Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie
|
|
- Witold Chmiel
- 8 lat temu
- Przeglądów:
Transkrypt
1 Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie 1. Okrąg opisany na trójkącie 2. Okrąg wpisany w trójkąt 3. Rozwiązywanie zadao dotyczących okręgów wpisanych i opisanych na trójkącie 4. Okrąg wpisany i opisany na wielokącie foremnym 5. Okrąg wpisany i opisany na wielokącie - podsumowanie Opracowanie: GIM5 Uniwersytet SWPS ul. Chodakowska 19/31, Warszawa tel , faks
2 Temat: Okrąg opisany na trójkącie Praca z apletem figury14: Przypomnij sobie, co to jest symetralna odcinka, oraz jak się ją konstruuje. W tym celu naciśnij przycisk Konstrukcja symetralnej, odkrywaj kolejne kroki poprzez pola wyboru; Przypomnij sobie jakie własności ma symetralna odcinka, kliknij na przycisk Własności symetralnej odcinka. Zadanie 1. Narysuj odcinek o długości 6,8 cm a następnie skonstruuj jego symetralną. Zadanie 2. Zaznacz, na którym rysunku poprawnie narysowano symetralną odcinka. Zadanie 3. Przeanalizuj rysunek i podaj, jaka jest długość odcinka BP. Praca z apletem figury15: Przypomnij sobie, kiedy okrąg jest opisany na wielokącie, kliknij przycisk Okrąg opisany na wielokącie. Zapoznaj się ze sposobem konstrukcji okręgu opisanego na trójkącie, naciśnij przycisk Konstrukcja okręgu opisanego na trójkącie, odkrywaj kolejne kroki poprzez pola wyboru. str. 2
3 Kliknij na przycisk ma Okrąg opisany na trójkącie - własności i przypomnij sobie te własności. Zadanie 4. Uzupełnij odpowiednio zdania. a) Środek okręgu opisanego na trójkącie równoramiennym, o kącie między ramionami o mierze 30 leży... b) Środek okręgu opisanego na trójkącie równobocznym leży... c) Jeżeli w trójkącie stosunek miar kątów wynosi 1 : 2 : 6, to środek okręgu opisanego na tym trójkącie leży... Zadanie 5. Zaznacz wszystkie prawidłowe odpowiedzi. Środek okręgu opisanego na trójkącie to punkt: A. przecięcia się wysokości trójkąta B. przecięcia się dwusiecznych katów trójkąta C. przecięcia się symetralnych boków trójkąta D. równoodległy od ramion kąta E. równoodległy od boków trójkąta Zadanie 6. Zaznacz wszystkie prawidłowe odpowiedzi. Symetralna odcinka to: A. jedna z osi symetrii odcinka B. prosta do niego prostopadła C. prosta dzieląca go na połowy D. zbiór punktów równoodległych od końców odcinka Zadanie 7. W okręgu o środku S i promieniu 10, poprowadzono cięciwę AB o długości 12. Jaka jest odległość tej cięciwy od środka okręgu? Wykonaj odpowiedni rysunek. str. 3
4 Temat: Okrąg wpisany w trójkąt Praca z apletem figury17: Przypomnij sobie, czym jest dwusieczna kąta, przeczytaj jej definicję; Powinieneś pamiętać sposób konstrukcji dwusiecznej kąta, możesz sobie go, w razie konieczności albo dla upewnienie, teraz przypomnieć. W tym celu naciśnij przycisk Konstrukcja dwusiecznej, odkrywaj kolejne kroki poprzez pola wyboru; Przypomnij sobie, jakie własności ma dwusieczna kąta, kliknij na przycisk Własności dwusiecznej. Zapamiętaj! Każdy punkt leżący na dwusiecznej kąta, znajduje się w równej odległości od ramion kąta. Przejdź do części Dwusieczne w trójkącie, obserwuj położenie dwusiecznych w różnego rodzaju trójkątach. Zapamiętaj! Dwusieczne kątów w każdym trójkącie przecinają się w jednym punkcie. Punkt przecięcia się dwusiecznych kątów trójkąta jest równo odległy od boków trójkąta. Zadanie 1. Oblicz miary kątów w trójkącie KLM, wiedząc, że dwusieczne kątów przy podstawie tego trójkąta równoramiennego przecinają się pod kątem 110. Zadanie 2. Wskaż, które zdania są fałszywe. Dwusieczna kąta to: A. półprosta przechodząca przez jego wierzchołek B. dzieli kąt na trzy kąty o równej mierze C. jest zbiorem punktów równo odległych od wierzchołka D. jest zbiorem punktów równo odległych od ramion kąta str. 4
5 Praca z apletem figury18: Przypomnij sobie, kiedy mówimy, że wielokąt jest opisany na okręgu, kliknij przycisk Okrąg wpisany w wielokąt. Przypomnij sobie sposób konstrukcji okręgu opisanego na trójkącie, naciśnij przycisk Konstrukcja okręgu wpisanego w trójkąt. Kliknij na przycisk Okrąg wpisany w trójkąt - własności i przypomnij sobie te własności. Zapamiętaj! Promień okręgu wpisanego trójkąt, poprowadzony do punktu styczności jest zawsze prostopadły do boku trójkąta. Odległość każdego wierzchołka trójkąta opisanego na okręgu od punktu styczności z bokiem wychodzącym z tego wierzchołka jest zawsze taka sama. Zadanie 3. Narysuj kolejno trójkąt ostrokątny, prostokątny oraz rozwartokątny. Wpisz w każdy z nich okrąg. Następnie, analizując odpowiednie rysunki uzupełnij zdania: Kąty zawarte między promieniami okręgu o końcach w punktach styczności z bokami trójkąta: a) w trójkącie ostrokątnym są... b) w trójkącie prostokątnym. jeden jest..., a dwa pozostałe są... c) w trójkącie rozwartokątnym, jeden jest..., a dwa pozostałe są... Zadanie 4. Oblicz obwód trójkąta ABC, wykorzystaj dane przedstawione na rysunku. str. 5
6 Temat: Rozwiązywanie zadań dotyczących okręgów wpisanych i opisanych na trójkącie Praca z apletem figury16: Aplet przypomni ci, jak rozwiązuje się zadania wymagające obliczania miar kątów w trójkącie wpisanym w okrąg; Rozwiąż Zadanie 1 w aplecie, którego treść ukaże się po kliknięciu w przycisk Zadanie 1. Spróbuj pracować samodzielnie, jednak jeśli będziesz miał wątpliwości korzystaj ze wskazówek, które są ukryte pod kolejnymi polami wyboru. Opierając się na jego rozwiązaniu wykonaj poniższe zadanie. Zadanie 1. Podaj miary wszystkich kątów wewnętrznych w trójkącie ABC. Rozwiąż Zadanie 2, zamieszczone w aplecie, którego treść ukaże się po kliknięciu w przycisk Zadanie 2. Spróbuj pracować samodzielnie, jednak jeśli będziesz miał wątpliwości korzystaj ze wskazówek, które są ukryte pod kolejnymi polami wyboru. Opierając się na jego rozwiązaniu, wykonaj poniższe zadanie. Zadanie 2. Podaj miary wszystkich kątów wewnętrznych w trójkącie ABC. str. 6
7 Naciśnij przycisk Zadanie 3 i rozwiąż kolejne zadanie. Spróbuj pracować samodzielnie, jednak jeśli będziesz miał wątpliwości korzystaj ze wskazówek, które są ukryte pod kolejnymi polami wyboru. Opierając się na jego rozwiązaniu wykonaj poniższe zadanie. Zadanie 3. Podaj miary wszystkich kątów wewnętrznych w trójkącie ABC. Praca z apletem figury19: Przeanalizuj kolejno rozwiązania przykładowych zadań, zamieszczonych w aplecie, aby przypomnieć sobie sposób rozwiązywania zadań wymagających obliczania miar kątów w trójkącie opisanym na okręgu. Rozwiąż Zadanie 1, którego treść ukaże się po kliknięciu w przycisk Zadanie 1. Spróbuj pracować samodzielnie, jednak jeśli będziesz miał wątpliwości korzystaj ze wskazówek, które są ukryte pod kolejnymi polami wyboru. Wzorując się na jego rozwiązaniu, wykonaj poniższe zadanie. Zadanie 4. Podaj miary wszystkich kątów wewnętrznych w trójkącie ABC. Odcinki CY oraz AX zawierają się w dwusiecznych kątów. Przejdź do Zadania 2, którego treść ukaże się po kliknięciu w przycisk Zadanie 2. Rozwiązuj je samodzielnie, jednak jeśli będziesz miał wątpliwości korzystaj ze str. 7
8 wskazówek, które są ukryte pod kolejnymi polami wyboru. Opierając się, na jego rozwiązaniu wykonaj poniższe zadania. Zadanie 5. Oblicz obwód trójkąta ABC. Rozwiąż Zadanie 3, którego treść ukaże się po kliknięciu w przycisk Zadanie 3. Pracuj samodzielnie, jednak jeśli będziesz miał wątpliwości, korzystaj ze wskazówek, które są ukryte pod kolejnymi polami wyboru. Wzoruj się rozwiązaniu tego zadania i wykonaj poniższe. Zadanie 6. Podaj miary kątów α, β oraz γ. str. 8
9 Temat: Okrąg wpisany i opisany na wielokącie foremnym Praca z apletem figury20: Przypomnij sobie, jaką figurę nazywamy wielokątem foremnym, obserwuj wielokąty foremne o różnej liczbie boków (zmieniaj w tym celu ustawienia suwaka) i różnych długościach boków (zmieniaj długości boków, ciągnąc myszą za punkt A lub B). Przypomnij sobie w jaki sposób obliczyć miarę kąta wewnętrznego wielokąta foremnego. Przeanalizuj, jak obliczyć, ile boków ma wielokąt foremny o danej mierze kąta wewnętrznego. Kolejne części apletu są widoczne po kliknięciu w odpowiedni przycisk, pamiętaj, że przycisk Strona główna pozwoli Ci wrócić na początek apletu. Zadanie 1. Oblicz, ile wynosi miara kąta wewnętrznego w 18 - sto kącie foremnym. Zadanie 2. Oblicz, w jakim wielokącie foremnym, miara kąta wewnętrznego wynosi Praca z apletem figury21: Przypomnij sobie podstawowe wielokąty foremne, takie jak, trójkąt równoboczny, kwadrat oraz sześciokąt foremny. Klikając odpowiednie przyciski przenoś się do ilustracji zależności między dwusiecznymi, symetralnymi oraz przekątnymi w tych figurach. Zwróć uwagę na zależności między promieniami okręgu opisanego oraz wpisanego w poszczególne wielokąty a długością boku wielokąta. Zapamiętaj te wzory. Zadanie 3. Narysuj w zeszycie za pomocą cyrkla i linijki: a) trójkąt równoboczny o boku długości 4 cm; b) sześciokąt foremny o boku długości 1,5 cm. Zadanie 4. Opisz odpowiednimi wzorami zależności promienia okręgu opisanego na trójkącie (R) oraz promienia okręgu wpisanego (r) w trójkąt równoboczny o boku długości a. R =... r =... str. 9
10 Zadanie 5. Opisz odpowiednimi wzorami zależności promienia okręgu opisanego na trójkącie (R) oraz promienia okręgu wpisanego (r) w kwadrat o boku długości x. R =... r =... Zadanie 6. Opisz odpowiednimi wzorami zależności promienia okręgu opisanego na sześciokącie (R) oraz promienia okręgu wpisanego (r) w ten wielokąt, jeśli boku sześciokąta ma długość c. Zadanie 7. Oblicz, ile razy pole koła opisanego na trójkącie kwadracie, o boku 3 m, jest większe od pola koła wpisanego w ten kwadrat. Zadanie 8. Oblicz, o ile promień okręgu wpisanego w sześciokąt foremny o boku długości 0,25 cm jest krótszy od promienia okręgu opisanego na tym wielokącie. str. 10
11 Temat: Okrąg wpisany i opisany na wielokącie - podsumowanie Powinieneś już mieć opanowane podstawowe wiadomości i umiejętności dotyczące wielokątów wpisanych i opisanych w/na okręgu. Sprawdź teraz ich znajomość w praktyce, rozwiąż poniższe zadania. Zaznacz sobie te zadania, z którymi miałeś kłopot, spróbuj wyjaśnić swoje wątpliwości z kolegą lub poproś o pomoc nauczyciela. Zadanie 1. Próbny Egzamin Gimnazjalny z OPERONEM i "Gazetą Wyborczą" - grudzień 2013r. Na poniższym rysunku przedstawiono domy Antka (A), Bartka (B) i Cezarego (C). Chłopcy ustalili, że spotkają się w miejscu S równo oddalonym od każdego domu. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe. Miejsce spotkania S znajduje sie w punkcie przecięcia symetralnych P F boków trójkąta ABC Punkt S jest środkiem okręgu opisanego na trójkącie ABC P F Zadanie 2. Próbny Egzamin Gimnazjalny z OPERONEM i "Gazetą Wyborczą" - grudzień 2013r. Czy trójkąt ABC jest trójkątem prostokątnym równoramiennym? Uzasadnij odpowiedź. S - środek okręgu str. 11
12 Zadanie 3. Badanie diagnostyczne w klasie trzeciej gimnazjum część matematycznoprzyrodnicza matematyka, CKE, listopad 2012r. W trójkącie równoramiennym ABC, w którym AC = BC i ABC = 30 poprowadzono wysokość CD i dwusieczną kąta ABC przecinającą bok AC w punkcie E. Wysokość i dwusieczna przecinają się w punkcie F. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. BEC = 45 P F EF = EC P F Zadanie 4. Przykładowy zestaw zadań, CKE, 2011r. W równoległoboku poprowadzono dwusieczne dwóch sąsiednich kątów, które przecinają się w jednym punkcie. Uzasadnij, że kąt pomiędzy nimi jest kątem prostym. Zadanie 5. Egzamin w klasie trzeciej gimnazjum część matematyczno-przyrodnicza matematyka, CKE, kwiecień 2013r. Punkt B jest środkiem okręgu. Prosta AC jest styczna do okręgu w punkcie C, AB = 20 cm i AC = 16 cm. str. 12
13 Dokończ zdanie tak, aby otrzymać zdanie prawdziwe. Promień BC ma długość. A. 12 cm B. 10 cm C. 4 cm D. 2 cm Zadanie 6. Egzamin w klasie trzeciej gimnazjum część matematyczno-przyrodnicza matematyka, CKE, kwiecień 2012r. Trzy kutry rybackie A, B i C są jednakowo oddalone od platformy wiertniczej. Wzajemne położenie kutrów przedstawiono na rysunku. Platforma wiertnicza znajduje się w punkcie O (niezaznaczonym na rysunku). Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Punkt O jest punktem przecięcia dwusiecznych kątów trójkąta ABC. P F Punkt O jest środkiem okręgu opisanego na trójkącie ABC. P F Zadanie 6. Okrągły basen o średnicy 110 cm chcemy przykryć prostokątnym kawałkiem folii. Folia ma wymiary 50 cm 62 cm. a) Czy folia w całości przykryje basen? b) Oblicz, ile centymetrów od brzegu basenu znajda się rogi folii, gdybyśmy położyli ją symetrycznie względem środka basenu? str. 13
Skrypt 14. Figury płaskie Okrąg wpisany i opisany na wielokącie. 7. Wielokąty foremne. Miara kąta wewnętrznego wielokąta foremnego
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 14 Figury płaskie Okrąg wpisany i opisany
Skrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 28 Przygotowanie do egzaminu Podstawowe figury
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.
Skrypt 12. Figury płaskie Podstawowe figury geometryczne. 7. Rozwiązywanie zadao tekstowych związanych z obliczeniem pól i obwodów czworokątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Figury płaskie Podstawowe figury geometryczne
Wielokąty i Okręgi- zagadnienia
Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
Skrypt 24. Geometria analityczna: Opracowanie L5
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:
Skrypt 20. Planimetria: Opracowanie L6
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Planimetria: 1. Kąty w
Skrypt 15. Figury płaskie Symetrie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 15 Figury płaskie Symetrie 1. Symetria względem
Skrypt 13. Koło i okrąg. Opracowanie: GIM3. 1. Okrąg i koło - podstawowe pojęcia (promień, średnica, cięciwa) 2. Wzajemne położenie dwóch okręgów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 13 Koło i okrąg 1. Okrąg i koło - podstawowe
Skrypt 32. Przygotowanie do egzaminu Trójkąty prostokątne. Opracowanie: GIM7. 1. Twierdzenie Pitagorasa i twierdzenie do niego odwrotne.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 32 Przygotowanie do egzaminu Trójkąty prostokątne
Skrypt 29. Przygotowanie do egzaminu Koło i okrąg. Opracowanie: GIM3. 1. Obliczanie obwodów i pól kół - powtórzenie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Przygotowanie do egzaminu Koło i okrąg
Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Skrypt dla ucznia. Geometria analityczna część 3: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Geometria analityczna
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych
Skrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
Skrypt 23. Geometria analityczna. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Praca klasowa nr 2 - figury geometryczne (klasa 6)
Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
Odcinki, proste, kąty, okręgi i skala
Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
Skrypt 16 Trójkąty prostokątne Opracowanie: GIM7
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 16 Trójkąty prostokątne 1. Twierdzenie Pitagorasa
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Skrypt 23. Przygotowanie do egzaminu Pierwiastki
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Przygotowanie do egzaminu Pierwiastki 1.
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy
Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
Skrypt 19. Trygonometria: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Trygonometria: 9. Proste
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
Geometria. Planimetria. Podstawowe figury geometryczne
Geometria Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Aksjomaty
Skrypt 17. Podobieństwo figur. 1. Figury podobne skala podobieństwa. Obliczanie wymiarów wielokątów powiększonych bądź pomniejszonych.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 17 Podobieństwo figur 1. Figury podobne skala
PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE
PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE ZADANIE 1 Jeżeli wysokość trójkata równobocznego wynosi 2, to długość jego boku jest równa A) 6 B) 4 3 3 C) 2 3 D) 4 3 ZADANIE 2 Pole trójkata o bokach a = 4 cm
Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu?
Klasa 5. Figury na płaszczyźnie Astr. 1/6... imię i nazwisko...... klasa data 1. Na którym rysunku nie przedstawiono trapezu? 2. Oblicz obwód trapezu równoramiennego o podstawach długości 18 cm i 12 cm
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
PLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego)
PLNIMETRI pp 2015/16 WŁSNOŚI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) Zad.1 Wyznacz kąty trójkąta jeżeli stosunek ich miar wynosi 5:3:1. Zad.2 Znajdź
2 Figury geometryczne
Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest
Jarosław Wróblewski Matematyka Elementarna, zima 2014/15
Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
KONSTRUKCJE I PRZEKSZTAŁCENIA GEOMETRYCZNE WERSJA A
Test sprawdzający wiadomości ucznia po dziale Konstrukcje i przekształcenia geometryczne w klasie II gimnazjum. Nauka odbywa się wg programu Matematyka dla przyszłości. Opracowała nauczycielka Gimnazjum
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta
Kąty, trójkąty i czworokąty.
Kąty, trójkąty i czworokąty. str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Do kartonu wstawiono 3 garnki (zobacz rysunek), których dna mają promienie:13 cm, 15 cm i 11 cm. Podaj długość
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Lang: Pole powierzchni kuli Nierówność dla objętości skorupki: (pow. małej kuli) h objętość skorupki
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Zadanie 2. ( 4p ) Czworokąt ABCD ma kąty proste przy wierzchołkach B i D. Ponadto AB = BC i BH = 1.
Zadanie 1. ( p ) Dodatnia liczba naturalna n ma tylko dwa dzielniki naturalne, podczas gdy liczba n + 1 ma trzy dzielniki naturalne. Liczba naturalna n + ma. dzielniki naturalne. Liczna n jest równa..
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k.
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k. Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model konstrukcji prostej prostopadłej i wykorzysta go w zadaniach
Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym.
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Po uruchomieniu Geogebry (wersja 5.0) Pasek narzędzi Cofnij/przywróć Problem 1: Sprawdź co się stanie, jeśli połączysz
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem EGZAMIN
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna
Astr. 1/5. Klasa 5. Figury na płaszczyźnie. 8,5 cm. 7 cm. 4,5 cm. 3,5 cm 7 cm. 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm.
Klasa 5. Figury na płaszczyźnie Astr. 1/5... imię i nazwisko...... klasa data 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm. 2. Narysuj sześciokąt o dokładnie dwóch kątach ostrych. 3.
Figury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,
Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Skrypt 26. Stereometria: Opracowanie Jerzy Mil
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Stereometria: 1. Przypomnienie
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 18 Bryły 1. Prostopadłościan i sześcian rozpoznawanie,
1. Na diagramie przedstawiono wyniki pracy klasowej z mateatyki w pewnej klasie.
liczba ocen. Na diagramie przedstawiono wyniki pracy klasowej z mateatyki w pewnej klasie. 0 8 6 4 2 0 2 3 4 5 6 ocena Dokończ zdanie tak, aby otrzymać zdanie prawdziwe. Z informacji podanych na diagramie
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Instrukcja dla zdaj cego Czas pracy: 180 minut
1 Kod ucznia Nazwisko i imię MATEMATYKA Klasa I 23 Maja 2018 Instrukcja dla zdaj cego Czas pracy: 180 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-16). Ewentualny brak zgłoś przewodniczącemu
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI Temat: Oś symetrii figury. Cele operacyjne: Uczeń: - zna rodzaje trójkątów i ich własności, - zna rodzaje czworokątów ich własności, - odkrywa i formułuje definicję
Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.
Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Najlepsze: AO, LS. Największe
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY. Matura. z Akademią Maturalną PWN
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Matura z Akademią Maturalną PWN Instrukcja dla zdającego 1. Arkusz egzaminacyjny zawiera 17 stron (zadania 1 34). Zadania 1 5 to zadania zamknięte,
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Jarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Pole trójkata, trapezu
Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj
ZADANIA PRZED EGZAMINEM KLASA I LICEUM
ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,