1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja.
|
|
- Zofia Wilczyńska
- 8 lat temu
- Przeglądów:
Transkrypt
1 1. Ekonometria jako dyscyplina naukowa (przedmiot, metodologia, teorie ekonomiczne). Model ekonometryczny, postać modelu, struktura, klasyfikacja. Zadanie 1. Celem zadania jest oszacowanie modelu opisującego ilość urodzeń (żywych) w zależności od ilości zawartych małżeństw i rozwodów w Polsce. Etapy badania ekonometrycznego 1. określenie celu badania; 2. określenie zmiennych endogenicznych; 3. wybór zmiennych objaśniających; 4. zebranie danych statystycznych; 5. wybór postaci analitycznej modelu teoretycznego; 6. oszacowanie modelu; 7. weryfikacja modelu (jeśli model nie przejdzie weryfikacji pozytywnie, to wracamy do punktu 3); ekonomiczna statystyczna 8. praktyczne wykorzystanie modelu: analiza przeszłości; prognozowanie przyszłych wartości zmiennej objaśnianej; symulacja (wariantowanie), tzn. badanie możliwych stanów rzeczywistości ekonomicznej opisanej przez dany model. 1. Wejdź na stronę i pobierz plik roczne_wskazniki_makroekonomiczne_cz_iii.xsl 2. Zapoznaj się z dostępnymi danymi, a następnie wyszukaj dane dotyczące ilości urodzeń, zawartych małżeństw i rozwodów w Polsce. Przekopiuj odpowiednie dane do pustego skoroszytu *.xsl. Oznacz zmienne. Zapisz w folderze Dokumenty. 3. Rozpoznaj typ danych. Czy są to dane przekrojowe, panelowe, czy szeregi czasowe? Odpowiedź uzasadnij. Podaj przykład danych do każdego z powyższych typów. 4. Oznacz zmienne oraz zaproponuj postać ogólną modelu (np. Y = f(x, Z, ε). 5. Zapisz postać analityczną modelu (np. y = α 1 x + α 2 z + ε) 6. Wymień elementy składowe modelu. Rodzaje zmiennych występujących w modelach ekonometrycznych. Klasyfikacja zmiennych w jednorównaniowym modelu ekonometrycznym 1. Zmienne endogeniczne (endogeniczna nieopóźniona w czasie objaśniana, endogeniczna opóźniona w czasie objaśniająca) 2. Zmienne egzogeniczne (nieopóźnione i opóźnione w czasie zmienne objaśniające) Klasyfikacja zmiennych w wielorównaniowym modelu ekonometrycznym 1. Zmienne endogeniczne (endogeniczne nieopóźnione w czasie łącznie współzależne, endogeniczne opóźnione w czasie zmienne z góry ustalone) 2. Zmienne egzogeniczne (nieopóźnione i opóźnione w czasie zmienne z góry ustalone) W modelu ekonometrycznym występuje zwykle składnik losowy. Przyczynami jego występowania są miedzy innymi: Niewłaściwa postać analityczna modelu Niemożność uwzględnienia w modelu wszystkich przyczyn (zmiennych) kształtujących badane zjawisko Błędy wynikające z niedoskonałości pomiaru Losowość zachowań ludzkich Efekty pogodowe Niekompletność teorii, w wyniku których pomija się ważne zmienne ekonomiczne.
2 7. Sklasyfikuj model wg poniższych kryteriów: Rodzaje modeli ze względu na wartości poznawcze Przyczynowo-skutkowe Symptomatyczne Autoregresyjne Tendencji rozwojowej Rodzaje modeli ze względu na postać analityczną funkcji Liniowe Nieliniowe Klasyfikacja modeli ze względu na rodzaje zmiennych statystycznych Statyczne Dynamiczne Rodzaje modeli ze względu na liczbę równań Jednorównaniowe Wielorównaniowe 8. Uruchom program: Start/Programy/Gretl Zaimportuj zapisany wcześniej plik *.xls do programu GRETL. Zapisz odpowiedni typ danych (patrz: punkt 3.) 1 Na stronie znajduje się plik instalacyjny programu GRETL oraz bazy danych z podręczników akademickich.
3 10. Opisz dane (Naciśnij prawym przycisk myszki i wybierz Edycja atrybutów)
4 11. Sporządź wykres zaimportowanych danych. (Zaznacz zmienne, naciśnij prawy przycisk myszki i wybierz: Wykres szeregu czasowego). 12. Oblicz statystyki opisowe dla liczby urodzeń, małżeństw i rozwodów. (Zaznacz zmienne, naciśnij prawy przycisk myszki i wybierz: Statystyki opisowe).
5 13. Oszacuj parametry odpowiedniego modelu opisującego zależność ilości urodzeń od liczby małżeństw i rozwodów. Zapisz postać modelu po oszacowaniu.
Etapy modelowania ekonometrycznego
Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Modele wielorownaniowe
Część 1. e e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e makroekonomiczne z reguły składają się z większej
Rozdział 1. Modelowanie ekonometryczne
1.1. Istota modelu ekonometrycznego i jego elementy składowe Istotą modelowania ekonometrycznego jest budowa modelu wyjaśniającego mechanizm zmian zachodzących w badanym wycinku rzeczywistości. Przedmiotem
Wiadomości ogólne o ekonometrii
Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Metoda najmniejszych kwadratów
Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między
EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.
EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji
Rozdział 1. Modelowanie ekonometryczne
Wprowadzenie Zajęcia z ekonometrii są w mniejszym lub większym zakresie realizowane we wszystkich uczelniach ekonomicznych. Przekazywane w ramach tego przedmiotu treści są dość zróżnicowane i uzależnione
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1
KURS EKONOMETRIA Lekcja 1 Wprowadzenie do modelowania ekonomerycznego ZADANIE DOMOWE www.erapez.pl Srona 1 Część 1: TEST Zaznacz poprawną odpowiedź (ylko jedna jes prawdziwa). Pyanie 1 Kóre z poniższych
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011
SYLLABUS na rok akademicki 00/0 Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu
Imię, nazwisko i tytuł/stopień KOORDYNATORA przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, dr
Tryb studiów Stacjonarne Nazwa kierunku studiów EKONOMIA Poziom studiów Stopień pierwszy Rok studiów/ semestr III; semestr 5 Specjalność Bez specjalności Kod przedmiotu w systemie USOS 1000-ES1-3EC1 Liczba
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Tomasz Stryjewski Uniwersytet Mikołaja Kopernika w Toruniu
DYNAMICZNE MODELE EKONOMETYCZNE IX Ogólnopolskie Seminarium Naukowe 6 8 września 5 w Toruniu Katedra Ekonometrii i Statystyki Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołaja Kopernika w Toruniu
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ekonometria 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7. TYP PRZEDMIOTU
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
przedmiotu Nazwa Pierwsza studia drugiego stopnia
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu EKONOMETRIA UTH/I/O/MT/zmi/ /C 1/ST/2(m)/1Z/C1.1.5 Język wykładowy ECONOMETRICS JĘZYK POLSKI
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych.
Laboratorium z ekonometrii (GRETL) 2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych. 2.1 Zaimportuj dane z pliku zatrudnienie.csv z przecinkiem jako separatorem danych i kropką jako
1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych.
Laboratorium z ekonometrii (GRETL) 1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych. Okno startowe: Póki nie wczytamy jakiejś bazy danych (lub nie stworzymy własnej), mamy dostęp tylko do dwóch
Ekonometria - ćwiczenia 1
Ekonometria - ćwiczenia 1 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 5 października 2012 1 Sprawy organizacyjne 2 Czym jest
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)
Ekonometria. Mieczys aw Sobczyk
Ekonometria Mieczys aw Sobczyk Metody ilościowe M. Sobczyk Ekonometria Ekonometria Mieczysław Sobczyk wydanie 1 WYDAWNICTWO C.H. BECK WARSZAWA 2012 Wydawca: Dorota Ostrowska-Furmanek Redakcja merytoryczna:
Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF
Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania
Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1.
Liniowy model ekonometryczny Metoda najmniejszych kwadratów Laboratorium 1. mgr mgr Krzysztof Czauderna Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie
Ekonometria. Modele wielorównaniowe. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Modele wielorównaniowe Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 11 Modele wielorównaniowe 1 / 35 Outline 1 Wprowadzenie do modeli wielorównaniowych 2 Modele równań
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
EKONOMETRIA WYKŁAD. Maciej Wolny
EKONOMETRIA WYKŁAD Maciej Wolny mwolny@chorzow.wsb.pl http://dydaktyka.polsl.pl/roz6/mwolny/default.aspx AGENDA. Wprowadzenie (informacje organizacyjne, czym jest ekonometria, zakres wykładu).. Model ekonometryczny
MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek
Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Dr Roman Sosnowski
SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr 3/5 Specjalność Bez specjalności Kod katedry/zakładu
t y x y'y x'x y'x x-x śr (x-x śr)^2
Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,
Wielowymiarowa analiza regionalnego zróżnicowania rolnictwa w Polsce
Wielowymiarowa analiza regionalnego zróżnicowania rolnictwa w Polsce Mgr inż. Agata Binderman Dzienne Studia Doktoranckie przy Wydziale Ekonomiczno-Rolniczym Katedra Ekonometrii i Informatyki SGGW Opiekun
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Wykłady do końca: Niezależność polityki pieniężnej w długim okresie 2 wykłady Wzrost długookresowy w gospodarce otwartej 2 wykłady Egzamin 12.06.2013, godz. 17 sala
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO
ANALIZA DYNAMIKI DOCHODU KRAJOWEGO BRUTTO Wprowadzenie Zmienność koniunktury gospodarczej jest kształtowana przez wiele różnych czynników ekonomicznych i pozaekonomicznych. Znajomość zmienności poszczególnych
Modelowanie glikemii w procesie insulinoterapii
Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą
EKONOMETRIA prowadzący: Piotr Piwowarski
EKONOMETRIA prowadzący: Piotr Piwowarski Termin konsultacji: poniedziałek 13:15 14:45 wtorek 13:15 14:45 pokój 1101/1102 jedenaste piętro e-mail: piotr.piwowarski@poczta.umcs.lublin.pl strona internetowa:
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007
Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja
Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:
Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
PROGNOZY! ANALIZA RYNKU PRZEMYSŁOWEGO NAJBARDZIEJ AKTUALNE TO KOMPENDIUM WIEDZY O AKTUALNEJ SYTUACJI GOSPODARCZEJ POLSKI I BRANŻY PRZEMYSŁOWEJ
ANALIZA RYNKU PRZEMYSŁOWEGO TO KOMPENDIUM WIEDZY O AKTUALNEJ SYTUACJI GOSPODARCZEJ POLSKI I BRANŻY PRZEMYSŁOWEJ A PONADTO NAJBARDZIEJ AKTUALNE PROGNOZY! CHCESZ WIEDZIEĆ: JAK WYGLĄDA SYTUACJA MAKROEKONOMICZNA
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada
Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy
MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY
MODELOWANIE KOSZTÓW USŁUG ZDROWOTNYCH PRZY WYKORZYSTANIU METOD STATYSTYCZNYCH mgr Małgorzata Pelczar 6 Wprowadzenie Reforma służby zdrowia uwypukliła problem optymalnego ustalania kosztów usług zdrowotnych.
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Ekonometria. Robert Pietrzykowski.
Ekonometria Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Na dziś Sprawy bieżące Prowadzący Zasady zaliczenia Konsultacje Inne 2 Sprawy ogólne czyli co nas czeka Zaliczenie
Marcin Błażejowski Wyższa Szkoła Bankowa w Toruniu
DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Wyższa Szkoła Bankowa w Toruniu
Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej
Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa
Uczelnia Łazarskiego. Sylabus. 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu
Uczelnia Łazarskiego Sylabus 1. Nazwa przedmiotu EKONOMETRIA 2. Kod przedmiotu 3. Język wykładowy Język polski 4. Status przedmiotu podstawowy do wyboru Języki X kierunkowy specjalistyczny Inne 5. Cel
Modele ARIMA prognoza, specykacja
Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 14 Mikołaj Czajkowski Wiktor Budziński Symulacje Analogicznie jak w przypadku ciągłej zmiennej zależnej można wykorzystać metody Monte Carlo do analizy różnego rodzaju problemów w modelach
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA. 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji
PROPOZYCJA ZAGADNIEŃ NA EGZAMIN LICENCJACKI NA KIERUNKU ANALITYKA GOSPODARCZA 1.Modele wielorównaniowe. Ich rodzaje i zalecane metody estymacji 2.Problem niesferyczności składnika losowego w modelach ekonometrycznych.
Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw
Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego
Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych
Ekonometria - wykªad 1
Ekonometria - wykªad 1 0. Wprowadzenie Barbara Jasiulis-Goªdyn 28.02.2014 2013/2014 Ekonometria Literatura [1] B. Borkowski, H. Dudek, W. Szczesny, Ekonometria. Wybrane Zaganienia, PWN, Warszawa 2003.
Aplikacja CMS. Podręcznik użytkownika
Aplikacja CMS Podręcznik użytkownika Instrukcja obsługi aplikacja CMS 1. Logowanie RYS 1: OKNO LOGOWANIA Domyślne dane logowania: Użytkownik: super Hasło: Brak hasła Kliknij przycisk Zaloguj, aby przejść
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
Wady klasycznych modeli input - output
Wady klasycznych modeli input - output 1)modele statyczne: procesy gospodarcze mają najczęściej charakter dynamiczny, 2)modele deterministyczne: procesy gospodarcze mają najczęściej charakter stochastyczny,
Projekcja wyników ekonomicznych produkcji mleka na 2020 rok. Seminarium, IERiGŻ-PIB, r. mgr Konrad Jabłoński
Projekcja wyników ekonomicznych produkcji mleka na 2020 rok Seminarium, IERiGŻ-PIB, 02.09.2016 r. mgr Konrad Jabłoński Plan prezentacji 1. Cel badań 2. Metodyka badań 3. Projekcja wyników ekonomicznych
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2
Modelowanie systemów empirycznych
Wprowadzenie do przedmiotu Modelowanie systemów empirycznych Dzadz Łukasz pok. 114 lukasz.dzadz@uwm.edu.pl Tel. 523-49-40 Katedra Inżynierii Systemów WNT UWM w Olsztynie 1 System Jest to obiekt fizyczny
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
4. Średnia i autoregresja zmiennej prognozowanej
4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
EKONOMETRIA I SYLABUS
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. EKONOMETRIA I SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
egzamin oraz kolokwium
KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/PSY w języku polskim Prognozowanie i symulacje Nazwa przedmiotu w języku angielskim Forecasting and simulation USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek
Poz. 15 UCHWAŁA NR 15 RADY WYDZIAŁU NAUK EKONOMICZNYCH UW. z dnia 1 marca 2017 roku. w sprawie
Poz. 15 UCHWAŁA NR 15 RADY WYDZIAŁU NAUK EKONOMICZNYCH UW z dnia 1 marca 2017 roku w sprawie utworzenia studiów stacjonarnych II stopnia w języku angielskim pn. Data Science Rada Wydziału Nauk Ekonomicznych
Materiał dla studentów
Materiał dla studentów Metoda zmiennych instrumentalnych Nazwa przedmiotu: metody ekonometryczne, ekonometria stosowana Kierunek studiów: Metody Ilościowe w ekonomii i systemy informacyjne Studia I stopnia/studia
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
ANALIZA PORÓWNAWCZA WYBRANYCH PROCEDUR MODELOWANIA EKONOMETRYCZNEGO DLA MODELU GOSPODARKI WOJEWÓDZTWA ŚLĄSKIEGO
Józef Biolik Uniwersytet Ekonomiczny w Katowicach ANALIZA PORÓWNAWCZA WYBRANYCH PROCEDUR MODELOWANIA EKONOMETRYCZNEGO DLA MODELU GOSPODARKI WOJEWÓDZTWA ŚLĄSKIEGO Wprowadzenie Jednym z narzędzi analizy
Literatura. Statystyka i demografia
ZESTAWIENIE zagadnień i literatury do egzaminu doktorskiego z przedmiotów kierunkowych III Wydziałowej Komisji ds. Przewodów Doktorskich na Wydziale Ekonomiczno-Socjologicznym Uniwersytetu Łódzkiego Ekonometria
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści
Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, 2013 Spis treści Przedsłowie 15 Przedmowa do drugiego wydania 17 Przedmowa do trzeciego wydania 21 Nekrolog
UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki
UE, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Prognozowanie procesów gospodarczych wykład ćwiczenia laboratorium prowadzący: dr inż. Tomasz Bartłomowicz konsultacje:
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Aktualizacja do systemu Windows 8.1 przewodnik krok po kroku
Aktualizacja do systemu Windows 8.1 przewodnik krok po kroku Windows 8.1 instalacja i aktualizacja Zaktualizuj BIOS, aplikacje, sterowniki i uruchom usługę Windows Update Wybierz typ instalacji Zainstaluj
Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.
Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego plik
Uruchomienie aplikacji elektronicznych na platformie epuap
Uruchomienie aplikacji elektronicznych na platformie epuap 1 KROK 1 INSTALACJA APLIKACJI ELEKTRONICZNEJ KROK 2 PUBLIKACJA KARTY USŁUGI 2 KROK 1 - INSTALACJA APLIKACJI ELEKTRONICZNEJ 3 1. Pobrać plik aplikacji
ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO
Wydział Nauk Ekonomicznych i Zarządzania Kierunek Analityka Gospodarcza Studia stacjonarne I stopnia ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Zagadnienia ogólnoekonomiczne 1. Aktualna sytuacja na europejskim
Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis
Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej Paweł Cibis pcibis@o2.pl 9 marca 2006 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa wzory
Przedmiot ekonometrii
Informacje ogólne Egzamin Kryteria oceny Ćwiczenia Literatura po polsku Literatura po angielsku Wykładowca: dr Paweł Strawiński Dyżur: wtorek 17:00-18:00(?), katedra Statystyki i Ekonometrii Materiały