Prognozowanie liczby wybranych szkód ubezpieczeniowych w Polsce
|
|
- Jadwiga Antczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 The Wroclaw School of Banking Research Journal ISSN I eissn Vol. 15 I No. 5 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu ISSN I eissn R. 15 I Nr 5 Prognozowanie liczby wybranych szkód ubezpieczeniowych w Polsce Autor: Jarosław Krajewski Abstrakt Artykuł ma na celu zbadanie, czy w zakresie ogólnie dostępnych i oficjalnie publikowanych danych dotyczących liczby szkód mających miejsce na polskim rynku ubezpieczeń można mówić o zjawiskach pozwalających na modelowanie ekonometryczne i w konsekwencji prognozowanie tej liczby. Poniższy artykuł ma być punktem wyjścia do dalszych analiz rynku ubezpieczeń, a w pierwszej kolejności szkodowości na nim występującej. Badania takie mogą okazać się przydatne w analizach ryzyka rynkowego przeprowadzanego przez brokerów ubezpieczeniowych. Analiza empiryczna dotyczy zmiennych reprezentujących szkody działu drugiego ubezpieczeń oraz szkody z ubezpieczenia odpowiedzialności cywilnej posiadaczy pojazdów lądowych. Na podstawie szeregów czasowych o częstotliwości kwartalnej z okresu od pierwszego kwartału 2004 do drugiego kwartału 2014 roku udało się oszacować modele dobrze opisujące liczbę szkód majątkowych występujących na polskim rynku ubezpieczeń oraz wyznaczyć na ich podstawie prognozy. Najlepszym z prognostycznego punktu widzenia modelem liczby szkód z działu II ubezpieczeń okazał się II+ zawierający trend oraz opóźnienia zmiennej objaśnianej i zmiennej objaśniającej. W zakresie szkód z ubezpieczenia OC posiadaczy pojazdów lądowych był to natomiast sezonowo-trendowy model OC. Słowa kluczowe: ubezpieczenie, szkoda, szkodowość, prognozowanie Wprowadzenie Polski rynek ubezpieczeniowy w ostatnich latach rozwija się systematycznie, zarówno jeśli chodzi o jego wielkość i otwartość, jak również zróżnicowanie dostępnych i powstawanie nowych produktów. Skutkuje to wzrostem liczby zawieranych umów ubezpieczenia różnego rodzaju. Można zatem przypuszczać, że rośnie w czasie również liczba szkód zgłaszanych z tychże właśnie umów. Niniejszy artykuł ma na celu zbadanie, czy w zakresie ogólnie dostępnych i oficjalnie publikowanych danych dotyczących liczby szkód mających miejsce na polskim rynku ubezpieczeń można mówić o zjawiskach pozwalających na modelowanie ekonometryczne szkodowości, tj. JEL: C01, C5, G22 tendencji rozwojowych, sezonowości i autoregresji. W dalszej części referatu sprawdzone zostanie również, jak narzędzia ekonometryczne sprawdzają się w prognozowaniu liczby szkód. Poniższy artykuł ma być punktem wyjścia do dalszych analiz rynku ubezpieczeń, a w pierwszej kolejności szkodowości na nim występującej. W związku z powyższym warto spróbować odpowiedzieć na pytanie, czy w jej zakresie zastosowanie metod ekonometrycznych okaże się skuteczne. Prognozowanie przedstawione w poniższym artykule może okazać się przydatne w analizach ryzyka rynkowego przeprowadzanego przez brokerów ubezpieczeniowych. Zazwyczaj nie dysponują oni szczegółowymi danymi zbieranymi przez ubezpieczycieli ani działami aktuarialnymi, Jarosław Krajewski Wyższa Szkoła Bankowa w Toruniu jaroslaw.p.krajewski@gmail.com
2 The Wroclaw School of Banking Research Journal I ISSN I eissn I Vol. 15 I No. 5 w związku z tym taka alternatywa może okazać się atrakcyjna w prowadzonej przez nich działalności. Teoretyczne podstawy ilościowej analizy szkód ubezpieczeniowych Szkody są podstawą istnienia rynku ubezpieczeń. To one spowodowały, że umowy ubezpieczenia w ogóle zaczęły funkcjonować. Już w czasach starożytnych znane były przypadki zrzeszania się zainteresowanych podmiotów w celu wspólnego ponoszenia ryzyka na zasadach wzajemności i solidarności. Umowy uczestników karawan w krajach Bliskiego Wschodu znane były już za czasów Hammurabiego (ok. 2 tys. lat p.n.e.). Zobowiązywali się oni do wspólnego pokrywania właśnie ewentualnych szkód, poniesionych przez każdego uczestnika takiej umowy (Sangowski 2001: 11 12). Szkodą nazwiemy dzisiaj stratę majątkową lub niemajątkową powstałą w wyniku wypadku losowego (Monkiewicz 2000: 64). Jako ciekawy przykład szkody przywołać można urodzenie się dziecka, które może być właśnie w ten sposób traktowane w sferze ubezpieczeń. Z uwagi na analizy zawarte w niniejszym artykule należy przybliżyć również pojęcie działów ubezpieczeń wynikające bezpośrednio z Ustawy o działalności ubezpieczeniowej (Ustawa z 22 maja 2003 r.). Ustawa ta wyróżnia: Dział I Ubezpieczenia na życie, oraz Dział II Pozostałe ubezpieczenia osobowe oraz ubezpieczenia majątkowe. Właśnie na tych drugich w ujęciu ogólnym skupiać się będzie przeprowadzana analiza. Dodatkowo jako szczególny przypadek wybrano wchodzące w skład tego działu ubezpieczenie odpowiedzialności cywilnej posiadaczy pojazdów mechanicznych. Pojęcie samej szkodowości nie jest natomiast jednoznaczne. Inaczej definiują je przepisy prawa, inaczej rozumieją je klienci, pośrednicy i ubezpieczyciele. Biorąc pod uwagę rozumienie potoczne oraz kontekst, w którym jest używane, zazwyczaj spotykamy dwa główne znaczenia szkodowości: suma odszkodowań i współczynnik odszkodowań. Mając tego świadomość, na potrzeby opracowania autor zdecydował się na wykorzystanie pojęcia szkodowość jako równoważnik dla pojęcia liczby szkód. Zastosowane modele ekonometryczne W analizie szkodowości wykorzystane zostały podstawowe dynamiczne modele ekonometryczne uwzględniające w swej strukturze trendy, sezonowość i autoregresję wybranych zmiennych. Wykorzystano analizę występowania następujących procesów (Kufel 2011: 81 91): wielomianowych funkcji trendu w postaci: (1) gdzie: t zmienna czasowa, t = 1, 2,, n; r stopień wielomianu zmiennej czasowej, składnik losowy, wahań sezonowych: (2) gdzie: kowe zmienne sezonowe, m liczba sezonów; autoregresji: (3) gdzie: p rząd opóźnienia, składnik losowy. Ponadto zastosowanie w analizach znalazł model wygładzania wykładniczego Wintersa w postaci multiplikatywnej, którą przedstawia następujący zapis (Cieślak 2001): (4) W powyższym wzorze Ft służy do wygładzonej oceny wartości zjawiska, St służy do wygładzonej oceny wartości przyrostu trendu, Ct służy do wygładzonej oceny sezonowości, stałe parametry wygładzania, r liczba sezonów w jednym cyklu. Po oszacowaniu odpowiednich modeli wyznaczone zostały prognozy oraz porównana została ich dokładność za pomocą wybranych mierników. Dane i analiza wyników empirycznych W przeprowadzonym badaniu wykorzystane zostały dwie zmienne reprezentujące liczbę szkód: liczba wypłat działu II ubezpieczeń ogółem oraz (II), liczba wypłat z ubezpieczenia OC pojazdów lądowych (OC). 680
3 Jarosław Krajewski Prognozowanie liczby wybranych szkód ubezpieczeniowych w Polsce Wykres 1. Kwartalna liczba szkód w okresie Źródło: opracowanie własne na podstawie danych KNF ( rynek_ubezpieczen/dane_o_rynku/dane_kwartalne/dane_kw.html) Zbiór danych kwartalnych w postaci szeregów czasowych dotyczy okresu od 1. kwartału 2004 roku do 2. kwartału 2014 roku, a więc szeregi składają się z 42 obserwacji. Wszystkie dane pochodzą z internetowej strony Komisji Nadzoru Finansowego (KNF). Dane poddane zostały transformacji z uwagi na fakt, że publikowane są w sposób narastający. Sprowadzone zostały zatem do wielkości przypadających na dany okres. Wartości zmiennych wykorzystanych bezpośrednio w modelowaniu przedstawia wykres 1. Warto zaznaczyć, że liczba wypłat może się różnić od liczby zgłoszonych szkód, bo towarzystwa ubezpieczeniowe nie zawsze mają je zgłoszone i dokonują wypłaty. Do modelowania szkodowości posłużyła podpróba zebranego zbioru danych skrócona o ostatnie 2 obserwacje, które w dalszej części badania posłużyły do oceny zdolności prognostycznych prezentowanych narzędzi. Po wstępnym przygotowaniu danych przeprowadzono procedury wyznaczania stopnia wielomianu trendu za pomoc testu F (Aczel 2000: ). Okazało się, że dla obu rozważanych zmiennych wystarczy przyjąć trend liniowy. Następnie na podstawie analizy autokorelacji wyznaczono odpowiednie rzędy autoregresji. W każdym modelu początkowo uwzględniona została również sezonowość. W kolejnym kroku przeprowadzona została eliminacja nieistotnych statystycznie zmiennych a posteriori (Osińska 2007: 25). W wyniku tej procedury uzyskano modele przedstawione w kolejnych tabelach (1 i 2). Odpowiednie zmienne opóźnione oznaczone zostały podkreślnikiem i właściwym rzędem opóźnienia, a zmienne sezonowe symbolem dq. Zasadna wydaje się również próba znalezienia zmiennej lub zmiennych, które posłużyć mogłyby jako objaśniające w ten sposób zdefiniowaną szkodowość ubezpieczeniową. Dostępną i jednocześnie odpowiednią wydaje się być liczba polis przypisana do całego działu II ubezpieczeń i liczba polis OC posiadaczy pojazdów lądowych. Tabela 1. Model szkodowości działu II const ,6 3,2589 0,0024 time ,4 1841,55 7,8555 0,0000 II_1 0,1359 0,0705 1,9268 0,0619 II_2 0,1343 0,0716 1,8749 0,0689 Wsp. determ. R-kwadrat 0,8203 Autokorel.reszt - rho1 0,
4 The Wroclaw School of Banking Research Journal I ISSN I eissn I Vol. 15 I No. 5 Tabela 2. Model szkodowości OC const ,1 13,24 3,47E-15 time 2896,08 302,71 9,567 2,66E-11 dq ,6 9878,74 1,621 0,114 dq ,8 9855,52-2,506 0,017 dq ,1 9841,56-2,621 0,0129 Wsp. determ. R-kwadrat 0,7666 Autokorel.reszt - rho1 0,2475 Modele, które w swej strukturze uwzględniają wyżej wymienione zmienne, prezentują tabele 3 i 4. W tabelach zawierających wyniki estymacji zmienne zostały wyróżnione przedrostkiem w postaci litery p. Współczynniki determinacji R-kwadrat we wszystkich modelach (tabele 1, 2, 3 i 4) wskazują na dobre dopasowanie modeli do danych empirycznych, a współczynniki autokorelacji są wystarczająco niskie, żeby mówić o jej braku w zaprezentowanych modelach ekonometrycznych. Oszacowane zostały również parametry modelu wygładzania wykładniczego Wintersa (W) w wersji multiplikatywnej. Kryterium ich wyznaczenia była minimalizacja błędu średniego prognoz wygasłych. Wartości parametrów dla modeli opisujących rozważane zmienne zawiera kolejna tabela 5. Tabela 3. Model szkodowości działu II+ const ,5344 0,016 pii_4-0,0117 0, ,4203 0,021 pii_5 0,0097 0, ,1365 0,0399 time 15379,7 2435,94 6,3136 0,0000 II_2 0,1718 0, ,8968 0,0664 Wsp. determ. R-kwadrat 0,8311 Autokorel.reszt - rho1 0,2659 Tabela 4. Model szkodowości OC+ const ,4-3,5482 0,0012 poc_1 0, ,0026 9,3061 0,0000 dq , ,1 1,2738 0,2114 dq ,7-1,1236 0,269 dq ,64-1,9937 0,0543 OC_1-0,1411 0,0711-1,9848 0,0553 Wsp. determ. R-kwadrat 0,7803 Autokorel.reszt - rho1 0,3476 Tabela 5. Modele Wintersa 682 Α β Γ Szkodowość działu II 0,32 0,7 0,18 Szkodowość OC 0,23 0,91 0,31
5 Jarosław Krajewski Prognozowanie liczby wybranych szkód ubezpieczeniowych w Polsce Tabela 6. Autoregresyjny model szkodowości działu II współczynnik błąd standardowy t-studenta wartość p const ,17 0,0365 II_1 0,3454 0,1061 3,256 0,0024 II_2 0,3817 0,1045 3,652 0,0008 Tabela 7. Autoregresyjny model szkodowości działu OC współczynnik błąd standardowy t-studenta wartość p const ,4 6,86 3,80E-08 OC_1 0,1955 0,11 1,777 0,0835 Wszystkie wymienione wyżej modele posłużyły w dalszym etapie analizy do wyznaczenia prognoz szkodowości. Jako punkt odniesienia i kryterium porównań przyjęte zostały również odpowiednie modele autoregresyjne (AR) analizowanych zmiennych zaprezentowane poniżej. Na podstawie oszacowanych modeli wyznaczono prognozy na dwa pierwsze kwartały roku Wykorzystując posiadane wartości, wyznaczono wybrane błędy prognoz w celu porównania wyników uzyskanych na podstawie alternatywnych modeli. Do porównań wykorzystano (Welfe 2003): średni błąd predykcji: (5) pierwiastek błędu średniokwadratowego: średni absolutny błąd procentowy: (6) (7) współczynnik Theila: (8) We wszystkich powyższych wzorach: YT oznacza realizacje zmiennej prognozowanej, YTp oznacza wartości prognoz zmiennej prognozowanej, h oznacza horyzont prognozy. W wyniku przeprowadzonych obliczeń uzyskano wyniki zaprezentowane w tabeli 8. W przypadku szkodowości działu II jako całości wyniki prognozowania niestety nie wskazują jednoznacznie najlepszego narzędzia. Dwukrotnie najniższe błędy uzyskano dla modelu zawierającego zmienną objaśniającą i jednokrotnie dla modelu bez tej zmiennej i modelu Wintersa. Jednocześnie we wszystkich przypadkach najgorszy okazał się model autoregresyjny, ponieważ błędy mają najwyższą wartość. Bardziej jednoznacznymi okazują się wyniki prognozowania szkodowości OC posiadaczy pojazdów lądowych. Wartości trzech błędów Tabela 8. Błędy prognoz szkodowości. Model RMSE MAPE THEIL ME II ,00 3,8925 1, ,6 ARII ,00 14,918 3, ,00 WII ,99 7,2597 0, ,11 II ,3094 0, OC ,1579 0, AROC ,165 1, WOC ,58 12,427 0, ,15 OC ,238 0,
6 The Wroclaw School of Banking Research Journal I ISSN I eissn I Vol. 15 I No. 5 wskazują na prosty model ekonometryczny bez zmiennej objaśniającej jako najlepsze narzędzie prognostyczne spośród rozważanych, a tylko wartość współczynnika Theila wskazuje na przewagę modelu Wintersa. Zakończenie Na podstawie szeregów czasowych o częstotliwości kwartalnej udało się oszacować modele dobrze opisujące liczbę szkód majątkowych występujących na polskim rynku ubezpieczeń oraz wyznaczyć na ich podstawie prognozy. Najlepszym z prognostycznego punktu widzenia modelem liczby szkód z działu II ubezpieczeń okazał się II+ zawierający trend oraz opóźnienia zmiennej objaśnianej i zmiennej objaśniającej. W zakresie szkód z ubezpieczenia OC posiadaczy pojazdów lądowych natomiast był to sezonowo- -trendowy model OC. Bibliografia Aczel A. D. (2000), Statystyka w zarządzaniu, Warszawa, Wydawnictwo Naukowe PWN. Cieślak M. (2001), Prognozowanie gospodarcze, Warszawa, Wydawnictwo Naukowe PWN. Monkiewicz J. (2000), Podstawy Ubezpieczeń, tom I: Mechanizmy i funkcje, Warszawa, Wydawnictwo Poltext. KNF. Opracowania. Rynek ubezpieczeń, kw.html [ ]. Kufel T. (2011), Ekonometria. Rozwiązywanie problemów z wykorzystywaniem programu GRETL, Warszawa, Wydawnictwo Naukowe PWN. Osińska M. (2007), Ekonometria współczesna, TNOiK Dom Organizatora, Toruń. Sangowski T. (2001), Ubezpieczenia gospodarcze, Warszawa, Wydawnictwo Poltext. Ustawa z 22 maja 2003 r. o działalności ubezpieczeniowej. Dz. U. 2003, Nr 124, poz z późn. zm. Welfe A. (2003), Ekonometria, Warszawa, PWE. Forecast of insurance claims number in Poland Abstract Presented paper aims to research the possibilities to estimate and forecast claims number in Poland. It is a part of a wider analysis of insurance market in Poland. Empirical analysis concerns claims which relate to the second section of insurance and land vehicles liability, and it was performed on the basis of data from the first quarter of 2004 to the second quarter of In the article we compare forecast accuracy of 4 competitive models. The results are encouraging. Model II+ turns out the best model for the second section of insurance whereas for land vehicle liability it was a seasonal-trend model. Keywords: insurance, claims, forecast 684
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Proces modelowania zjawiska handlu zagranicznego towarami
Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie
MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce
Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Ekonomiczne Problemy Turystyki nr 3 (27), 57-70 2014 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO
ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO Wprowadzenie Zmienność koniunktury gospodarczej jest kształtowana przez wiele różnych czynników ekonomicznych i pozaekonomicznych. Znajomość zmienności poszczególnych
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2
STUDIA I STOPNIA EGZAMIN Z EKONOMETRII
NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
t y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
BADANIE KOINTEGRACJI POWIATOWYCH STÓP BEZROBOCIA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Barbara Batóg Uniwersytet Szczeciński BADANIE KOINTEGRACJI POWIATOWYCH STÓP BEZROBOCIA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM Streszczenie W artykule
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 4 Prognozowanie, sezonowość Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Prognozowanie Założenia i własności predykcji ekonometrycznej Stabilność modelu ekonometrycznego
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
UBEZPIECZENIA KOMUNIKACYJNE NA PRZYKŁADZIE OC I AC
UBEZPIECZENIA KOMUNIKACYJNE NA PRZYKŁADZIE OC I AC Paula Malina Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Streszczenie Celem niniejszego artykułu jest przedstawienie polskiego rynku ubezpieczeń
Niestacjonarne zmienne czasowe własności i testowanie
Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza
Metoda Johansena objaśnienia i przykłady
Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja.
1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja. Zadanie 1. Celem zadania jest oszacowanie modelu opisującego
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Etapy modelowania ekonometrycznego
Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody
EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA
EKONOMETRYCZNA PROGNOZA ODPŁYWÓW Z BEZROBOCIA W OPARCIU O KONCEPCJĘ FUNKCJI DOPASOWAŃ Adam Kowol 2 1. Sformułowanie zadania prognostycznego Celem niniejszej pracy jest próba prognozy kształtowania się
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO)
Łódź, dn. 23.12.2013r. OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) 1. Zamawiający Firma i adres: PL Europa S.A. NIP: 725-195-02-28 Regon: 100381252 2. Tryb udzielenia zamówienia Zgodnie z
Tomasz Stryjewski Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMETYCZNE IX Ogólnopolskie Seminarium Naukowe 6 8 września 5 w Toruniu Katedra Ekonometrii i Statystyki Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołaja Kopernika w Toruniu
Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp
1 Sugerowany przypis: Chybalski F., Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE, Przegląd Statystyczny, nr 3/2006, Dom Wydawniczy Elipsa, Warszawa 2006, s. 73-82 Propozycja
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU prof. dr hab. Andrzej Sokołowski 2 W tym opracowaniu przedstawiony zostanie przebieg procesu poszukiwania modelu prognostycznego wykorzystującego jedynie przeszłe
Ekonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na
WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO
5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU
Po co w ogóle prognozujemy?
Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
A.Światkowski. Wroclaw University of Economics. Working paper
A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:
Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas
Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym
Jacek Batóg Uniwersytet Szczeciński Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jednym z ważniejszych elementów każdej gospodarki jest system bankowy. Znaczenie
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład
Ćwiczenia 13 WAHANIA SEZONOWE
Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW
Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
Ekonometryczna analiza popytu na wodę
Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.
Wiadomości ogólne o ekonometrii
Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
Ekonomia II stopień ogólnoakademicki. stacjonarne wszystkie Katedra Matematyki Dr hab. Artur Maciąg. podstawowy. obowiązkowy polski.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Z-EKO2-500 Nazwa modułu Ekonometria i prognozowanie procesów ekonomicznych Nazwa modułu w języku angielskim Econometrics and forecasting economics proceses Obowiązuje
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny
Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,
Z-LOGN Ekonometria Econometrics. Przedmiot wspólny dla kierunku Obowiązkowy polski Semestr IV
bbbbkarta MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN1-0184 Ekonometria Econometrics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE
Statystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
ZASTOSOWANIE DYNAMICZNEGO MODELU ZGODNEGO W ANALIZIE GOSPODARKI GÓRNEGO ŚLĄSKA
Uniwersytet Ekonomiczny w Katowicach ZASTOSOWANIE DYNAMICZNEGO MODELU ZGODNEGO W ANALIZIE GOSPODARKI GÓRNEGO ŚLĄSKA Wprowadzenie W opracowaniu podjęto próbę porównania jakości modelu ekonometrycznego gospodarki
Metody Prognozowania
Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje
STAN OBECNY I PERSPEKTYWY ROZWOJU LICZBY ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE W UJĘCIU STATYSTYCZNYM
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 544 EKONOMICZNE PROBLEMY USŁUG NR 35 2009 RAFAŁ CZYŻYCKI, RAFAŁ KLÓSKA Uniwersytet Szczeciński STAN OBECNY I PERSPEKTYWY ROZWOJU LICZBY ABONENTÓW TELEFONII
Metody ilościowe w analizie struktury podmiotowej sektora usług w Polsce
Rafał Klóska* Metody ilościowe w analizie struktury podmiotowej sektora usług w Polsce Wstęp Tematem rozważań wielu ekonomistów i polityków jest często rozwój przedsiębiorczości w Polsce a rosnące zainteresowanie
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.
Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą
Działalność brokerów ubezpieczeniowych w 2007 r.
Działalność brokerów ubezpieczeniowych w 2007 r. Komisja Nadzoru Finansowego SPIS TREŚCI SPIS TREŚCI... 2 1. Wstęp...3 2. Brokerzy ubezpieczeniowi...3 3. Umowy ubezpieczenia odpowiedzialności cywilnej
REASEKURACJA KONSPEKT
REASEKURACJA 231170 KONSPEKT 1 Literatura 1. E.J. Voughen, T.Voughen Fundamentals of Risk and Insurance 8-th edition W&S,1999 r. 2. E. Montalbetti Reasekuracja PWE, Warszawa 1970r. 3. K Ciuman Reasekuracja
Indeksy dynamiki (o stałej i zmiennej podstawie)
Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy
Przykład 1 ceny mieszkań
Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie
Raport o reklamacjach i odwołaniach klientów Grupy ERGO Hestia. Raport nr 18. IV kwartał 2016 Podsumowanie 2016
Raport o reklamacjach i odwołaniach klientów Grupy ERGO Hestia Raport nr 18. IV kwartał 2016 2016 Raport o reklamacjach i odwołaniach klientów Grupy ERGO Hestia Jako pierwsi na rynku ubezpieczeń postanowiliśmy
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH
PROGNOZA WIELKOŚCI ZUŻYCIA CIEPŁA DOSTARCZANEGO PRZEZ FIRMĘ FORTUM DLA CELÓW CENTRALNEGO OGRZEWANIA W ROKU 2013 DLA BUDYNKÓW WSPÓLNOTY MIESZKANIOWEJ PRZY UL. GAJOWEJ 14-16, 20-24 WE WROCŁAWIU PAWEŁ SZOŁTYSEK
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
specjalnościowy obowiązkowy polski letni wykład ćwiczenia laboratorium projekt inne C.EFEKTY KSZTAŁCENIA I METODY SPRAWDZANIA EFEKTÓW KSZTAŁCENIA
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Z-EKO2-689 Nazwa modułu Ubezpieczenia i ryzyko w działalności gospodarczej Nazwa modułu w języku angielskim Insurance and Risk in Business Obowiązuje od roku
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1
Kalibracja Kalibracja - nazwa pochodzi z nauk ścisłych - kalibrowanie instrumentu oznacza wyznaczanie jego skali (np. kalibrowanie termometru polega na wyznaczeniu 0C i 100C tak by oznaczały punkt zamarzania
Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona
Prognozowanie cen żywca wieprzowego z wykorzystaniem modeli zgodnych i zmiennych wyprzedzających
Mariusz Hamulczuk Katedra Ekonomiki Rolnictwa i Międzynarodowych Stosunków Gospodarczych SGGW Prognozowanie cen żywca wieprzowego z wykorzystaniem modeli zgodnych i zmiennych wyprzedzających Wstęp Prognozowanie
SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność
Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2014 2020
Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2014 2020 Mariusz Kozakiewicz i Marek Kwas Szkoła Główna Handlowa 18 grudnia 2014 Spis treści Prognoza wybranych wskaźników rozwoju obrotu
ANALIZA PORÓWNAWCZA KONIUNKTURY GOSPODARKI WOJEWÓDZTWA ŚLĄSKIEGO I GOSPODARKI POLSKI
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 264 2016 Uniwersytet Ekonomiczny w Katowicach Wydział Zarządzania Katedra Ekonometrii jozef.biolik@ue.katowice.pl
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny