POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014

Wielkość: px
Rozpocząć pokaz od strony:

Download "POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014"

Transkrypt

1 POZNAN NVE RSTY OF TE HNOLOGY AADE M JORNALS No 8 Elerial Egieerig 04 Ryszard NAWROWSK* Zbigiew STEN* Maria ZELŃSKA* ANALZA WPŁYW HARMONZNYH W NAPĘ NA STRATY MOY W LN NN ZASLAJĄEJ SLNK NDKYJNY Z KOMPENSAJĄ MOY BERNEJ PRZY ZASTOSOWAN KONDENSATORÓW W reeraie przedsawioo przy wykorzysai program Maad, wyiki oblizeń i aalizę warośi sra moy w odik liii elekroeergeyzej iskiego apięia zasilająej silik idkyjy większej moy, kórego mo bierą kompesje się przy zasosowai kodesaorów. W siei z kodesaorami koieze jes względiaie armoizy wysępjąy w apięi. Prądy wymszoe ymi armoizymi zwiększają sray moy. Przedmioem reera jes aaliza warośi y sra. Aalizę przeprowadzoo dla rze klas siei elekroeergeyzej, w zależośi od dopszzaly warośi THD. SŁOWA KLZOWE: sray moy, liia elekroeergeyza, armoize, wskaźik THD. WPROWADZENE Sray moy w liii elekroeergeyzej, rówież ej zasilająej siliki idkyje, zależą od rezysaji przewod oraz kwadra prąd, zyli ΔP = R.. Siliki idkyje pobierają z siei ie ylko mo zyą P, ale rówież mo bierą Q, zęso azywaą moą bierą magesjąą. Warość moy bierej (idkyjej) silika zależy ie ylko od jego arakerysyzy paramerów, ale rówież od obiążeia, zyli prędkośi obroowej. Zarówo warośi moy zyej jak bierej deydją o warośi akiego arakerysyzego paramer maszyy jak współzyik moy (osφ). Ze względ a ograizaie sra moy przy przesyłai eergii elekryzej warość współzyika moy powia być jak ajwiększa, a oajmiej aka by warość agesa ego kąa ie była większa iż 0.4. Taką warość agesa kąa określają przepisy. Takiej warośi agesa kąa odpowiada warość współzyika moy większa iż 0,8. Poieważ arala warość * Polieika Pozańska.

2 06 Ryszard Nawrowski, Zbigiew Sei, Maria Zielińska współzyika moy silików idkyjy jes miejsza od sgerowaej przez przepisy, dla ograizeia warośi moy bierej pobieraej z siei sosje się zw. kompesaję moy bierej idkyjej moą pojemośiową. Zwykle mo bierą pojemośiową zyskje się z kodesaorów. Kodesaory są wygodym elemeem kład elekroeergeyzego jako źródła moy bierej. Wadą kodesaora jes zależość jego reakaji (/) od zęsoliwośi. Wada a jes isoa wedy, gdy w apięi siei rzeba względiać zw. wyższe armoize. Obeie względiaie armoizy w apięi jes iezbęde prakyzie zawsze, przy zym w zależośi od dopszzalej zawarośi armoizy w apięi wyróżia się klasy (pierwszą, drgą i rzeią). Dla klasy pierwszej dopszza się miejszą zawarość armoizy, dla klasy drgiej warość większą a dla klasy rzeiej ajwiększą. Dopszzalą zawarość armoizy określa się a podsawie zw. wskaźika THD oraz dopszzaly warośi poszzególy armoizy w apięi. Żada z y warośi ie może być przekrozoa. Wg obowiązjąy przepisów armoize w apięi powio się względiać do rzęd 40, jedak w odiesiei do kodesaorów moża się ograizyć p. do względiaia armoizy rzęd. W iekóry przypadka moża brać pod wagę ylko armoize i, kóry warośi w apięi siei są ajwiększe. Warośi wskaźika THD dla poszzególy klas wyoszą: dla klasy pierwszej %, dla klasy drgiej 8% aomias dla klasy rzeiej 0%. Wskaźik THD obliza się jako pierwiasek z smy kwadraów dopszzaly warośi poszzególy armoizy. Dopszzale warośi poszzególy armoizy w apięi zesawioo w abeli. Tabela. Dopszzale warośi armoizy w apięi dla klas,, Rząd armoizy Klasa Warość apięć(%). 0. Klasa Warość apięć(%) Klasa Warość apięć(%) ZASADY PRZEDSTAWANA WYŻSZYH HARMONZNYH Dla przyjęej warośi moy zyej obiążeia P aężeie prąd pobieraego z siei zależy od warośi osφ. Przy korzysai z program Maad korzysie jes posłgiwać się ie bezpośredio kją osisa, ale kją pomoizą os α*π/, gdzie α może się zmieiać w akim przedziale w jakim zamierza się zmieiać warość osφ.

3 Aaliza wpływ armoizy w apięi a sray moy w liii NN... 0 Naężeie prąd opisje wzór (), w kórym jes apięiem międzyprzewodowym. W siei iskiego apięia zamioowe apięie międzyprzewodowe wyosi 400 V. P ( ) () os( ) 0 ( ) Rys.. Wpływ kąa α a aężeie prąd Na rysk przedsawioo zależość prąd odbiorika o moy 0 kw w kji kąa α. Na rysk wyraźie widać, jak silie współzyik moy wpływa a aężeie prąd. Dla α = 0., kiedy współzyik moy osφ = 0.8 aężeie prąd wyosi 0. A podzas gdy dla α = 0., kiedy osφ = 0.8, aężeie prąd maleje do warośi 6.6 A. Poieważ sray moy zależą od kwadra aężeia prąd ławo zaważyć, że przy akiej zmiaie współzyika moy sray moy zmieiają się o około 0%. Podobie dzieje się w przypadk względiaa sra moy spowodoway armoizymi w prądzie. Harmoize w apięi w isoy sposób wpływają a aężeie prąd w obwoda z kodesaorami, jako że im wyższy jes rząd armoizej ym miejsza jes reakaja. Dlaego w przepisa przewidziao miejsze dopszzale warośi apięć dla poszzególy armoizy wyższy rzędów. Harmoize w apięi, powodjąe przepływy prądów wywołay ymi armoizymi, wywołją ie ylko wzros prądów w przewoda zasilająy, ale rówież, a może przede wszyskim, w kodesaora powodją i iesywe agrzewaie. Dlaego dosępe są kodesaory o zwiększoej odporośi ieplej, o zazy o dopszzalym prądzie obiążeia p.. lb awe. prąd zamioowego. Przy większy prąda armoizy iezbęde jes sosowaie spejaly dławików. Prąd zamioowy kodesaora określa się dla zęsoliwośi zamioowej (0 Hz). Dla oblizeia aężeia prąd wysępjąego w obwodzie, z względieiem wybray armoizy w prąda wymszoy armoizymi w apięi

4 Ryszard Nawrowski, Zbigiew Sei, Maria Zielińska 08 (pierwszej, rzeiej, piąej, siódmej, dziewiąej, jedeasej, rzyasej oraz siedemasej) moża posłgiwać się wzorem (): () w kórym prądy poszzególy armoizy x obliza się ze wzorów: prąd od pierwszej armoizej apięia wyosi: gdzie jes zamioowym apięiem azowym, aomias jes reakają dla pierwszej armoizej apięia kodesaora o pojemośi : Dla kolejy armoizy apięia orzymje się odpowiedio: gdzie jes dopszzalą warośią rzeiej armoizej apięia wedłg Tabeli, aomias jes reakają kodesaora dla rzeiej armoizej Dla piąej armoizej apięia orzymje się związek: gdzie jes dopszzalą warośią piąej armoizej apięia wedłg Tabeli, aomias jes reakają kodesaora dla piąej armoizej Siódmą armoizą apięia przedsawia zależość: gdzie jes dopszzalą warośią siódmej armoizej apięia, aomias jes reakają kodesaora dla siódmej armoizej: Dla dziewiąej armoizej apięia orzymje się wzór:

5 Aaliza wpływ armoizy w apięi a sray moy w liii NN... 0 gdzie jes dopszzalą warośią dziewiąej armoizej apięia, aomias jes reakają kodesaora dla dziewiąej armoizej: Jedeasą armoizą apięia opisje związek: gdzie jes dopszzalą warośią jedeasej armoizej apięia, aomias jes reakają kodesaora dla jedeasej armoizej: Dla rzyasej armoizej apięia orzymje się: gdzie jes dopszzalą warośią rzyasej armoizej apięia, aomias jes reakają kodesaora dla rzyasej armoizej: Dla pięasej armoizej apięia orzymje się wzór: gdzie jes dopszzalą warośią pięasej armoizej apięia, aomias jes reakają kodesaora dla pięasej armoizej Dla siedemasej armoizej apięia orzymje się odpowiedio: gdzie jes dopszzalą warośią siedemasej armoizej apięia, aomias jes reakają kodesaora dla siedemasej armoizej: Poiżej zesawioo, dla zilsrowaia zjawiska, warośi poszzególy reakaji oraz dopszzaly warośi apięć armoizy dla klasy rzeiej i odpowiadająe im aężeia prądów poszzególy armoizy;

6 0 Ryszard Nawrowski, Zbigiew Sei, Maria Zielińska Harmoizy rzeiej i dziewiąej prąd ie względia się w obwoda rójazowy bez przewod eralego, w kóry e armoize ie mogą płyąć.. PRZYKŁAD LZBOWY Wyiki oblizeń przedsawioo dla silika idkyjego o moy zamioowej 0 kw. Przy względiei sprawośi i zamioowego współzyika moy silik e pobiera z siei mo 4. kw. Aby skompesować mo bierą pobieraą przez silik zasosowao kodesaor o pojemośi 44 mf. Dla ej pojemośi mo biera kompesjąa kodesaora wyosi 8.4 kvar. Zamioowy prąd baerii kodesaorów k =. A. Dla ego prąd oblizoo prądy zasępze względiająe armoize w apięi. Wzięo pod wagę dopszzale warośi armoizy w apięi, podae w ab., dla klas pierwszej i rzeiej. Prąd zasępzy płyąy do kodesaora dla klasy pierwszej armoizy apięia wyosi 46.0 A. Sosek ego prąd do prąd zamioowego kodesaora wyosi.88. Dla klasy rzeiej armoizy apięia oblizoy prąd zasępzy wyosi 8. A. Sosek ego prąd do prąd zamioowego kodesaora wyosi WNOSK Ławo zaważyć, że w obwodzie dla klasy armoizy w apięi aężeie prąd ie przekraza kroośi prąd. dlaego wysarzy zasosowaie kodesaora o dopszzalym prądzie.. W obwodzie klasy aężeie prąd wyosi poad. i dlaego ależy zasosować dławiki. Sray moy w przewodzie zasilająym rozparyway obwód, spowodowae armoizymi w apięi siei dla klasy pierwszej wzrosły. kroie. Sray moy w przewodzie zasilająym rozparyway obwód, spowodowae armoizymi w apięi siei dla klasy rzeiej wzrosły. kroie.

7 Aaliza wpływ armoizy w apięi a sray moy w liii NN... LTERATRA [] PN-EN 6004 /00 Maszyy elekryze wirjąe. Dae zamioowe i paramery. [] Sei Z. Eksploaaja maszy elekryzy, WPP, Pozań,. [] Z. Sei, M. Zielińska Zagadieia kompesaji moy bierej w siei iskiego apięia zakład przemysłowego odbiorikami iesymeryzymi Maeriały Sympozjm ZKWE 00. ANALYSS OF THE EFFET OF VOLTAGE HARMON OMPONENTS ON THE POWER LOSS N LV LNE SPPLYNG AN NDTON MOTOR WTH REATVE POWER OMPENSATON WTH THE SE OF APATORS Te paper preses e resls o allaio ad aalysis o power loss arisig i a segme o a LV eleri power lie spplyig a ig-power idio moor, e reaive power o wi is ompesaed wi e se o apaiors. Te ompaio was arried o wi e se o Mad soware. ase o a ework ildig apaiors osideraio o e volage armoi ompoes is eessary. Te rres ored by ese armois irease e power loss. Te paper is devoed o aalysis o e vale o ese losses. Te aalysis as bee arried o or ree lasses o eleri power eworks, aordig o allowable THD vales.

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I

Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I WOJEWÓDZKI KONKRS FIZYCZNY DLA CZNIÓW GIMNAZJÓW W ROK SZKOLNYM 205/206 STOPIEŃ WOJEWÓDZKI KLCZ ODPOWIEDZI I SCHEMAT PNKTOWANIA waga: Poprawe rozwiązaie zadań, iym sposobem iż poday w kryteriah, powoduje

Bardziej szczegółowo

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY

Bardziej szczegółowo

Sygnały pojęcie i klasyfikacja, metody opisu.

Sygnały pojęcie i klasyfikacja, metody opisu. Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

Maszyny Elektryczne i Transformatory st. st. sem. III 2018/2019. Maszyny Elektryczne i Transformatory st. st. sem. III 2018/2019

Maszyny Elektryczne i Transformatory st. st. sem. III 2018/2019. Maszyny Elektryczne i Transformatory st. st. sem. III 2018/2019 Kolokwium poprawkowe Wariat A azyy Elektrycze i Traormatory t. t. em. III 08/09 azya Aychroicza Trójazowy ilik idukcyjy klatkowy ma atępujące dae zamioowe: P 90 kw 0,0 0/400 V ( /Y) coφ 0,9 50 Hz η 0,95

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru:

Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru: Ćwiczeie ERYFIKACJA IPOTEZ Tesowaie hipoez: Zakładamy że wszyskie hipoezy będą weryfikowae a poziomie isoości α.. eryfikacja hipoezy o wskaźik srkry jedej zmieej losowej dyskreej Rozparjemy próbkę elemeową

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym Obwody trójfazowe... / OBWODY TRÓJFAZOWE Zikaie sumy apięć ïród»owych i sumy prądów w wielofazowym układzie symetryczym liczba faz układu, α 2π / - kąt pomiędzy kolejymi apięciami fazowymi, e jα, e -jα

Bardziej szczegółowo

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

NOWY rozłącznik bezpiecznikowy EFD

NOWY rozłącznik bezpiecznikowy EFD Więcej miejsca a palec przy otwieraiu rozłączika Zalety rozłączików bezpieczikowych EFD NOWY rozłączik bezpieczikowy EFD Zgode z ormami PN-IE 60947-1, PN-IE 60947-3, L 4248-1 L 4248-4, L 4248-8, L 486E

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną

Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną i e z b ę d i k e l e k t r y k a Julia Wiatr Mirosław Miegoń Zasilaie budyków użyteczości publiczej oraz budyków mieszkalych w eergię elektryczą Zasilacze UPS oraz sposoby ich doboru, układy pomiarowe

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

Przełączanie diody. Stan przejściowy pomiędzy stanem przewodzenia diod, a stanem nieprzewodzenia opisuje się za pomocą parametru/ów czasowego/ych.

Przełączanie diody. Stan przejściowy pomiędzy stanem przewodzenia diod, a stanem nieprzewodzenia opisuje się za pomocą parametru/ów czasowego/ych. Przełączaie diody 1. Trochę eorii a przejściowy pomiędzy saem przewodzeia diod, a saem ieprzewodzeia opisuje się za pomocą parameru/ów czasowego/ych. Mamy więc ajprosszy eleme półprzewodikowy (dwójik),

Bardziej szczegółowo

ANALIZA WPŁYWU PRZEKRACZANIA DOPUSZCZALNYCH WARTOŚCI WSPÓŁCZYNNIKA MOCY W SIECI NN NA PRACĘ SYSTEMU ELEKTROENERGETYCZNEGO

ANALIZA WPŁYWU PRZEKRACZANIA DOPUSZCZALNYCH WARTOŚCI WSPÓŁCZYNNIKA MOCY W SIECI NN NA PRACĘ SYSTEMU ELEKTROENERGETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 74 Electrical Engineering 213 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU PRZEKRACZANIA DOPUSZCZALNYCH WARTOŚCI WSPÓŁCZYNNIKA

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Ćwiczenie EA4 Silniki indukcyjne jednofazowe małej mocy i mikrosilniki

Ćwiczenie EA4 Silniki indukcyjne jednofazowe małej mocy i mikrosilniki Akademia Góriczo-Huticza im.s.staszica w Krakowie KAEDRA MASZYN ELEKRYCZNYCH Ćwiczeie EA4 Siliki idukcyje jedofazowe małej mocy i mikrosiliki rogram ćwiczeia: A - Silik idukcyjy ze zwojem zwartym 1. omiar

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

Kolokwium dodatkowe II (w sesji letniej) Maszyny Elektryczne i Transformatory st. st. sem. IV 2014/2015

Kolokwium dodatkowe II (w sesji letniej) Maszyny Elektryczne i Transformatory st. st. sem. IV 2014/2015 Kolokwium dodatkowe II (w eji letiej) Wariat A azyy Elektrycze i Traformatory t. t. em. IV 04/05 azya Aychroicza Trójfazowy ilik idukcyjy pierścieiowy ma atępujące dae zamioowe: P 90 kw η 0,9 U 80 V (

Bardziej szczegółowo

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* PRÓBA ILOŚCIOWEGO PRZEDSTAWIENIA WPŁYWU CHARAKTERYSTYCZNYCH PARAMETRÓW

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTT EKSPLOATACJI MASZYN I TRANSPORT ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E13 BADANIE ELEMENTÓW

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA Sprawozdanie z ćwiczenia nr

PRACOWNIA ELEKTRYCZNA Sprawozdanie z ćwiczenia nr Zespół Szkół Techiczych w Skarżysku-Kamieej PRACOWNIA ELEKTRYCZNA Sprawozdaie z ćwiczeia r imię i azwisko Temat ćwiczeia: BADANIE SILNIKA BOCZNIKOWEGO PRĄDU STAŁEGO rok szkoly klasa grupa data wykoaia

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna

Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna stalacje i Urządzeia Eletrycze Automatyi Przemysłowej Moderizacja systemu chłodzeia Ciągu echologiczego- część eletroeergetycza Wyoali: Sebastia Marczyci Maciej Wasiuta Wydział Eletryczy Politechii Szczecińsiej

Bardziej szczegółowo

Podstawy zarządzania finansami przedsiębiorstwa

Podstawy zarządzania finansami przedsiębiorstwa Podsawy zarządzaia fiasami przedsiębiorswa I. Wprowadzeie 1. Gospodarowaie fiasami w przedsiębiorswie polega a: a) określeiu spodziewaych korzyści i koszów wyikających z form zaagażowaia środków fiasowych

Bardziej szczegółowo

WYBRANE METODY REDUKCJI ODKSZTAŁCENIA PRĄDÓW I NAPIĘĆ POWODOWANYCH PRZEZ ODBIORNIKI NIELINIOWE

WYBRANE METODY REDUKCJI ODKSZTAŁCENIA PRĄDÓW I NAPIĘĆ POWODOWANYCH PRZEZ ODBIORNIKI NIELINIOWE WYBRANE METODY REDUKCJI ODKSZTAŁCENIA PRĄDÓW I NAPIĘĆ POWODOWANYCH PRZEZ ODBIORNIKI NIELINIOWE mgr iż. Chamberli Stéphae Azebaze Mbovig Promotor: prof. dr hab. iż. Zbigiew Hazelka Kraków, 3.05.06 Pla Wykładu.

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY 145 Ć wiczeie 9 SILNIK TRÓJFAZOWY ZWARTY 1. Wiadomości ogóle 1.1. Ogóla budowa Siliki asychroicze trójfazowe, dzięki swoim zaletom ruchowym, prostocie kostrukcji, łatwej obsłudze są powszechie stosowae

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

EA3 Silnik komutatorowy uniwersalny

EA3 Silnik komutatorowy uniwersalny Akademia Góriczo-Huticza im.s.staszica w Krakowie KAEDRA MASZYN ELEKRYCZNYCH EA3 Silik komutatorowy uiwersaly Program ćwiczeia 1. Oględziy zewętrze 2. Pomiar charakterystyk mechaiczych przy zasilaiu: a

Bardziej szczegółowo

Gretl konstruowanie pętli Symulacje Monte Carlo (MC)

Gretl konstruowanie pętli Symulacje Monte Carlo (MC) Grel kosruowaie pęli Symulacje Moe Carlo (MC) W Grelu, aby przyspieszyć pracę, wykoać iesadardową aalizę (ie do wyklikaia ) możliwe jes użycie pęli. Pęle realizuje komeda loop, kóra przyjmuje zesaw iych

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Maszyny Elektryczne i Transformatory Kolokwium dodatkowe w sesji poprawkowej st. n. st. sem. III (zima) 2011/2012

Maszyny Elektryczne i Transformatory Kolokwium dodatkowe w sesji poprawkowej st. n. st. sem. III (zima) 2011/2012 azyy lektrycze i Traformatory Wariat A Kolokwium dodatkowe w eji poprawkowej t.. t. em. III (zima 0/0 Traformator Traformator trójfazowy ma atępujące dae zamioowe: S 60 kva f 50 Hz / 5750 ± x,5% / 400

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Zeszyty Problemowe Maszyny Elektryczne Nr 74/2006 69

Zeszyty Problemowe Maszyny Elektryczne Nr 74/2006 69 Zeszyty Problemowe Maszyy Elektrycze Nr 74/6 69 Piotr Zietek Politechika Śląska, Gliwice PRĄDY ŁOŻYSKOWE I PRĄD UZIOMU W UKŁADACH NAPĘDOWYCH ZASILANYCH Z FALOWNIKÓW PWM BEARING CURRENTS AND LEAKAGE CURRENT

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Histogram: Dystrybuanta:

Histogram: Dystrybuanta: Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Electrical Engineering 05 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH

Bardziej szczegółowo

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Sdia Podyplomowe EFEKTYWNE ŻYTKOWANIE ENERGII ELEKTRYZNEJ w ramach projek Śląsko-Małopolskie enrm Kompeencji Zarządzania Energią Falowniki dla silników wysokoobroowych Prof. dr hab. inż. Sanisław Piróg

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. Maszyny elektryczne P OL

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. Maszyny elektryczne P OL Politechika Wrocławska stytut aszy, Napędów i Pomiarów Elektryczych D A S Z YN EL EK ateriał ilustracyjy do przedmiotu TR C Y A KŁ ELEKTROTECHNKA A Z N Y C Z H Prowadzący: * (Cz. 4) * aszyy elektrycze

Bardziej szczegółowo

ANALIZA POPRAWNOŚCI WSKAZAŃ ELEKTRONICZNYCH LICZNIKÓW ENERGII ELEKTRYCZNEJ

ANALIZA POPRAWNOŚCI WSKAZAŃ ELEKTRONICZNYCH LICZNIKÓW ENERGII ELEKTRYCZNEJ PROBLEMS AND PROGRESS IN METROLOGY PPM 8 Coferece Digest Artur SKÓRKOWSKI, Aa PIASKOWY Politechika Śląska Katedra Metrologii, Elektroiki i Automatyki ANALIZA POPRAWNOŚCI WSKAZAŃ ELEKTRONICZNYCH LICZNIKÓW

Bardziej szczegółowo

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2.

(1) gdzie I sc jest prądem zwarciowym w warunkach normalnych, a mnożnik 1,25 bierze pod uwagę ryzyko 25% wzrostu promieniowania powyżej 1 kw/m 2. Katarzya JARZYŃSKA ABB Sp. z o.o. PRODUKTY NISKONAPIĘCIOWE W INSTALACJI PV Streszczeie: W ormalych warukach pracy każdy moduł geeruje prąd o wartości zbliżoej do prądu zwarciowego I sc, który powiększa

Bardziej szczegółowo

Instrukcja obsługi (wersja 2)

Instrukcja obsługi (wersja 2) Instrukcja obsługi (wersja 2) Układ kondensatora - typ RFS5001A Szczegóły produktu Układ kondensatora typu RFS5001A jest wysokosprawnym zasilaczem ładującym dołączony kondensator do zadanego wcześniej

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny. OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość

Bardziej szczegółowo

wirnika (w skrócie CPW). Jako czujniki położenia wirnika najczęściej stosuje się czujniki hallotronowe.[1]

wirnika (w skrócie CPW). Jako czujniki położenia wirnika najczęściej stosuje się czujniki hallotronowe.[1] Zeszyy Probleowe aszyy Elekrycze Nr 7/5 149 Jausz Heańczyk, Krzyszof Krykowski Poliechika Śląska, Gliwice BADANIA SYULACYJNE I LABORAORYJNE SILNIKA P BLDC WYKORZYSUJĄCEGO CZUJNIK POŁOŻENIA WIRNIKA W OBWODZIE

Bardziej szczegółowo

UKŁADY REGULACJI NAPIĘCIA

UKŁADY REGULACJI NAPIĘCIA Zespół Szkół Tehizyh w Skarżysku-Kamieej Sprawozdaie z ćwizeia r 2 Temat ćwizeia: PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA imię i azwisko KŁADY REGLACJI NAPIĘCIA rok szkoly klasa grupa data wykoaia I. Cel

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Cetrum Iżyierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczeie 5 Aaliza statystycza wyików pomiarów pozycji GNSS Szczeci, 010 Zespół wykoawczy: Dr iż. Paweł Zalewski Mgr

Bardziej szczegółowo

Przetworniki Elektromaszynowe st. n.st. sem. V (zima) 2016/2017

Przetworniki Elektromaszynowe st. n.st. sem. V (zima) 2016/2017 Kolokwium poprawkowe Wariant A Przetworniki Elektromaszynowe st. n.st. sem. V (zima 016/017 Transormatory Transormator trójazowy ma następujące dane znamionowe: 60 kva 50 Hz HV / LV 15 750 ± x,5% / 400

Bardziej szczegółowo

Optymalny dobór transformatora do obciążenia

Optymalny dobór transformatora do obciążenia udia odyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projeku Śląsko-Małopolskie Cerum Kompeecji Zarządzaia Eergią Opymaly dobór rasformaora do obciążeia Dr iż. Waldemar zpyra Opymaly dobór

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektrycznej na zawody I stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektrycznej na zawody I stopnia EUOEEKA Ogólnopolska Olimpiada iedzy Elekrycznej i Elekronicznej ok szkolny 2009/2010 Zadania dla grpy elekrycznej na zawody I sopnia 1 Ilość ładnk w klombach [C], kóry przepłynął przez przewód, można

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Opis ruchu we współrzędnych prostokątnych (kartezjańskich)

Opis ruchu we współrzędnych prostokątnych (kartezjańskich) Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A

Bardziej szczegółowo

Galwanometr lusterkowy, stabilizowany zasilacz prądu, płytka z oporami, stoper (wypożyczyć pod zastaw legitymacji w pok. 619).

Galwanometr lusterkowy, stabilizowany zasilacz prądu, płytka z oporami, stoper (wypożyczyć pod zastaw legitymacji w pok. 619). Ćwiczeie Nr 5 emat: Badaie drgań tłmioych cewki galwaometr lsterkowego I. LIERUR. R.Resick, D.Halliday Fizyka, t. I i II, PWN, W-wa.. Ćwiczeia laboratoryje z fizyki w politechice, praca zbiorowa pod red..rewaja,

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

OCHRONA WIBROAKUSTYCZNA ZAŁOGI MOTOROWYCH JACHTÓW MORSKICH Z SILNIKIEM STACJONARNYM

OCHRONA WIBROAKUSTYCZNA ZAŁOGI MOTOROWYCH JACHTÓW MORSKICH Z SILNIKIEM STACJONARNYM 1-2008 PROBLEMY EKSPLOATACJI 161 Jausz GARDULSKI Politechika Śląska, Katowice OCHRONA WIBROAKUSTYCZNA ZAŁOGI MOTOROWYCH JACHTÓW MORSKICH Z SILNIKIEM STACJONARNYM Słowa kluczowe Morskie jachty motorowe,

Bardziej szczegółowo

ANALIZA ODKSZTAŁCEŃ PRĄDÓW WYWOŁYWANYCH PRZEZ WYŁADOWCZE ŹRÓDŁA ŚWIATŁA ORAZ ICH WPŁYWU NA STANY PRACY SIECI ZASILAJĄCEJ

ANALIZA ODKSZTAŁCEŃ PRĄDÓW WYWOŁYWANYCH PRZEZ WYŁADOWCZE ŹRÓDŁA ŚWIATŁA ORAZ ICH WPŁYWU NA STANY PRACY SIECI ZASILAJĄCEJ mgr iż. Grzegorz HOŁDYŃSKI dr ab. iż. Jerzy NIEBRZYDOWSKI, prof. PB Katedra Elektroeergetyki Politeciki Białostockiej ANALIZA ODKSZTAŁCEŃ PRĄDÓW WYWOŁYWANYCH PRZEZ WYŁADOWCZE ŹRÓDŁA ŚWIATŁA ORAZ ICH WPŁYWU

Bardziej szczegółowo

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej

Harmonogram czyszczenia z osadów sieci wymienników ciepła w trakcie eksploatacji instalacji na przykładzie destylacji rurowo-wieżowej Mariusz Markowski, Marian Trafczyński Poliechnika Warszawska Zakład Aparaury Przemysłowe ul. Jachowicza 2/4, 09-402 Płock Harmonogram czyszczenia z osadów sieci wymienników ciepła w rakcie eksploaaci insalaci

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

2. Trójfazowe silniki prądu przemiennego

2. Trójfazowe silniki prądu przemiennego 2. Trójfazowe siliki prądu przemieego Pierwszy silik elektryczy był jedostką prądu stałego, zbudowaą w 1833. Regulacja prędkości tego silika była prosta i spełiała wymagaia wielu różych aplikacji i układów

Bardziej szczegółowo

SZACOWANIE KOSZTÓW PROCESU MONTAŻU NA PRZYKŁADZIE WYBRANEGO TYPOSZEREGU WYROBÓW

SZACOWANIE KOSZTÓW PROCESU MONTAŻU NA PRZYKŁADZIE WYBRANEGO TYPOSZEREGU WYROBÓW SZACOWANIE KOSZTÓW PROCESU MONTAŻU NA PRZYKŁADZIE WYBRANEGO TYPOSZEREGU WYROBÓW Pior CHWASTYK, Domiika BINIASZ, Mariusz KOŁOSOWSKI Sreszczeie: W pracy przedsawioo meodę oszacowaie koszów procesu moażu

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( )

Algorytmy I Struktury Danych Prowadząca: dr Hab. inż. Małgorzata Sterna. Sprawozdanie do Ćwiczenia 3 Algorytmy grafowe ( ) Poiedziałki 11.45 Grupa I3 Iformatyka a wydziale Iformatyki Politechika Pozańska Algorytmy I Struktury Daych Prowadząca: dr Hab. iż. Małgorzata Stera Sprawozdaie do Ćwiczeia 3 Algorytmy grafowe (26.03.12)

Bardziej szczegółowo

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a

WYKŁAD nr 2. to przekształcenie (1.4) zwane jest przekształceniem całkowym Laplace a WYKŁAD r. Elemey rachuku operaorowego Podawą rachuku operaorowego je zw. przekzałceie Laplace a, mające poać przekzałceia całkowego, przyporządkowujące fukcjom pewe owe fukcje, iego argumeu. Mówi ię, że

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

ę Ś Ę Ż ć ę ę Ę Ą Ś Ó Ó Ó Ś ć ę Ć ę Ą ć Ś Ć Ś Ć Ś Ą Ę Ą Ó Ś Ę ę Ć ę Ś ę Ę Ń Ę Ó Ś Ó Ą Ż Ę ź ć Ó Ó Ś ź ź ź ŃŃ Ę ź Ó Ę Ę ć ć ę Ę ć ę Ó ę ć Ę Ć ę ę Ą ź Ś ę ę ę Ś Ń Ó ć Ć ć ź ć Ż ę Ó ę ę ę ę Ó ęć Ń ę ę Ś ę

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo