Scenariusz lekcji matematyki w kl. IV
|
|
- Laura Szewczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Scenariusz lekcji matematyki w kl. IV TEMAT LEKCJI: Okrąg i koło. Treści nauczania z podstawy programowej : Wielokąty, koła, okręgi. Uczeń wskazuje na rysunku, a także rysuje cięciwę, średnicę, promień koła i okręgu. CELE ZAJĘĆ : ogólne: umożliwianie uczniom samodzielnego definiowania pojęć oraz odkrywania związków i zależności uczenie spostrzegawczości oraz wyciągania wniosków rozwijanie umiejętności posługiwania się językiem matematycznym wyrabianie dokładności i staranności przy kreśleniu figur szczegółowe: Wiadomości Uczeń wie: co to jest okrąg i koło, jaka jest różnica pomiędzy okręgiem i kołem, jakie są elementy koła i okręgu, jaka jest zależność pomiędzy promieniem a średnicą. 2. Umiejętności Uczeń umie: wskazywać poszczególne elementy w okręgu i w kole, kreślić koło i okrąg o danym promieniu, wyróżniać spośród figur płaskich koła i okręgi FORMY PRACY : praca indywidualna i zbiorowa METODA PRACY : problemowa, ćwiczeniowa POMOCE : zeszyt, cyrkiel, tablica, kolorowa kreda, karty pracy, podręcznik, ćwiczenia
2 PRZEBIEG LEKCJI : 1. Sprawy organizacyjne Przywitanie uczniów, sprawdzenie zadania domowego. 2. Wprowadzenie do lekcji Zapoznanie uczniów z celami lekcji. Na dzisiejszej lekcji poznamy dwie figury geometryczne. Podobnie jak poprzednie figury, nauczymy się je nazywać, rysować oraz definiować. Poznamy też pojęcia z nimi związane. Wymieńcie niektóre z figur, które poznaliśmy wcześniej. Uczniowie rysują, wymieniają oraz definiują poznane wcześniej figury, np. punkt, prosta, prostokąt, kwadrat itp. 3. Część zasadnicza 1. Definiowanie okręgu Aby wprowadzić pojęcie nowej figury geometrycznej, skorzystamy z najprostszej figury jaka poznaliśmy, a jest nią. punkt. Na kartce w zeszycie mniej więcej w środkowym miejscu zaznacz punkt O. (To samo rysujemy równocześnie na tablicy). Zaznaczcie punkt A odległy od niego o 3cm. Następnie punkt B leżący również w odległości 3cm od punktu O. Zaznaczcie kolejne punkty leżące w tej samej odległości od środka jak poprzednie dwa. Czy są jeszcze inne takie punkty? Ile takich punktów możesz zaznaczyć? Czy potrafisz zaznaczyć wszystkie takie punkty? Jak narysować wszystkie punkty leżące w tej samej odległości od punktu O jak poprzednie? Jak nazywa się figura którą narysowaliśmy? Figura, którą narysowałeś to okrąg. Spróbujmy zdefiniować okrąg. Okrąg to zbiór punktów... ( Uczniowie sami podaja definicje okręgu ) Okrąg to zbiór punktów leżących w tej samej odległości od wybranego punktu O. Punkt O nazywamy środkiem okręgu. Do rysowania okręgów służy cyrkiel.
3 Co należy podać, aby narysować okrąg? Narysujcie okrąg o środku w punkcie O i odległości od środka 4cm. Zaznaczcie odcinek OA, który łączy środek okręgu O z okręgiem. Odcinek ten nazywamy promieniem. Zaznaczmy go kolorem i podpiszmy. Pod spodem zapiszmy czym jest promień. ( uczniowie sami podają definicję promienia ) Promień okręgu to odcinek łączący środek okręgu z punktem na okręgu. Zaznaczcie dwa dowolne punkty na okręgu, np. C i D, a następnie połączcie je odcinkiem. Ten odcinek to cięciwa. Zdefiniujcie cięciwę. ( uczniowie sami podają definicję promienia ) Cięciwa to odcinek łączący dwa dowolne punkty na okręgu. Narysujcie teraz cięciwę przechodzącą przez środek okręgu. To średnica. Średnica to cięciwa przechodząca przez środek okręgu. Średnica okręgu jest dwa razy dłuższa niż jego promień. 2. Pojęcie koła Narysuj dowolny okrąg. Pokoloruj jego wnętrze. Jak nazywa się figura którą narysowaliśmy? Figura, którą narysowałeś to koło. W kole wyróżniamy podobnie jak w okręgu: środek koła promień koła cięciwę koła średnicę koła. Zaznaczcie je w kole i podpiszcie. Zapisanie tematu. Dzieci proponują jaki temat lekcji zapisać. 3. Okrąg a koło. Punkty należące do okręgu a punkty należące do koła. Jaka jest różnica pomiędzy okręgiem a kołem? Nauczyciel rozdaje uczniom karty pracy ( Załącznik 1. )
4 Odpowiedz na poniższe pytania. Jak nazywa się środek tego okręgu? Czy środek okręgu należy do okręgu? Zaznacz promień SA Czy promień okręgu należy do okręgu? Zaznacz cięciwę AG Czy cięciwa okręgu należy do okręgu? Zaznacz średnicę JC Czy średnica okręgu należy do okręgu? Które z zaznaczonych punktów należą do narysowanego okręgu? Zamaluj wnętrze okręgu. Jak nazywa się środek tego koła? Czy środek koła należy do koła? Zaznacz promień SA Czy promień koła należy do koła? Zaznacz cięciwę AG Czy cięciwa koła należy do koła? Zaznacz średnicę JC Czy średnica koła należy do koła? Które z zaznaczonych punktów należą do narysowanego koła?
5 Wpisz odpowiedzi udzielone powyżej Okrąg Koło Jak nazywa się środek tego okręgu (koła)? Czy środek okręgu należy do okręgu (koła )? Zaznacz promień SA Czy promień okręgu należy do okręgu (koła)? Zaznacz cięciwę AG Czy cięciwa okręgu należy do okręgu (koła )? Zaznacz średnicę JC Czy średnica okręgu należy do okręgu (koła)? Które z zaznaczonych punktów należą do narysowanego okręgu? Które z zaznaczonych punktów należą do narysowanego koła? Przykłady okręgów i kół z życia wzięte: Okręgi... Koła... Praca domowa
6 Załącznik nr 2. Zadanie 1. Narysuj okrąg o promieniu długości 2cm5mm i zaznacz w nim dowolny promień i średnicę. Zadanie 2. Narysuj okrąg o środku w punkcie O i średnicy długości 8cm. Zaznacz na okręgu 4 punkty: W, X, Y, Z. Ile można narysować cięciw, których końcami będą obrane punkty? Zmierz długości tych cięciw. Zadanie 3. Dane są punkty A i B. Narysuj koło przechodzące przez punkt A, którego środkiem jest punkt B. Jaką długość ma promień tego okręgu? Zadanie 4. Figura narysowana poniżej składa się z 7 okręgów. Odszukaj środki tych okręgów i zaznacz je na niebiesko. Spróbuj narysować tę figurę.
SCENARIUSZ LEKCJI W SALI KOMPUTEROWEJ POZIOM NAUCZANIA: szkoła podstawowa klasa 4
SCENARIUSZ LEKCJI W SALI KOMPUTEROWEJ POZIOM NAUCZANIA: szkoła podstawowa klasa 4 TEMAT: OKRĄG I KOŁO. CZAS: jedna jednostka lekcyjna - 45 min. KOMPETENCJE: główne - argumentowanie, definiowanie i wnioskowanie,
Bardziej szczegółowoOdcinki, proste, kąty, okręgi i skala
Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta
Bardziej szczegółowoPowtórzenie wiadomości o figurach na płaszczyźnie
Literka.pl Powtórzenie wiadomości o figurach na płaszczyźnie Data dodania: 2009-06-13 16:49:26 Autor: Sylwia Tillack Konspekt opracowany na podstawie podręcznika i ćwiczeń Matematyka z Plusem wydawnictwa
Bardziej szczegółowoScenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r.
1. Informacje wstępne: Data: 7 maja 013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka..
Bardziej szczegółowoScenariusz lekcji wykorzystujący elementy metody CLIL
Scenariusz lekcji wykorzystujący elementy metody CLIL Przedmiot: matematyka Etap edukacyjny: II, klasa 4 Temat zajęć: Rozpoznawanie i rysowanie prostych i odcinków równoległych i prostopadłych Realizowane
Bardziej szczegółowoTemat: Pole równoległoboku.
Scenariusz lekcji matematyki w klasie V Temat: Pole równoległoboku. Ogólne cele edukacyjne - rozwijanie umiejętności posługiwania się językiem matematycznym - rozwijanie wyobraźni i inwencji twórczej -
Bardziej szczegółowoKonspekt do lekcji matematyki w klasie II gimnazjum
Agnieszka Raczkiewicz Konspekt do lekcji matematyki w klasie II gimnazjum Temat lekcji: Wielokąty foremne - konstrukcje i zadania. Temat poprzedniej lekcji: Wielokąt opisany na okręgu. Czas realizacji
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Bardziej szczegółowomgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku
Wybrane scenariusze lekcji matematyki aktywizujące uczniów. mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Scenariusz 1- wykorzystanie metody problemowej i czynnościowej.
Bardziej szczegółowoSCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV Opracowała: Hanna Nowakowska Szkoła Podstawowa im. Jana Pawła II w Żydowie TEMAT : ŻEGNAMY FIGURY PŁASKIE Cel ogólny: Utrwalenie wiadomości o figurach płaskich
Bardziej szczegółowoWłasności walca, stożka i kuli.
Własności walca, stożka i kuli. 1. Cele lekcji a) Wiadomości Uczeń: - zna pojęcie bryły obrotowej, - zna definicje: walca, stożka, kuli, - zna budowę brył obrotowych, - zna pojęcia związane z symetrią
Bardziej szczegółowoSCENARIUSZ LEKCJI. - odpowiedzialnie wywiązywać się z powierzonego zadania. - pracować w sposób kreatywny i samodzielny, - dobrze organizować pracę,
SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa IV c PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z
Bardziej szczegółowoPLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Bardziej szczegółowoDydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Lang: Pole powierzchni kuli Nierówność dla objętości skorupki: (pow. małej kuli) h objętość skorupki
Bardziej szczegółowoPole równoległoboku. 1. Cele lekcji. 2. Metoda i forma pracy. Cel ogólny lekcji: a) Wiadomości. b) Umiejętności. Umieć obliczyć pole równoległoboku.
Pole równoległoboku 1. Cele lekcji Cel ogólny lekcji: Umieć obliczyć pole równoległoboku. a) Wiadomości 1. Znać cechy poznanych figur płaskich w tym równoległoboku. 2. Znać pojęcie wysokości równoległoboku.
Bardziej szczegółowowymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Bardziej szczegółowoAUTOR : HANNA MARCINKOWSKA. TEMAT : Symetria osiowa i środkowa UWAGA:
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY I GIMNAZJUM PRZYGOTOWANY W PROGRAMIE NARZĘDZIOWYM EXE LEARNING - SYMETRIA OSIOWA I ŚRODKOWA. Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej AUTOR : HANNA
Bardziej szczegółowoSCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Powtórzenie i utrwalenie wiadomości dotyczących geometrii figur płaskich.
Katarzyna Gawinkowska Hanna Małecka VI L.O im J. Korczaka w ZSO nr 2 w Sosnowcu SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM Temat: Powtórzenie i utrwalenie wiadomości dotyczących geometrii
Bardziej szczegółowoSZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,
Bardziej szczegółowoDydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
Bardziej szczegółowoKonspekt do lekcji matematyki dn r. w klasie V SP nr 11 w Rzeszowie
Monika Łokaj II Matematyka Konspekt do lekcji matematyki dn.12.04.05r. w klasie V SP nr 11 w Rzeszowie Nauczyciel: Prowadzący: Monika Łokaj Temat lekcji: Poznajemy wielokąty Czas trwania: 4ut Cele: 1.
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoPROSTE, KĄTY, PROSTOKĄTY, KOŁA
GRUPA A 1. Narysuj prostą prostopadłą do prostej a, przechodzącą przez punkt B i prostą równoległą do prostej a, przechodzącą przez punkt A. a) Punkt D należy do prostej FG. b) Punkt D należy do półprostej
Bardziej szczegółowoAKTYWNA TABICA 2017/2017 Szkoła Podstawowa Nr 2 im. Mikołaja Kopernika w Nowym Targu
AKTYWNA TABICA 2017/2017 Szkoła Podstawowa Nr 2 im. Mikołaja Kopernika w Nowym Targu Autor: Paulina Drobny Temat lekcji: Cele lekcji: Przedmiot: Matematyka Klasa: V Trapez i jego własności Ogólne: utrwalenie
Bardziej szczegółowoScenariusz lekcji. z wykorzystaniem elementów metod poszukujących i metody pracy z książką
Opracowała prowadząca zajęcia mgr Dorota Szydłowska Scenariusz lekcji z wykorzystaniem elementów metod poszukujących i metody pracy z książką Temat: Kąty w kole. Kąt środkowy i wpisany. Poziom nauczania:
Bardziej szczegółowoSCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI Temat: Oś symetrii figury. Cele operacyjne: Uczeń: - zna rodzaje trójkątów i ich własności, - zna rodzaje czworokątów ich własności, - odkrywa i formułuje definicję
Bardziej szczegółowoSTANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY IV W ROZBICIU NA OCENY
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY IV W ROZBICIU NA OCENY Treści i umiejętności Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu na poszczególne oceny celująca bardzo
Bardziej szczegółowoMatematyczne słowa Autorki innowacji: Jolanta Wójcik Magda Kusyk
Szkoła Podstawowa im Kornela Makuszyńskiego w Łańcuchowie Krzyżówki matematyczne klasy V, które powstały jako efekt realizacji innowacji pedagogicznej Matematyczne słowa Autorki innowacji: Jolanta Wójcik
Bardziej szczegółowoPrzekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne)
Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne) Opracowała: Marlena Lisiecka Cele realizowane podczas lekcji: - znajdowanie potrzebnych informacji
Bardziej szczegółowoPrzyrządy do kreślenia, plansza połażenie prostych i odcinków, kąty, domino, krzyżówka, kartki z gotowymi figurami.
Powtórzenie wiadomości o figurach geometrycznych. 1. Cele lekcji a) Wiadomości Uczeń: - zna podstawowe figury geometryczne, - zna własności figur, - zna pojęcie kąta oraz wierzchołka i ramion kąta. b)
Bardziej szczegółowoScenariusz lekcji matematyki w kl. V.
Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych
Bardziej szczegółowoMini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
Bardziej szczegółowoPraktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym.
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Po uruchomieniu Geogebry (wersja 5.0) Pasek narzędzi Cofnij/przywróć Problem 1: Sprawdź co się stanie, jeśli połączysz
Bardziej szczegółowoPlanimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
Bardziej szczegółowoII. III. Scenariusz lekcji. I. Cele lekcji
Scenariusz lekcji I. Cele lekcji 1) Wiadomości i umiejętności sprawdzane w zadaniach testu: Uczeń: zna sumę miar kątów w trójkącie, rozpoznaje proste równoległe, rozpoznaje wielokąty, rozpoznaje figury
Bardziej szczegółowoScenariusz hospitacji diagnozującej
Scenariusz hospitacji diagnozującej Marzanna Konowalczuk Gimnazjum w Mysłowicach Przedmiot : Matematyka Dział programowy : Długość okręgu. Pole koła. Temat lekcji : Koło i okrąg w życiu codziennym. Cel
Bardziej szczegółowoWymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020.
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań edukacyjnych niezbędynych
Bardziej szczegółowoScenariusz zajęć nr 6
Autor scenariusza: Maria Piotrowska Blok tematyczny: Ja i moja klasa Scenariusz zajęć nr 6 I. Tytuł scenariusza zajęć: Figury w klasie. II. Czas realizacji: 2 jednostki lekcyjne. III. Edukacje (3 wiodące).
Bardziej szczegółowoSkrypt 14. Figury płaskie Okrąg wpisany i opisany na wielokącie. 7. Wielokąty foremne. Miara kąta wewnętrznego wielokąta foremnego
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 14 Figury płaskie Okrąg wpisany i opisany
Bardziej szczegółowoAd maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego, realizowanego w ramach Regionalnego Programu Operacyjnego Województwa Podlaskiego na lata 2014-2020. SCENARIUSZ
Bardziej szczegółowoMatematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Bardziej szczegółowoPodstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoTemat: Poznajemy znaki drogowe pionowe i poziome..
Kl. IV 2 godz. lekcyjne Temat: Poznajemy znaki drogowe pionowe i poziome.. Cel główny: Zapoznanie uczniów ze znakami drogowymi pionowymi i poziomymi. Przypomnienie podstawowych zasad poruszania się w miejscach
Bardziej szczegółowoWykorzystanie programu Paint na lekcjach matematyki w nauczaniu zintegrowanym
Hanna Łukasiewicz HaniaLukasiewicz@interia.pl. Wykorzystanie programu Paint na lekcjach matematyki w nauczaniu zintegrowanym "Technologia informacyjna może wspomagać i wzbogacać wszechstronny rozwój uczniów,
Bardziej szczegółowoPODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Bardziej szczegółowoSCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine 1. Autor: Anna Wołoszyn 2. Grupa docelowa: klasa 1 Gimnazjum 3. Liczba godzin: 2 4. Temat zajęć: Symetria względem
Bardziej szczegółowoProporcjonalność prosta i odwrotna
Literka.pl Proporcjonalność prosta i odwrotna Data dodania: 2010-02-14 14:32:10 Autor: Anna Jurgas Temat lekcji dotyczy szczególnego przypadku funkcji liniowej y=ax. Jednak można sie dopatrzeć pewnej różnicy
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Wykresy funkcji. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoGEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Najlepsze: AO, LS. Największe
Bardziej szczegółowoKlasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Bardziej szczegółowoDefiniowanie procedur z parametrami w Logo Komeniuszu.
1 Scenariusze trzech lekcji z informatyki w gimnazjum. Definiowanie procedur z parametrami w Logo Komeniuszu. Dział programu: Programowanie czynności powtarzalnych. Dotychczasowa wiedza ucznia: Uczeń potrafi
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Bardziej szczegółowoKlasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
Bardziej szczegółowoSUKCES W NAUCE MATEMATYKA. klasa IV
SUKCES W NAUCE SPRAWDZIANY MATEMATYKA klasa IV FIGURY GEOMETRYCZNE: WIELOKĄTY, KOŁA I SKALA Zadanie 1. Która z narysowanych figur jest wielokątem? A. B. C. D. Zadanie 2. Wielokąt o 5 wierzchołkach ma:
Bardziej szczegółowoSCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Bardziej szczegółowoOGÓLNE KRYTERIA OCENIANIA DLA KLASY IV
OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV LICZBY NATURALNE - umie dodawać i odejmować pamięciowo w zakresie 100 bez przekraczania progu dziesiątkowego, - zna tabliczkę mnożenia i dzielenia w zakresie 100,
Bardziej szczegółowoPODSTAWOWE FIGURY GEOMETRYCZNE
TEST SPRAWDZAJĄCY Z MATEMATYKI dla klasy IV szkoły podstawowej z zakresu PODSTAWOWE FIGURY GEOMETRYCZNE autor: Alicja Bruska nauczyciel Szkoły Podstawowej nr 1 im. Józefa Wybickiego w Rumi WSTĘP Niniejsze
Bardziej szczegółowoScenariusz lekcji otwartej z techniki. przeprowadzonej przez mgr inż. Wiesławę Cudek. TEMAT JEDNOSTKI LEKCYJNEJ: Zasady rzutowania, rzuty prostokątne.
Scenariusz lekcji otwartej z techniki przeprowadzonej przez mgr inż. Wiesławę Cudek TEMAT JEDNOSTKI LEKCYJNEJ: Zasady rzutowania, rzuty prostokątne. CELE DYDAKTYCZNO WYCHOWAWCZE: UCZEŃ PO ZAJĘCIACH: -
Bardziej szczegółowoPROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA UCZNIÓW KLASY IV. Realizowanych w ramach projektu: SZKOŁA DLA KAŻDEGO
PROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA UCZNIÓW KLASY IV Realizowanych w ramach projektu: SZKOŁA DLA KAŻDEGO Opracowała: Marzanna Leśniewska I. WSTĘP Matematyka potrzebna jest każdemu. Spotykamy się
Bardziej szczegółowoROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ
ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi
Bardziej szczegółowoWymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Bardziej szczegółowoPrzedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
Bardziej szczegółowoSkrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Przygotowanie do egzaminu Okrąg wpisany
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Bardziej szczegółowoPytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Bardziej szczegółowoSkrypt 13. Koło i okrąg. Opracowanie: GIM3. 1. Okrąg i koło - podstawowe pojęcia (promień, średnica, cięciwa) 2. Wzajemne położenie dwóch okręgów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 13 Koło i okrąg 1. Okrąg i koło - podstawowe
Bardziej szczegółowoFigury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,
Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą
Bardziej szczegółowoGeometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.
Bardziej szczegółowoSCENARIUSZ LEKCJI. Uczeń zapisuje: wzór na pole prostokąta i kwadratu ( B 1 ) jednostki długości ( B 2 ) podstawowe jednostki miar pola ( B 3 )
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 07.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoTematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Bardziej szczegółowoCele nauczania: a)poznawcze: Cele ogólne kształcenia: -uczeń umie odejmować ułamki dziesiętne. Aktywności matematyczne:
Konspekt lekcji matematyki: Klasa: czwarta Prowadzący: Elżbieta Kruczek, nauczyciel Samorządowej Szkoły Podstawowej w Brześciu (z wykorzystaniem podręcznika Matematyka z plusem) Temat: Odejmowanie ułamków
Bardziej szczegółowoDokument komputerowy w edytorze grafiki
Temat 3. Dokument komputerowy w edytorze grafiki Realizacja podstawy programowej 1. 3) stosuje usługi systemu operacyjnego i programów narzędziowych do zarządzania zasobami (plikami) [...]; 4) wyszukuje
Bardziej szczegółowoProjekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości
Bardziej szczegółowoDODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH
DODAWANIE I ODEJMOWANIE SUM ALGEBRAICZNYCH Cele operacyjne Uczeń umie: budować wyrażenia algebraiczne, opuszczać nawiasy, redukować wyrazy podobne, dodawać i odejmować sumy algebraiczne. Metody nauczania
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Bardziej szczegółowoWymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Bardziej szczegółowoSCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.03.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Bardziej szczegółowoSCENARIUSZ LEKCJI. (podstawa programowa pkt 7. Uczeń rozpoznaje i nazywa figury: punkt, prosta, półprosta i odcinek).
SCENARIUSZ LEKCJI 1. Informacje wstępne Data 07.01.2013 r. Klasa IV c PSP 20 w Opolu Czas trwania zajęć 2 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania
Bardziej szczegółowoBADANIE WYNIKÓW NAUCZANIA z MATEMATYKI wklasieiv po I semestrze
BADANIE WYNIKÓW NAUCZANIA z MATEMATYKI wklasieiv po I semestrze Do rozwiązania masz 21 zadań.dokażdego zadania podane są cztery odpowiedzi, z których tylko jedna jest prawidłowa. Twoim zadaniem jest wybrać
Bardziej szczegółowoScenariusz zajęć z matematyki dla klasy VI szkoły podstawowej z wykorzystaniem programu edurom Matematyka P6
Scenariusz zajęć z matematyki dla klasy VI szkoły podstawowej z wykorzystaniem programu edurom Matematyka P6 Rozdział V: Figury na płaszczyźnie Lekcja 29: Dwusieczna kąta Temat: Konstrukcja dwusiecznej
Bardziej szczegółowoUczniowie zapisują temat do zeszytów.
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI SZKOŁY PODSTAWOWEJ Prowadzący: mgr Józef Kochanek Data: 9 IX 2003 r. Temat: Trójkąty- przypomnienie wiadomości. Cele: Uczeń po lekcji: - zna rodzaje trójkątów,
Bardziej szczegółowoKonspekt lekcji matematyki z wykorzystaniem multimedialnych podręczników EDU ROM przeprowadzonej w klasie VI SP
Konspekt lekcji matematyki z wykorzystaniem multimedialnych podręczników EDU ROM przeprowadzonej w klasie VI SP Temat: Ostrosłupy przykłady ostrosłupów, siatki ostrosłupów I WSTĘP Autor: mgr Elżbieta Kubis
Bardziej szczegółowoMATEMATYKA - KLASA IV. I półrocze
Liczby i działania MATEMATYKA - KLASA IV I półrocze Rozróżnia pojęcia: cyfra, liczba. Porównuje liczby naturalne proste przypadki. Dodaje i odejmuje liczby naturalne w zakresie 100. Mnoży i dzieli liczby
Bardziej szczegółowoTydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...
Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV
Bardziej szczegółowoSCENARIUSZ LEKCJI. 3. Temat lekcji Ułamek jako część całości.
SCENARIUSZ LEKCJI 1. Informacje wstępne Klasa IV PSP 20 w Opolu Czas trwania zajęć 45 minut Nauczany przedmiot matematyka Nauczyciel przedmiotu Małgorzata Jackowska 2. Program nauczania Matematyka z plusem
Bardziej szczegółowoOpis wymagań do programu Matematyka 2001
Opis wymagań do programu Matematyka 2001 Każdy nauczyciel określa cele, jakie pragnie osiągnąć w wyniku nauczania swojego przedmiotu w danej klasie. Cele ogólne wytyczają kierunki pracy z uczniami, zaś
Bardziej szczegółowoPLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Bardziej szczegółowoOto przykłady przedmiotów, które są bryłami obrotowymi.
1.3. Bryły obrotowe. Walec W tym temacie dowiesz się: co to są bryły obrotowe, jak rozpoznawać walce wśród innych brył, jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej walca, jak obliczać
Bardziej szczegółowo