Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB
|
|
- Stefan Zawadzki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB
2 Plan prezentacji Wprowadzenie do prognozowania Metody prognozowania i prawidłowości Analiza wybranych rynków za pomocą ARIMA X-12 i TRAMO-SEATS Zdolności prognostyczne metod Podsumowanie
3 Wprowadzenie Przewidywanie - wnioskowanie o zdarzeniach nieznanych na podstawie zdarzeń znanych Prognozowanie : Sąd sformułowany z wykorzystaniem dorobku nauki Odnosi się do określonej przyszłości Jest weryfikowalny empirycznie Jest niepewny, ale akceptowalny Funkcje prognoz: decyzyjna, aktywizująca, informacyjna Czy moŝna prognozować przyszłość? Czy moŝe istnieć jedna prognoza?
4 Metoda prognozowania Informacje prognostyczne Prognoza Moment wykonywania prognozy
5 Metody prognozowania - zalety i wady Metody prognozowania Metody szeregów czasowych Metody przyczynowo-opisowe Ilościowe Metody prognozowania Jakościowe Metody analogowe Metody heurystyczne
6 Metody / modele szeregów czasowych Modelem szeregu czasowego słuŝącym do określenia przyszłej wartości zmiennej prognozowanej Y w momencie t jest model, którego zmiennymi objaśniającymi mogą być przeszłe wartości oraz czas Model szeregu czasowego traktuje się jako czarną skrzynkę. Prawidłowości: w strukturze szeregu czasowego: trend, sezonowość, wahania cykliczne, przypadkowe. Czy to wystarcza do przewidzenia przyszłości?
7 Prawidłowości - ceny Ŝywca wieprzowego 5,50 5,00 4,50 4,00 3,50 3,00 2,50 2,00 Ceny TC TCI T sty 00 sty 01 sty 02 sty 03 sty 04 sty 05 sty 06 sty 07 sty 08 sty 09 sty 10 sty 11
8 1,20 1,15 1,10 1,05 1,00 0,95 0,90 0,85 0,80 Prawidłowości - ceny Ŝywca wieprzowego C 1,20 1,15 sty 00 sty 01 sty 02 sty 03 sty 04 sty 05 sty 06 sty 07 sty 08 sty 09 sty 10 sty 11 1,10 1,05 1,00 0,95 0,90 0,85 0,80 sty 10 sty 00 sty 01 sty 02 sty 03 sty 04 sty 05 sty 06 sty 07 sty 08 sty 09 sty 11 S
9 Cel badań empirycznych: Zbadanie prawidłowości szeregów czasowych wybranych miesięcznych cen surowców rolnych Ocena zdolności prognostycznych modeli szeregów czasowych Modele ilościowe a modele jakościowe porównanie i sposoby
10 Metody sezonowej korekty danych X-12-ARIMA i TRAMO/SEATS Cel metod: analiza trendu i wahań nieregularnych estymacja i usuwanie czynnika sezonowego z szeregu czasowego prognoza krótkookresowa RóŜne sposoby estymacji komponentów szeregu czasowego: model ARIMA (TRAMO/SEATS) filtry ad-hoc średniej ruchomej (X-12-ARIMA) Obie metody dokonują wstępnej korekty szeregu czasowego o efekty dni roboczych, obserwacje odstające, wpływ czynników zewnętrznych (rozszerzony model ARIMA) Metody rekomendowane przez Eurostat
11 Modele ARIMA (p,d,q)(p,d,q) Y t = φ0 + φ1y t 1 + φt 2Yt φ pyt p + Φ1Yt S + Φ 2Yt 2S Φ PYt + e t + θ 1et 1 + θ2et θqet q + Θ1et S + Θ2et 2S Θ PS Q e + t QS Yt Yt 1 t 2 Y... Yt p - wartość zmiennej w momencie/okresie t t 1, t 2,..., t p,, p rząd autoregresji oznaczający maksymalne opóźnienie zmiennej objaśnianej, φ0 φ 1... φ p - parametry modelu autoregresyjnego, et - błędy (reszty) modelu, tzw. biały szum. q rząd średniej ruchomej oznaczający maksymalne jej opóźnienie, θ 0 θ 1... θ q parametry modelu średniej ruchomej, Φ i Θ oznaczają sezonowe parametry części odpowiednio: autoregresyjnej i średniej ruchomej. φ S d S D ( B) Φ( B )(1 B) (1 B ) Yt = φ0 + θ ( B) Θ ( B S ) e t
12 Model regarima Model RegARIMA i TRAMO φ ( ) ( S ) d S D S B Φ B ( 1 B) (1 B ) Yt β i X i, t = θ ( B) Θ( B ) t Y t oryginalny szereg czasowy, β i parametr przy i-tej zmiennej objaśniającej, X t i-ta zmienna objaśniająca: Obserwacje nietypowe: AO, TC, LS, RP Efekty dni roboczych Efekt Wielkanocy i ε Cel modelu RegARIMA i TRAMO: usunięcie nieliniowości z oryginalnego szeregu
13 Metoda X-12-ARIMA Model RegARIMA (wydłużenie próby, korekta danych za pomocą regresorów) Modelowanie (wybór optymalnego modelu) Sezonowa korekta danych (Algorytm X-11) Diagnostyka (statystyki: historia rewizji, analiza podrób, analiza spektralna, statystyki M i Q, testy statystyczne)
14 Metoda TRAMO/SEATS TRAMO (wydłużenie próby, korekta danych za pomocą regresorów, dobór modelu ARIMA) SEATS dekompozycja modelu ARIMA w dziedzinie częstości na ortogonalne komponenty SEATS Ponowna identyfikacja modelu ARIMA SEATS Ze zbioru możliwych dekompozycji wybierany jest wariant, w którym wariancja komponentu nieregularnego jest maksymalizowana SEATS Estymacja komponentów za pomocą filtru Weinera-Kołmogorowa
15 Demetra+ - pakiet statystyczny do sezonownej korekty danych Demetra+ Zawiera programy X-12-ARIMA i TRAMO/SEATS UmoŜliwia porównanie wyników obu metod Przystosowana do regularnej produkcji danych MoŜliwość stosowania procedur automatycznych i manualnych Rozbudowany moduł wstępnej analizy danych
16 Ceny wołowiny składowe szeregu i prognozy ARIMA (0,1,1)(0,1,1)
17 Ceny wołowiny ARIMA i regresory
18 Korekta cen wołowiny z uwagi na wartości odstające
19 Ceny wołowiny porównanie czynników sezonowych
20 Ceny mleka składowe szeregu i prognozy ARIMA (2,1,0)(1,1,1)
21 Ceny mleka - model ARIMA i regresory
22 Ceny mleka porównanie czynników sezonowych
23 Ceny pszenicy składowe szeregu i prognozy ARIMA (1,1,0)(0,1,1)
24 Ceny pszenicy - model ARIMA i regresory
25 Ceny pszenicy porównanie czynników sezonowych
26 Dokładność prognoz ex post Oceniając zdolności prognostyczne metod dokonano analizy błędów prognoz wygasłych, Okres: marzec marzec 2011 Błędy obliczono za pomocą: MAPE = 1 k k t= 1 Y t Y Yˆ t t 100% gdzie: k liczba wykonanych prognoz ex post, Yt realizacja zmiennej Y w momencie t, Ŷt prognoza zmiennej Y na moment t.
27 Dokładność prognoz ex post cen pszenicy
28 Dokładność prognoz ex post cen wołowiny
29 Dokładność prognoz ex post cen mleka
30 Metody ilościowe a jakościowe
31 Prognozy ex post cen pszenicy Tramo Seats
32 Prognozy ex post cen pszenicy Model autoregresji (opóźnienia 1,2,43, t, S)
33 Dokładność prognoz ex post cen pszenicy
34 Prawidłowości szeregu czasowego cen pszenicy model multiplikatywny
35 Podsumowanie Modele szeregów czasowych pozwalają na formułowanie wniosków w zakresie prawidłowości kształtowania cen. Wahania sezonowe nie mają największego udziału w zmienności szeregów czasowych. Wejście do UE wpływ na zmiany wzorców i zmiany poziomów cen szczególnie na rynku wołowiny. Szoki cenowe najczęściej występują na rynku zbóŝ, ale największe co do skali były na rynku wołowiny.
36 Podsumowanie Prognozy budowane na podstawie modeli szeregów czasowych są generalnie mniej dokładne niŝ prognozy formułowane na podstawie opinii ekspertów Modele szeregów czasowych stanowić mogą dobre narzędzie prognoz krótkookresowych na okres do 3 miesięcy. Metody szeregów czasowych mogą stanowić źródło wiedzy o prawidłowościach natomiast prognozy generowane z ich udziałem muszą być merytorycznie ocenianie/korygowane przez ekspertów. Wiedza o przyszłości danego zjawiska nie stanowi gwarancji sformułowania dokładnych prognoz.
37 Dziękujemy za uwagę
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna
I. Szereg niesezonowy
Spis I. Szereg niesezonowy 1.1. Opis danych 1.2. Dekompozycja szeregu w programie Demetra 1.3. Analiza szeregu w STATA 1.4. Model ekstrapolacyjny 1.5. Model ARIMA 1.6. P II Szereg sezonowy 2.1. Opis danych
MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Modelowanie i prognozowanie cen surowców energetycznych. Monika Papie Sławomir Âmiech
Modelowanie i prognozowanie cen surowców energetycznych Monika Papie Sławomir Âmiech Modelowanie i prognozowanie cen surowców energetycznych Autorzy: Monika Papie wst p*, rozdziały: 2, 3.5, 4; 5, 7, zakoƒczenie*
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
ZMIENNOŚĆI CENOWE NA RYNKACH ROLNYCH. Mariusz Hamulczuk SGGW
ZMIENNOŚĆI CENOWE NA RYNKACH ROLNYCH Mariusz Hamulczuk SGGW 2 Wstęp Rola cen w gospodarce rynkowej, Funkcja celu uczestników rynku rolnego, Zmiany ceny jako źródło ekspozycji na ryzyko dochodowe (zmienność
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Analiza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY
Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek
Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
23 Zagadnienia - Prognozowanie i symulacje
1. WYJAŚNIJ POJĘCIE PROGNOZY I OMÓW PODSTAWOWE PEŁNIONE PRZEZ PROGNOZĘ FUNKCJE. Prognoza - jest to sąd dotyczący przyszłej wartości pewnego zjawiska o następujących właściwościach: jest sformułowany w
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński
Projekcja wyników ekonomicznych produkcji mleka na 2020 rok Seminarium, IERiGŻ-PIB, 02.09.2016 r. mgr Konrad Jabłoński Plan prezentacji 1. Cel badań 2. Metodyka badań 3. Projekcja wyników ekonomicznych
Prognozowanie cen żywca wieprzowego z wykorzystaniem modeli zgodnych i zmiennych wyprzedzających
Mariusz Hamulczuk Katedra Ekonomiki Rolnictwa i Międzynarodowych Stosunków Gospodarczych SGGW Prognozowanie cen żywca wieprzowego z wykorzystaniem modeli zgodnych i zmiennych wyprzedzających Wstęp Prognozowanie
Po co w ogóle prognozujemy?
Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny
Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU
PROGNOZOWANIE SPRZEDAŻY STUDIUM PRZYPADKU prof. dr hab. Andrzej Sokołowski 2 W tym opracowaniu przedstawiony zostanie przebieg procesu poszukiwania modelu prognostycznego wykorzystującego jedynie przeszłe
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
Ekonometria Wykład 4 Prognozowanie, sezonowość. Dr Michał Gradzewicz Katedra Ekonomii I KAE
Ekonometria Wykład 4 Prognozowanie, sezonowość Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Prognozowanie Założenia i własności predykcji ekonometrycznej Stabilność modelu ekonometrycznego
Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie
Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie Projekt prognostyczny ElŜbieta Bulak Piotr Olszewski Michał Tomanek Tomasz Witka IV ZI gr. 13. Wrocław 2007 I. Sformułowanie zadania
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.
1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Wiadomości ogólne o ekonometrii
Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych
Politechnika Krakowska Instytut Inżynierii i Gospodarki Wodnej Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych XXVI Konferencja Naukowa Metody Komputerowe w Projektowaniu i Analizie
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw
Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu
Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu A. Informacje ogólne Nazwa pola Nazwa przedmiotu Treść Analiza Szeregów Czasowych Jednostka
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Zapraszamy do współpracy FACULTY OF ENGINEERING MANAGEMENT www.fem.put.poznan.pl Agnieszka Stachowiak agnieszka.stachowiak@put.poznan.pl Pokój 312 (obok czytelni) Dyżury: strona wydziałowa Materiały dydaktyczne:
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Ekonometria dynamiczna i finansowa Kod przedmiotu
Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność
A.Światkowski. Wroclaw University of Economics. Working paper
A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
wprowadzenie do analizy szeregów czasowych
19 stycznia 2016 Wprowadzenie Prezentacja danych Dekompozycja Preprocessing Model predykcji ARIMA Dobór parametrów modelu ARIMA Podsumowanie Definicje i przykłady Definicje Szeregiem czasowym nazywamy
Wykład 5: Analiza dynamiki szeregów czasowych
Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu
Recenzenci dr inż. Stanisław Gędek, UP w Lublinie dr Rafał Kusy, WSFiZ w Warszawie. Korekta Barbara Walkiewicz. Redakcja techniczna Leszek Ślipski
Pracę zrealizowano w ramach tematu Rozwój i aplikacja zaawansowanych metod analitycznych do ewolucji ex-ante i ex-post efektów zmian we Wspólnej Polityce Rolnej i w uwarunkowaniach makroekonomicznych w
UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki
UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Prognozowanie procesów gospodarczych prowadzący: dr inż. Tomasz Bartłomowicz tomasz.bartlomowicz@ue.wroc.pl
Prognozowanie i symulacje
Prognozowanie i symulacje - Wykład (15 godzin) -Ćwiczenia przy komputerze (30 godzin) - Zaliczenie jedna ocena - Zasady zaliczenia i literatura dr Tadeusz RóŜański Helena Gaspars Prognozowanie i symulacje
Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.
Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
DRZEWA REGRESYJNE I LASY LOSOWE JAKO
DRZEWA REGRESYJNE I LASY LOSOWE JAKO NARZĘDZIA PREDYKCJI SZEREGÓW CZASOWYCH Z WAHANIAMI SEZONOWYMI Grzegorz Dudek Instytut Informatyki Wydział Elektryczny Politechnika Częstochowska www.gdudek.el.pcz.pl
Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas
Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj
Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego
61 Barometr Regionalny Nr 2(24) 2011 Ocena jakości prognoz wybranych wskaźników rozwoju gospodarczego woj. lubelskiego Jarosław Bielak Wyższa Szkoła Zarządzania i Administracji w Zamościu Streszczenie:
UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki
UE, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Prognozowanie procesów gospodarczych wykład ćwiczenia laboratorium prowadzący: dr inż. Tomasz Bartłomowicz konsultacje:
PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH
PROGNOZA WIELKOŚCI ZUŻYCIA CIEPŁA DOSTARCZANEGO PRZEZ FIRMĘ FORTUM DLA CELÓW CENTRALNEGO OGRZEWANIA W ROKU 2013 DLA BUDYNKÓW WSPÓLNOTY MIESZKANIOWEJ PRZY UL. GAJOWEJ 14-16, 20-24 WE WROCŁAWIU PAWEŁ SZOŁTYSEK
Etapy modelowania ekonometrycznego
Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie
Metoda najmniejszych kwadratów
Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między
Wykład z dnia 8 lub 15 października 2014 roku
Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących
Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...
4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem
Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright by: Wydawnictwo Placet 2008
Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright by: Wydawnictwo Placet 2008 Wszelkie prawa zastrzeżone. Publikacja ani jej części nie mogą być w żadnej formie i za pomocą jakichkolwiek
PROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM
"DIALOG 0047/2016" PROGNOZOWANIE CEN ENERGII NA RYNKU BILANSUJĄCYM WYDZIAŁ ELEKT RYCZ N Y Prof. dr hab. inż. Tomasz Popławski Moc zamówiona 600 Rynek bilansujący Moc faktycznie pobrana Energia zakupiona
ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO
ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO Wprowadzenie Zmienność koniunktury gospodarczej jest kształtowana przez wiele różnych czynników ekonomicznych i pozaekonomicznych. Znajomość zmienności poszczególnych
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Organizacja i monitorowanie procesów magazynowych / Stanisław
Organizacja i monitorowanie procesów magazynowych / Stanisław KrzyŜaniak [et al.]. Poznań, 2013 Spis treści Przedmowa 11 1.1. Magazyn i magazynowanie 13 1.1.1. Magazyn i magazynowanie - podstawowe wiadomości
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH. Sławomir Śmiech, Monika Papież
KRÓTKOOKRESOWE PROGNOZOWANIE CENY EKSPORTOWEJ WĘGLA ROSYJSKIEGO W PORTACH BAŁTYCKICH Sławomir Śmiech, Monika Papież email: smiechs@uek.krakow.pl papiezm@uek.krakow.pl Plan prezentacji Wprowadzenie Ceny
Wybrane problemy prognozowania cen produktów rolnych
V EUROPEJSKI KONGRES MENADŻERÓW AGROBIZNESU, ŁYSOMICE 14.11.218 Wybrane problemy prognozowania cen produków rolnych Cezary Klimkowski INSTYTUT EKONOMIKI ROLNICTWA I GOSPODARKI ŻYWNOŚCIOWEJ PAŃSTWOWY INSTYTUT
Wojciech Skwirz
1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Wprowadzenie do szeregów czasowych i modelu ARIMA
Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA
Opis zakładanych efektów kształcenia na studiach podyplomowych WIEDZA
Opis zakładanych efektów kształcenia na studiach podyplomowych Nazwa studiów: BIOSTATYSTYKA PRAKTYCZNE ASPEKTY STATYSTYKI W BADANIACH MEDYCZNYCH Typ studiów: doskonalące Symbol Efekty kształcenia dla studiów
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROGNOZOWANIE Z WYKORZYSTANIEM SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY***
ZAGADNIENIA TECHNICZNO-EKONOMICZNE Tom 48 Zeszyt 3 2003 Joanna Chrabołowska*, Joanicjusz Nazarko** MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** W artykule przedstawiono metodykę budowy modeli ARIMA oraz ich
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych