństwo, że wybrana losowo bluzka jest niebieska 14 Piotrek ma 100 płyt CD z muzyką poważną Codziennie słucha jednej płyty i odstawia ją na miejsce Płyty wybiera w sposób losowy Oblicz prawdopodobieństwo, że w ciągu pięciu kolejnych dni będzie słuchał codziennie tej samej płyty
6 15 Przy okrągłym stole zasiada losowo 8 osób, a wśród nich rodzice z dwojgiem dzieci Jakie jest prawdopodobieństwo tego, że dzieci usiądą bezpośrednio między rodzicami? 16 Ze zbioru losujemy dwa razy po jednej liczbie ze zwracaniem Oblicz prawdopodobieństwo zdarzenia, polegającego na wylosowaniu liczb, z których pierwsza jest większa od drugiej o 4 lub 6 17 Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN Kod ten składa się z czterech cyfr (cyfry mogą się powtarzać, ale kodem PIN nie może być 0000) Oblicz prawdopodobieństwo, że w losowo utworzonym kodzie PIN żadna cyfra się nie powtórzy Wynik podaj w postaci ułamka nieskracalnego 18 Ze zbioru liczb losujemy dwie liczby (mogą się powtarzać) Oblicz prawdopodobieństwo, że suma wylosowanych liczb jest parzysta 19 Zamek szyfrowy składa się z 5 tarcz Na każdej z tarcz znajduje się 6 cyfr Zamek otwiera kombinacja cyfr podana w odpowiedniej kolejności (istotne są cyfry na tarczach oraz kolejność ustawiania tarcz) Jakie jest prawdopodobieństwo otworzenia zamka przy losowym ustawieniu tarcz? 20 W koszu znajdują się owoce: 12 jabłek i 8 pomarańczy Wyjmujemy kolejno trzy owoce, nie odkładając ich do kosza Jakie jest prawdopodobieństwo, że wylosujemy dokładnie dwie pomarańcze? Część zadań pochodzi ze strony internetowej Można tam znaleźć rozwiązania
BAZA ZADAŃ KLASA 3 Ga
BAZA ZADAŃ KLASA 3 Ga CIĄGI LICZBOWE 1. Ile wyrazów dodatnich ma ciąg? Podaj największy z nich. 2. Które wyrazy ciągu są równe zeru? 3. Które wyrazy ciągu są mniejsze od liczby m? 4. Zbadaj, czy poniższe
Wartość danej Liczebność
ZADANIE 1 (5 PKT) Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej grupie.
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.
IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
STATYSTYKA POWTÓRZENIE WIADOMOŚCI
STATYSTYKA POWTÓRZENIE WIADOMOŚCI ZADANIE Średnia arytmetyczna wszystkich liczb pierwszych należacych do przedziału, 9) A) B), C) D), ZADANIE Średnia licz,,,,9,9,, jest liczba A) B), C) D), ZADANIE Diagram
Wartość danej Liczebność
IMIE I NAZWISKO ZADANIE 1 Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Wartość danej Liczebność
ZADANIE 1 (5 PKT) Tabela przedstawia pewne dane i ich liczebność a) Oblicz średnia arytmetyczna tych danych. b) Podaj medianę. c) Oblicz odchylenie standardowe. Wartość danej -4 2 4 7 20 Liczebność 7 2
Zadania statystyka semestr 6TUZ
Zadania statystyka semestr 6TUZ Zad.1. W pewnym liceum, wśród uczniów 30 osobowej klasy (kaŝdy uczeń pochodzi z innej rodziny), zebrano dane na temat posiadanego rodzeństwa. Wyniki badań przedstawiono
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:
Strona 1 z 9 I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zapisz za pomocą potęgi o podanej podstawie: 5 4 ( 27) ( ) a), podstawa : ( ) b) 6 ( 9) c), podstawa: (5) d) Oblicz: a) 1 6 4 2 1 1 1 2 (0,25)
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WPISUJE UCZEŃ KOD PESEL PRZEDMATURALNA DIAGNOZA KSZTAŁTUJĄCA Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 018 (dla klas trzecich liceum
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka
Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 198602 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma odległości punktu
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 147380 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) W trójkacie prostokatnym
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
ZBIÓR ZADAŃ MATURALNYCH Z MATEMATYKI
ZBIÓR ZADAŃ MATURALNYCH Z MATEMATYKI AUTORZY: Zespół w12i SPIS TREŚCI LICZBY RZECZYWISTE.2 FUNKCJE 11 CIĄGI...27 GEOMETRIA ANALITYCZNA.36 RACHUNEK PRAWDOPODOBIEŃSTWA, STATYSTYKA.44 1 LICZBY RZECZYWISTE
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 203 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
Matura z matematyki 1920 r.
Matura z matematyki 1920 r. (źródło: Sprawozdanie Dyrekcji Państwowego Gimnazjum im. Karola Marcinkowskiego w Poznaniu: za 1-sze dziesięciolecie zakładu w niepodległej i wolnej ojczyźnie: 1919-1929) Żelazna
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka
1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:
Za rozwiązanie wszystkich zadań można otrzymać łącznie 45 punktów.
Centralna Komisja Egzaminacyjna. MATERIAŁY ĆWICZENIOWE Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy: 70 minut Materiały ćwiczeniowe z matematyki Poziom podstawowy Czas pracy: 70 minut Instrukcja dla zdającego:.
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 209 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 209 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2018/2019 28.02.2019 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 64130 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM ROZSZERZONY CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wielomian P(x)
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 MARCA 2019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Cena towaru bez podatku
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
Zadania otwarte krótkiej odpowiedzi na dowodzenie
Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2018 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa
Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 3).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 2012 Instrukcja dla zdającego 1. Sprawdź, czy arkusz ćwiczeniowy zawiera 28 stron (zadania 1 32). 2. Odpowiedzi
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 86 7 5 56 5 jest
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Rozwiązaniem nierówności A. B. C. 4 D. 2
(Kod ucznia).... /50 pkt. (Liczba uzyskanych punktów) Matura próbna z matematyki KLASA III poziom podstawowy Czas trwania 170 minut Liczba punktów do uzyskania - 50 Zadanie 1. (0-1) Liczba jest równa A)
ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV.
ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. I. POTĘGI. LOGARYTMY. FUNKCJA WYKŁADNICZA 1. Przedstaw liczby 16,4, w postaci potęgi liczby: 2; 4;. 2. Wykonaj działania: a) = b) 25 5 5 =
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
PLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego)
PLNIMETRI pp 2015/16 WŁSNOŚI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) Zad.1 Wyznacz kąty trójkąta jeżeli stosunek ich miar wynosi 5:3:1. Zad.2 Znajdź
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 016/017 0.0.017 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY Stowarzyszenie Nauczycieli Matematyki www.snm.edu.pl KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Poniższa tabela przedstawia temperaturę odczytywana
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 24 MARCA 202 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczba 3 3 3 jest równa A)
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas IV w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas IV w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Figury na płaszczyźnie Kąty w okręgu i kąt między
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
ARKUSZ VIII
www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
W(x) = Stopień wielomianu jest równy: A. B. C. D. A. B. C. D.
Zadanie 9. (1 pkt.) (Czerwiec 014) Dane są wielomiany: x, P(x) = x 3 + x, Q(x) = (1 x)(x + 1) W(x) = 1 W(x) P(x) Q(x). Stopień wielomianu jest równy: 3 6 7 1 Zadanie 10. (1 pkt.) (Czerwiec 014) Pierwsza
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej liczby
ZADANIE 1. ZADANIE 2 Wyznacz współrzędne punktu P, który dzieli odcinek o końcach A = (29, 15) i B = (45, 13) w stosunku AP : PB = 1 : 3.
ZNIE 1 Podstawa ostrosłupa jest trójkat. Krawędź jest wysokościa ostrosłupa (zobacz rysunek). Oblicz objętość ostrosłupa, jeśli wiadomo, że = 12, = 6, = = 13. ZNIE 2 Wyznacz współrzędne punktu P, który
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 28 marca 2015 Czas pracy: 90 minut
/Gimnazjum Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 28 marca 2015 Czas pracy: 90 minut Zadanie 1 (1 pkt) Na diagramie przedstawiono wysokość miesięcznych
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Odległośc w układzie współrzędnych. Środek odcinka.
GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba