DWA KRYTERIA NIEOGRANICZONEJ TRWAŁ O Ś CI ZMĘ CZENIOWEJ PRZY OBCIĄŻENIACH OKRESOWYCH
|
|
- Irena Nowicka
- 5 lat temu
- Przeglądów:
Transkrypt
1 ZESZYY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LII NR (85) Akde Mrrk Wojeej DWA KRYERIA NIEOGRANICZONEJ RWAŁ O Ś CI ZMĘ CZENIOWEJ PRZY OBCIĄŻENIACH OKRESOWYCH SRESZCZENIE Prc dotcz ezpeczeństw zęczeowego sz kostrukcj ocążoch pożej grc zęcze. Rozptrw jest złożo st pręże którego skłdowe są zde w postc szeregów Fourer. W celu sforułow krteru eogrczoej trwłośc zęczeowej prężee to zodelowo prężee zredukow rówowż prężeu orgleu w odeseu do wtrzłośc zęczeowej. Wruk rówowżośc oprto hpoteze uśredoej eerg odksztłce postcowego. Porówo dw rozwąz tego zgde. Słow kluczowe: złożo st pręże prężee zredukowe krter zęcze. WSĘP Ocąże sz kostrukcj ją często dcz chrkter. Odpowdjące zee pręże wwołują w terle złożo splot zjwsk z zleżch od wrtośc tch prężeń lcz ckl. Są to zjwsk z zęczeowe które sukceswe sę rozwjjąc ogą doprowdzć do pęk wet dużch kostrukcj [9 7 ]. Jede prężee o pltudze leżącej pożej grc zęcze zpew w odpowedch wrukch teoretcze eogrczoą trwłość zęczeową [4]. Grc zęcze dl dego terłu zleż od rodzju ocąże. Szczególe dl stl węglowch stopowch orlzowch lu ceple ulepszoch grce zęcze dl whdłowego zg rozcąg-ścsk skręc woszą [4]: 47
2 Z = 45R Z = 33R Z = 5R gdze R wtrzłość rozcąge. go rc Nższ odporość terłu zee prężee tące ż zee prężee orle ścsł zwązek z eergą odksztłce postcowego prz tego tpu ocążech któr legł u podstw hpotez Huer-Mses-Heck ego [3]. Zgode z tą hpotezą wtężee terłu w złożo ste sttczego pręże o skłdowch ( = z z z) jest rówowże wtężeu terłu poddego prężeu o jedej skłdowej orlej red [ ( + )] / = + () z z z so 3 z z zwej prężee zredukow zstępcz lu ekwwlet. KRYERIUM NIEOGRANICZONEJ RWAŁOŚCI ZMĘCZENIOWEJ W odeseu do zęcze uwż sę że jede zgode w fze skłdowe pręże o zerowch wrtoścch średch stłch kerukch główch ogą ć lzowe z poocą kowecjolch hpotez wtęże [] choć e wklucz sę przdtośc krterów oprtch uśredoej eerg odksztłce [8]. Kocepcje te wkorzsto ędz w prcch [5 6] gdze dl złożoego pręże o skłdowch wzczoo prężee zredukowe () t = + p s( pωt + α p ) () p= ~ = + (3) ( t) sω t gdze: ω pltud częstość pręże zredukowego; średe prężee zredukowe; śred wrtość -tej skłdowej; 48 Zeszt Nukowe AMW
3 Dw krter eogrczoej trwłośc zęczeowej prz ocążech okresowch p α p pltud fz p-tej hroczej -tej skłdowej; π / lcz uwzględch hroczch szeregu Fourer jk rozłożoo -tą skłdową; ω = częstość podstwow pręże złożoego; okres zeośc pręże złożoego. Pozwolło to sforułowć krteru eogrczoej trwłośc zęczeowej terłów sprężsto-plstczch w postc gdze: R e grc plstczośc terłu; rc ( R ) < Z / (4) Z rc grc zęcze terłu prz whdłow rozcągu-ścsku. e p / = p ; (5) p= ( 3 ) / + + [ + cos( α α ) 3 ] / p = ; (6) = +. (7) p p p Dl uproszcze zpsu w wrżech (6) (7) orz w dlszej częśc prc poęto welkośc odoszące sę do skłdowch ( t) ( t) ( t) p z p z p. Wrże (5) (7) są wke dwuetpowej redukcj złożoego pręże o skłdowch () do pręże zstępczego (3). W perwsz etpe wzczoo prężee ekwwlete o jedej skłdowej = + s pω t (8) p= które w drug etpe zredukowo do postc (3). p z (85) 49
4 W wrżech (4) (7) e wstępuje częstość pręże dltego w ejsz rtkule poęto zgdee wzcz częstośc kołowej ω pręże zredukowego (co przedstwoo.. w prc [5]). ALERNAYWNY SPOSÓB WYZNACZENIA NAPRĘŻENIA ZREDUKOWANEGO Chrkterstcze dl perwszego etpu zpropoowego w [5 6] sposou redukcj złożoego pręże okresowego o skłdowch () jest zstąpee go prężee o jedej skłdowej (8). W odróżeu od tkego podejśc w ejsz rtkule zkłd sę że w perwsz etpe redukcj stąp zstąpee złożoego pręże o skłdowch () złożo prężee o hroczch skłdowch ( t) + sω t które w drug etpe zoste zredukowe do pręże = (9) ~ = +. () ( t) sω t Wkorzstując hpotezę uśredoej eerg odksztłce postcowego w perwsz etpe rówe [5] gdze φ () t dt = φ () t dt () φ φ + υ 3E + υ 3E () t = () t [ ] () t = [ () t ] () to eerge odksztłce postcowego wwołe -tą skłdową (9) orz -tą skłdową (). W wrżech () E ozcz oduł Youg tost ν współczk Posso. 5 Zeszt Nukowe AMW
5 Dw krter eogrczoej trwłośc zęczeowej prz ocążech okresowch podstwowej gdze Przjując uproszczee że częstośc ω w (9) są krotośc częstośc ω o k ω = kω (3) ( χ ) = Roud (4) jest lczą turlą wzczą poprzez zokrąglee lcz χ określoej wzore otrzuje sę z () ( p p ) / p= χ = (5) p p= / = p. (6) p= Wzór (5) otrzo w [5] podstwe teor ssteów trsforcj eerg [] prz złożeu że tłuee terłowe odpowd odelow Kelv- -Vogt []. W drug etpe leż zstąpć skłdowe ( t) = + sωt () t = + sωt () t = + sω t (7) prężee (). W t celu poowe zstosuje hpotezę uśredoej eerg odksztłce postcowego gdze () t dt = φ () t φ dt (8) (85) 5
6 φ φ + υ 3E + υ 3E () t = [ ~ () t ] () t = () t Z zleżośc () (7) (9) otrzuje sę: {[ ] [ () t ] () t () t 3[ () t ] } + + / ( + + ). (9) = 3 = ; () s s 3 = + + ωt ωt dt. () W ogól przpdku lcz / ( p p ) ( p p ) p= p= χ = = χ () p p p= p= / / ogą różć sę tle że otrze po ch zokrągleu lcz turle też są róże. Wówczs k k ω = k ω ω = k (3) ω wrżee () przjuje postć ( + ) / = +. (4) 3 PRZYKŁAD Wzczć prężee średe orz pltud prężeń zredukowch (3) () jeśl ktul st pręże skłdowe 5 Zeszt Nukowe AMW
7 Dw krter eogrczoej trwłośc zęczeowej prz ocążech okresowch ( t) = + s( ω t + α ) + s( ω t + α ) () t = + s( ωt + α ) + s( ωt + α ) () t = + s( ω t + α ) + s( ω t + α ). Rozwą ze Zleżośc (6) () pozwlją stwerdzć że prężee średe prężeń ~ t ~ t jest tke so wos zredukowch () () ( + ) / = = +. (5) 3 Różą sę tost pltud tch prężeń gdż zgode z (5) (7) [ = + cos cos( α α ) + + ( α α ) + 3( + )] / (6) orz zgode z (6) (4) Przkłdowo jeśl [ ( )] / = +. (7) 3 orz to Z ( 45) = MP R 36MP stl rc e = = MP = 3MP = 4MP = α = 8 α = 7 = = MP = 5MP = α = α = = MP = = [ cos8 ( ) cos7 ( )] / ( ) = 5937MP / = 57MP. (85) 53
8 W odeseu do wrtośc wrże ( / R ) = ( / 36) = MP Z rc e 4 w erówośc (4) wrtość stow 37% wrtość 4%. UWAGI KOŃCOWE () t Jk wk ze wzorów (5) (7) (6) pltud pręże zredukowego ~ zleż w stot stopu od kątów fzowch poszczególch skłdowch złożoego pręże () zejąc sę w grcch gdze: ( ) ( ) (8) = 3 p p p p p ; (9) p= ( ) ( + + ) / = 3 p p p. (3) p= ( ) ( + + ) N podstwe wzorów (6) (4) (7) (3) łtwo stwerdzć że ( ) = /. (3) Ozcz to że spełee krteru eogrczoej trwłośc zęczeowej wkjącego z przjęc pręże zredukowego w postc () rc ( R ) < Z / (3) gwrtuje wższ pozo ezpeczeństw zęczeowego ż spełee krteru (4). e BIBLIOGRAFIA [] Awrejcewcz J. Krsko W. A. Drg ukłdów cągłch Wdwctw Nukowo-echcze Wrszw. 54 Zeszt Nukowe AMW
9 Dw krter eogrczoej trwłośc zęczeowej prz ocążech okresowch [] Cepel C. heor of eerg trsforto sstes d ther pplcto dgostcs of opertg sstes Appled Mth. d Coputer Sceces 993. [3] Dląg Z. Orłoś Z. Jkuowcz A. Wtrzłość terłów t. Wdwctw Nukowo-echcze Wrszw 996. [4] Kocńd S. Szl J. Podstw olczeń zęczeowch Wdwctwo Nukowe PWN Wrszw 997. [5] Koled J. O ftgue sfet of etllc eleets uder sttc d dc lods Poltechk Gdńsk Gdńsk 4. [6] Koled J. O wzczu wrstwc ezpeczeństw zęczeowego eleetów prz ocążech okresowch Zeszt Nukowe AMW 9 r 3. [7] Kozk J. Prole oce wrch włsośc wtrzłoścowch stlowch dwupowłokowch struktur okrętowch Poltechk Gdńsk Gdńsk 5. [8] Pl-Luc. Lsserre S. Hgh ccle ultl ftgue eergetc crtero tkg to ccout the voluc dstruto of stresses Proc. of 5th It. Cof. o Bl/Multl Ftgue d Frcture Opole 997 Vol.. [9] Rosochowcz K. Prole pęk zęczeowego kdłuów sttków Okrętowctwo Żeglug Gdńsk. [] Soso C. M. Multl ftgue of welded jots uder -phse d out-of- -phse locl strs d stresses It. J. Ftgue 995. [] Yk Y. Ktgw M. Mtece of steel rdges o Hoshu Shkoku crossg J. Costr. Steel Reserch Vol. 58. WO CRIERIA OF INFINIE FAIGUE LIFE UNDER PERIODIC LOADS ABSRAC he pper dels wth the ftgue sfet of ches d structures loded elow the ftgue lt. Coed perodc stress s cosdered the copoets of whch re gve the for of Fourer seres. I order to forulte crtero of fte ftgue lfe reduced stress s detered whch s equvlet to the orgl stress ters of ftgue stregth. he equvlece (85) 55
10 codtos re sed o the verge-dstorto-eerg stregth hpothess. wo solutos of ths prole re copred. Kewords: coed stress reduced stress ftgue crter. Recezet dr h. ż. Jusz Kozk 56 Zeszt Nukowe AMW
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Projekt 3 3. APROKSYMACJA FUNKCJI
Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle
1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n
lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.
BADANIE DRGAŃ RELAKSACYJNYCH
BADANIE DRGAŃ RELAKSACYJNYCH Ops ukłdu pomrowego Ukłd pomrow skłd sę z podstwowch częśc: dego geertor drgń relkscjch, zslcz geertor, geertor odese (drgń hrmoczch), oscloskopu. Pokz rsuku schemt deow geertor
Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19
Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej
WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr.........
WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI prowdząc(y)... grup... podgrup... zespół... seestr... roku kdeckego... studet(k)... SPRAWOZDANIE Z PRACY LABORATORYJNEJ r......... pory wykoo
instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego
5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell
Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.
terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
PROGRAMOWANIE LINIOWE.
Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe
11. Aproksymacja metodą najmniejszych kwadratów
. Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc
Wybrane rozkłady prawdopodobieństwa użyteczne w statystyce
ttstk Wkłd 5 Ad Ćel A3-A4 3 cel@gh.ed.pl Wre rozkłd prwdopodoeństw żtecze w sttstce Rozkłd ch-kwdrt o stopch swood - to rozkłd s kwdrtów ezleżch zech losowch o stdrzow rozkłdze orl tz......d. rozkłd o
Środek masy i geometryczne momenty bezwładności figur płaskich 1
Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej
dr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej
Isttt Atomt Iformt Stosowe Poltech Wrszwse Algortm predce w wers ltcze z efetwm mechzmem względ ogrczeń wść Potr Mrs Pl prezetc. Wstęp. Algortm reglc predce 3. Uwzględe ogrczeń łoŝoch sgł sterąc 4. Uwzględe
Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel
Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze
Zapis wskaźnikowy i umowa sumacyjna
Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn
Rozkłady prawdopodobieństwa 1
Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke
Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
Metody numeryczne procedury
Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc
r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów
Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Ą Ó ć Ó Ś ć Ó Ń ć ć ź ć ŚÓ ć ź ć Ź Ź Ó ć ć Ź Ź ć Ą ź Ż Ó ź ć ć Ż Ó Ó ć Ó ć Ą Ś Ó ć Ź Ż ć ć ć Ż Ź ć Ź Ś ź Ź Ś Ó ź ć ć ć ć ć Ó ć Ć Ó ć ć ć ć ć ć Ż Źć ć ć Ó ć Ó ć ć Ó ć ć Ć ć Ż Ó ć Ć Ż Ź ć Ę Ę Ż Ź Ż ć ć ć
Ś ć Ą Ż Ż Ź Ą Ś ż Ź Ż Ó Ł Ś Ą Ó ć ź Ą Ś Ż Ż Ść Ś Ó ć ć ć Ó Ż ć Ó Ż Ż Ś Ż Ó Ś Ż Ż ć ć Ó Ść Ś Ż Ó ć ć Ź Ż ć Ż Ś Ó Ż żć Ś Ś Ź ć Ż ć Ż Ż ż ć Ź Ż Ż Ż ć ć ć ć Ż Ó Ż Ó Ź Ł Ż Ż Ó Ż Ę Ż ć Ż Ó Ś Ó Ą Ż Ś ć Ż Ś Ś
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Potr Szczepńk Ktedr Chem Fzczej Fzkochem Polmeró ANALIZA REGRESJI REGRESJA LINIOWA. REGRESJA LINIOWA - metod jmejzch kdrtó. REGRESJA WAŻONA 3. ANALIZA RESZT 4. WSPÓŁCZYNNIK KORELACJI,
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
Przykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
Ż ć ź ć ć ź Ż Ż Ł Ż ć Ż Ż Ż ć Ł Ż ć ć ć ź Ż Ż Ż Ż Ż Ż ć ć ź Ż ć ć ć ź Ż Ż ć Ż Ż źć ć Ż Ż Ż ć Ż Ż Ż Ż Ś ć Ż ć Ł Ż Ł ć Ą Ż Ł ć Ż ć Ż Ż Ż ć ć ć Ż Ż Ż Ż Ż Ż Ł ć Ł Ż ź ć Ż Ż Ż ć ć ć ć ć Ż Ż Ą Ż Ż Ż ć Ż Ż ć
POMPY ZATAPIALNE MSV
POMPY ZATAPIALNE MSV MSV- Chrkterstk ogóln Pomp MSV- przeznczone są do pompowni ścieków snitrnch i przemsłowch, nie zwierjącch cił stłch i włóknistch (ze względu n mł przelot pod wirnikiem). Znjdują zstosownie
DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana
ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Ś ń Ó Ł Ą Ę Ą Ń Ó Ś Ż Ę ń ń Ń Ł Ą ń
Ł Ł Ń Ń Ś ń Ó Ł Ą Ę Ą Ń Ó Ś Ż Ę ń ń Ń Ł Ą ń Ą Ł ń Ś Ś ć ń ć ć ń ć ć ć ŚĆ Ż ć ć ń ń ć ń Ż Ć ń ć ć ć ń ć ć ć ć ć ń ć ć Ż ć ń ć ć Ę ć ć ć ń ć ń Ą ć Ą Ó ć ć Ą ć ć ć ń Ł ć ć ń ć ć Ś Ć Ć Ć Ć Ć Ć ć Ć Ć Ć Ż ć
SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA
POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm
Mechanika teoretyczna
pdkow prestreego ukłdu sił ieżc ecik teoretc kłd r 56 Ukłd prestree. etod grfic: = 2 = = 2 3 2 3 = i 3 2 2 2 3 2 2 litc etod wci wpdkowej α = 2 cosα = = γ 2 β 2 cos α cos β cos γ = cos β = = 2 cosγ = =
SZTUCZNA INTELIGENCJA
SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.
TEORIA WAGNERA UTLENIANIA METALI
TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA
Ś ć Ś Ę Ś Ś Ś Ś Ę Ę
Ł Ś Ę ź Ż Ż ź ź Ż Ś Ż Ś Ł Ś ć Ś Ę Ś Ś Ś Ś Ę Ę Ś Ę Ń Ę ć ć Ę Ś Ę Ś Ę Ś Ś Ś ŚĘ ć Ś Ś Ś Ś ŚĘ Ł Ś Ł ź Ę ź ź ź ź Ń Ś Ś Ń ź ć ź ź ź ź ź ź Ś ź Ż ź Ń ź Ś ź ź ć Ę ź Ę Ę Ś Ę Ę Ł ź ź Ę ć Ś Ś Ł Ś Ę Ś Ł Ł Ś ć Ł ź Ł
ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB
pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:
ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW
1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj
METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku?
METODY NUMERYCZNE Wkłd. dr h.ż. Ktrz Zkrzewsk, prof.agh Met.Numer. wkłd Pl Aproksmc Iterpolc welomow Przkłd Met.Numer. wkłd Aproksmc Metod umercze zmuą sę rozwązwem zdń mtemtczch z pomocą dzłń rtmetczch.
R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10
Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:
Ż Ś Ń Ą Ą ć
Ż Ś Ń Ą Ą ć Ń ź Ż Ń Ą Ń Ń ć Ń ć ź Ń ć ć ć Ł Ń Ń ć ć Ą Ą ć ć Ń ź Ą ć ć ć ć ć ć ć ć Ż źć ć ć Ą ć ć ć ź Ą ć ź ź ź ź Ź ć ć Ż ć Ą ć ź Ą Ą ź Ń ź ź ź Ś ź Ż Ń ć ź Ń Ł ć ć ć ć ć Ą Ń Ń ć Ń źć Ż Ń ć ć Ą ć ć Ń ć Ń
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH
pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego
Ę Ę Ę Ą ź Ę ń Ę ć ć ń ć ć ń Ą Ę ć ń źć ń ć ź ń ć ć Ę ć ć ć ć ń Ś ć ć Ć ć ć Ć ń ć ć Ć Ć Ś Ś ć Ś Ż ć ń ć Ć ń ć ń ć źć ć ć ć ń Ć ć Ć ń ń ń ń ń ń ć ź ć ń ć ć ć ć ć ć ń ź ń ć ń ź ć ć ć Ć ć ć ć ź ć Ć ć ć ć ć
Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak
Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest
ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT
ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w
ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą
ć ć ń ń ć ć ć ć ń ć ń ć ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą ć Ó Ż ÓŻ ć Ó Ó Ż Ó Ż Ó ń Ó Ż ć Ż ń ź ć ć ć ć ć ć ć ń ź ń Ż ć Ł Ź ć ć ź ź ć ć Ż Ś Ż Ż Ó ć ź ć ć ń ć ń Ą ń Ą Ó ć Ó ć Ś ć ć ć ń Ś ć ć Ż
DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH
Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,
ń ń ń
Ą ź ć ń ń Ą ń ń ń Ą Ó ń Ą ć Ą Ń Ą ć ć ć ń ń Ą ć Ą ć ć ń ń ń ń ź ć ź Ą ć ć ć Ę ń Ó ń ń Ę Ą ć ń ń Ń ń ń Ń ć ć ń ź Ę ń ź ń ź ć ć ź ć ń ń ć ć ć ń ć ć ć ć ć Ę ć ć ź ć ź ń ć ć ń Ą ń ć ź ć Ą ź ć ń ć ź Ó Ś ć ń
GEOMETRYCZNA ANALIZA WRAŻLIWOŚCI KONSTRUKCJI PRĘTOWYCH W UJĘCIU LINIOWYM
Zeszt Nukowe WSIf Vo 3, Nr, 04 Drusz Bojczuk Potechk Śwętokrzsk, Wdzł Zrządz Modeow Komputerowego, Ktedr Iżer Produkcj, Zkłd Metod Optmzcj A. Tsącec Pństw Poskego 7, 5-34 Kece em: mecdb@tu.kece.p GEOMETRYCZNA
± - małe odchylenie od osi. ± - duże odchylenie od osi
TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń
ż ć ć ż ż ż ż ź ć ż ć ż ż ź ż ć ż ź ż ć ź ż ż ź ć ż ż ć ż
Ś Ś Ż Ó ż ż ż ż ć ż ż ć ż ż ż ż ź ż ż ż Ó Ś ż ć ć ż ż ż ż ź ć ż ć ż ż ź ż ć ż ź ż ć ź ż ż ź ć ż ż ć ż ż Ś ż ż ć ż Ś Ó ż ż ż ć ć ż ć ź ż ż ż ć ć ć ć ż ż ź Ó ć ż ż ż ć ź ż ć ż ć ż ż ż ż ż ć ć ć ż ż ż ź ż
11 stycznia 2009r. Wielka Orkiestra Świątecznej Pomocy, po raz czwarty w siedemnastoletniej tradycji Orkiestry, zagrała w Ornontowicach.
NR 3/48/2008/2009 WUEĘCZN ń/ 11 2009 W O Ś O O O ć ś ż F G 1500 2000 ń Oń N U G N O N Z - ż - Y R Z B O L N Z G XV F ć ż O WO- Ś XV F WOŚ 3650 1428 1445 B!!! O WOŚ 15 87115 1 J ń - B Z L 22 2009 C W L
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
ELEMENTY TEORII GIER
ELEMENTY TEORII GIER Śwt s otcząc pełe est koflktów rwlzc. Moż weć lcze przkłd stuc deczch, ędz : wo, kpe poltcze, kpe reklowe rketgowe rwlzuącch ze sobą fr wele ch, w którch do cze z koflkte ędz ch uczestk.
Ł Ż ś ć ż ż ś ś ż ś Ę ś Ę ż ź Ż ść Ż
Ż Ę Ł Ż ś ć ż ż ś ś ż ś Ę ś Ę ż ź Ż ść Ż Ż ś ś ś ć ś Ż ć ź ż ś ż ć ź ź ź Ę ć ż Ń ść ć Ł Ż ś ść ś ż ć ż ć ć ć ć ć ść ć ś ś ć ż ź ć ć ż ś ć Ę ś ż ć ść ć ź ź ś Ź ś ść ś ś ć ś ż ż ś ś ś ś ś ż ś ś Ź ż ś Ś ś
Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó
Ą Ł ć Ę Ę Ł Ź Ł ż ż ż ż Ó Ł Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó ż Ż Ó Ż Ś ć ć ż Ś Ż Ó Ż Ó ż ż Ż ż ż Ż Ż Ą ć Ż Ó ż Ż Ż ż ż Ż Ó ż Ż Ś Ć ż Ł Ę Ę Ź ć Ó ć Ś Ż ż ż Ę ż ż Ę Ż Ś ż Ś Ż ż Ś Ż Ż ż ż Ż Ż Ż Ż ż Ś Ż Ż ż Ż ż ż Ź Ż
Przydatna wiedza dotycząca systemów transmisji cyfrowej
rzd wedz docząc ssemów rsms crowe Ssem rsms crowe Krzszo Wesołowsk Wprowdzee Cel wkłdu: rzpomee podswowch zgdeń z eor sgłów, przewrz sgłów rchuku prwdopodoeńsw rdzo przdch w zrozumeu dzł crowch ssemów
ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH
ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLVIII NR 1 (168) 007 Janusz Kolenda Akademia Marynarki Wojennej ENERGIA DYSYPACJI W SPRĘŻYSTOLEPKIM PRĘ CIE PRZY HARMONICZNYCH OBCIĄŻENIACH STRESZCZENIE
ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń
Ź Ź Ó Ń Ó ź ć Ź ć ć ć ć Ń Ę Ś Ę Ę ć Ę ć Ń Ź ć Ź Ę Ę ć ć ź Ę Ę Ź ć Ó Ó Ś Ó Ń ŚĆ Ę Ś Ó ćć Ó Ś Ę Ś Ę Ę Ś Ś ć Ę Ó Ę Ó Ę Ń Ć Ś Ś Ś Ś Ó ŚĆ Ó ć Ń Ń Ó Ę Ó Ó Ó Ś Ę Ć Ó ć ć Ó ź Ę ć ć Ź ć ć ć ć ć ź ć Ź ć Ć ć ć Ś
Ś Ż ż Ż
Ś Ż ż Ż ż ć ć ć ć ć ć ż ż Ż ż Ż ż ż ć ż ż Ż Ż ż Ż ż Ż ż Ż Ż ż Ż ż ć ć ć ż ć ż ż ż ć Ż ć ć Ś ć Ż ć ż ź ż ż ż ć ż ż ż ż ć Ś ż Ż ż Ć Ć ć Ż ź ć ć ć ć ż ź ć ć Ść ć ż ź Ść ć ź Ś ć ć ć Ś ć ć ć ć ć ź ż ż ć ć
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
ń ń
Ł ń ń ś ń ś ś ń Ż ś Ż ś ń ć ź ć ń ś Ż Ł ść ź ść ń ń ś ś ń ś ć ś ć ć ń ź ś ź ś ś ź Ł ń ć ś ń ń ś Ł ść ć ć ś ś ń ś ś ś ś ń ść ść ź ć ć ś ń ś Ł ść ć ć ś ść ś ś ń ś ś ś ź ć ś ść ś ś ś ć Ł ś ś ś ń ść Ż Ą ść
PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH
Dwne: Centrlne Biuro Projektowo-Bdwcze Budownictw Wiejskiego 04-026 Wrszw 50, l. Stnów Zjednoczonyc 51 tel. 22-810-83-78; 22-810-64-89; fx; 22-810-58-97; e-il: isprol@isprol.pl ; www.isprol.pl PROJEKTY
IZBA KSIĘGARSTWA POLSKIEGO Sprawozdanie finansowe za rok 2011 - dodatkowe informacje i objaśnienia
NOTA nr 1 ZMIANY W STANIE WARTOŚCI NIEMATERIALNYCH I PRAWNYCH - WARTOŚĆ BRUTTO Koszt zkończonych prc rozwojowych Wrtość firmy Inne wrtości niemterilne i utorskie prw mjątkowe, prw pokrewne, licencje, koncesje
Ć ć ń Ć ń ć ć Ć
ć Ł ś ś Ć ć ć ń Ć ć ń Ć ń ć ć Ć Ć Ć ń ć Ł ś ć ń ć Ć ś Ć ń ć ć ź ś ś ść Ł ść ś ć ź ć ś ć ś ć ć ć ć Ć ś ś ć Ć ń ś ź ć ź ć ś ń ń ń ś Ą źć Ć Ć Ć ć ź ć ź ś ć Ę Ć ś ć ś ć ć ś Ć ć ś Ę Ć Ć ć ź ć ć Ć ń Ę ć ć ń
Metody Numeryczne 2017/2018
Mod urcz 7/8 Ior Sosow III ro Iżr Oczow II ro Włd 5 Rodzj roscj 8 8 8 - - - - 3 8 8 6 8 roscj rocj roscj jdosj [ ] roscj śrdowdrow d Twrdz Wrsrss ów ż d dowoj ucj oż zźć wo o dowo ł odchu s od j ucj Br
PROJEKTY GOTOWE DŹWIGARÓW DACHOWYCH
Dwne: Centrlne Biuro Projektowo-Bdwcze Budownictw Wiejskiego 04-026 Wrszw 50, l. Stnów Zjednoczonyc 51 tel. 22-810-83-78; 22-810-64-89; fx; 22-810-58-97; e-il: isprol@isprol.pl ; www.isprol.pl PROJEKTY
Tok sprawdzania nośności ścian obciążonych pionowo wg metody uproszczonej zgodnie z PN-EN 1996-3
To sprwdzi ośości ści ociążoyc pioowo wg eody uproszczoej zgodie z P- 996- UWAGA: ośość ści eży sprwdzć żdej odygcji, cy że gruość ści i wyrzyłość uru ścisie są ie se wszysic odygcjc..... 5. De: rodzje
Wykład 9. Podejmowanie decyzji w warunkach niepewności
Wkłd 9. Podejowie deczji w wrukch ieewości E L l E E F E F l S 0 0 ; R D D F F D i F() - wrtość zieej losowej - zbiór ciągł f - fukcj gęstości rozkłdu rwdoodobieństw zieej losowej Wówczs: d f E L l d
Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść
Ś Ś ś ś ś ś Ą Ą ź ź ć ź Ę ś ń ś ś Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść ć Ę ć Ą ś ś ń ń ć ś ś ń Ń ś ś ć ć ń ś ź ś ść ń Ź ń ść ś ń ń ść ś ś ń ść ń ść
Wir basteln ein Kartontheater
Wr bstl Krtottr SCENARIUSZ LEKCJI Tmt: Wr bstl Krtottr Cl: Uczow: pozją podstwow słowctwo z zkrsu Ttr, rozumją tkst będący strukcją wyko scy ttrlj, wykoują scę do późjszgo przdstw. Kls: SP, klsy 4 6 Md/Mtrły:
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Wygładzanie i filtrowanie danych z przeznaczeniem do interpretacji widm spektroskopowych.
Uwerstet Moł Koper Wdzł Che Złd Che Fzcze Mrusz Hu Wgłdze fltrowe dch z przezczee do terpretc wd spetrosopowch. rc lcecc wo w Złdze Che Fzcze pod erue prof. ould Wódzego Toruń Sps treśc:. Cheoetr.. Modele.
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE
Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem
RÓWNANIA RÓŻNICZKOWE WYKŁAD 7
RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z
Egzamin dla Aktuariuszy z 15 marca 2010 r. Matematyka Finansowa
Egzm dl Akturuszy z 5 mrc 0 r. Mtmtyk Fsow Zd Krok : Ay koc roku yło co jmj ml K mus spłć rówość: 000000 50 000 K 50 000 000000 K Krok : Lczymy st kot koc roku zkłdjąc, Ŝ koc roku mmy ml 000000 50 5000
Wybrane rozkłady prawdopodobieństwa użyteczne w statystyce
Wyre rozkłdy prwdopodoieństw żytecze w sttystyce Rozkłd chi-kwdrt o stopich swoody - to rozkłd sy kwdrtów iezleżych zieych losowych o stdryzowy rozkłdzie orly N tz iid N = i i rozkłd y o kcji gęstości
R A P O R T. Wykonał: dr hab. inż. Piotr Banasik prof. nzw.agh dr inż. Marcin Ligas dr inż. Jacek Kudrys dr inż. Bogdan Skorupa
R A P O R T Oprcowe prmetrów trsformcj współrzędch z ukłdu 1965 z Ukłdu Loklego Krkowskego do ukłdu 000 dl potrzeb zsobu grfczego obszrze powtu krkowskego Wkoł: dr hb. ż. Potr sk prof. zw.agh dr ż. Mrc
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.
Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników
Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś
Ł ń ść ś Ż ś ś ć ś ś Ż ż ś ś ść ś śń ż Ż ć ś ń Ś ż ć ż ść Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ą Ż Ą ś ż ż ż ż ż ż ż ż ć ż ż ś ć ż ż ź ź ń ś ć ż ć ć ż ż ć ż ż ż ś ć ż ż źć ż ż ż ż Ż ż ń ż ż