Komputerowa Analiza Danych Doświadczalnych
|
|
- Grzegorz Stachowiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk tel: www: Politechnika Warszawska Wydział Fizyki Pok. 117b (wejście przez 115) 1
2 Regulamin przedmiotu - Zajęcia trwają 15 tygodni (1 godzina wykładu, 2 godziny laboratorium) - Warunki zaliczenia: a) zaliczenie wykładu (kolokwium z teorii na ostatnim wykładzie ) b) zaliczenie laboratorium: - przewidzianych jest 15 zajęć laboratoryjnych (pierwsze zajęcia wprowadzające, 2 kolokwia, ostatnie zajęcia będą przeznaczone na wystawianie ocen i ewentualne poprawy; jest 11 zajęć punktowanych); - obecność jest obowiązkowa na każdych zajęciach (możliwe 2 nieobecności); - spóźnienie na zajęcia powyżej 15 minut automatycznie jest odnotowane jako nieobecność; - programy należy oddać na tych samych zajęciach- nie ma możliwości oddania za tydzień; - programy oddane na zajęciach są oceniane w skali 0-5 pkt (pierwsze zajęcia bez punktów); - w przypadku nie skończenia programu na zajęciach oceniony zostanie napisany fragment; - w przypadku usprawiedliwionej nieobecności można z prowadzącym ustalić formę zaliczenia zaległego programu na mniejszą (4 pkt) ilość punktów; - w trakcie semestru będą 2 kolokwia: jedno w połowie semestru, drugie na końcu; - kolokwium będzie polegało na napisaniu 3 programów z materiału zrealizowanego na zajęciach, o podobnym stopniu trudności, każde zadanie będzie punktowane w skali 0-5 pkt; maksymalna liczba punktów z jednego kolokwium to 15 pkt; Na ocenę końcowa wpływają wyniki z kolokwium z wykładu (z wagą 0.3), z kolokwium z laboratorium (0.4) oraz z programów napisanych na zajęciach (z wagą 0.3). 2
3 Zalecana literatura 1. S. Brandt; Analiza danych, PWN, Warszawa (1999) 2. R. Nowak, Statystyka dla fizyków, PWN, Warszawa (2002) 3. W.T.Eadie, D.Drijard, F.E.James, M.Ross, B.Sadoulet; Metody statystyczne w fizyce doświadczalnej, PWN, Warszawa (1989) 4. A.Plucińska, E.Pluciński; Elementy probabilistyki, PWN, Warszawa (1979) 5. Programy biblioteki CERN : CERNLIB, HBOOK, PAW, ROOT Matriał tego wykładu został opracowany m. in. na podstawie skryptu: Jolanta Gałązka-Friedman, Irma Śledzińska Metody opracowania I analizy wyników pomiarowych ; skrypt wykorzystywany w Laboratorium Fizyki I 3
4 Program wykładu 1) Pomiary w eksperymentach fizycznych (przypomnienie z rachunku błędów). 2) Zmienne losowe i ich rozkłady (1D, 2D, nd, propagacja błędów). 3) Elementy metody Monte Carlo, generacja liczb pseudolosowych za pomocą komputera. 5) Podstawowe rozkłady statystyczne (dyskretne i ciągłe; centralne twierdzenie graniczne). 6) Pomiar jako pobieranie próby. Estymatory. 7) Metoda największej wiarygodności. 8) Weryfikacja hipotez statystycznych (m. in. test χ 2 ) 9) Metoda najmniejszych kwadratów (przypadek liniowy, wielomianowy,...) 11) Zagadnienie minimalizacji i optymalizacji. 13) Modelowanie komputerowe eksperymentu. 14) Współczesna realizacja eksperymentów fizycznych. 4
5 Błędy i niepewności pomiarowe Dokonując pomiaru danej wielkości (np. fizycznej), niezwykle ważne jest: - poprawne wykonanie tego pomiaru, - analiza końcowych wyników pod względem ich wiarygodności, poprawności, - przedstawienie uzyskanych rezultatów tak, by możliwe było ich poprawne zinterpretowanie. Bardzo często dzieje się tak, że mierzona wielkość nie pokrywa się z jej wartością rzeczywistą. Przyczyny tego faktu mogą być bardzo różne. Wyniki pomiarów są obarczone błędami pomiarowymi. 5
6 Błędy i niepewności pomiarowe Rodzaje błędów pomiarowych: - błędy grube,, tzw. pomyłki, które należy wyeliminować (np. wykonujemy serię pomiarową 1000 zliczeń rozpadu danego pierwiastka, faktycznie zostało zmierzone 999 zliczeń) - niepewności przypadkowe,, związane z mierzoną wielkością lub samą metodą pomiaru: eksperymentatorem wraz z otoczeniem lub przyrządem, jakim mierzymy (np. pomiar średnicy pręta ołowianego: niepewność systematyczna obiektu wynikać może z różnicami średnicy w różnych miejsach pręta, niepewność systematyczne metody: różnice w dociskaniu śruby mikrometrycznej); związane z wieloma niezależnymi od siebie przyczynami, ich cecha charakterystyczną jest to, że układają się one symetrycznie wokół wartości rzeczywistej - niepewności systematyczne,, których źródłem są ograniczone możliwości pomiarowe związane np. z klasą użytego przyrządu oraz możliwością odczytu jego wskazań przez eksperymentatora. 6
7 Prezentacja wyników pomiaru - Bezwzględna niepewność pomiarowa x x określa o ile wynik pomiaru x może różnić się od wartości rzeczywistej x 0 : x-x 0 x Zapis ten oznacza, że nie znamy wartości rzeczywistej, ale zakładamy, że mieści się ona w przedziale: (x- x) x) x (x+ x) 0 x) Wynik końcowy zapisujemy jako: x x 0 = x± x - Niepewność względna pomiaru to stosunek wartości niepewności bezwzględnej do wartości otrzymanego wyniku, wyrażony w procentach: x wzgl = ( x( x / x) * 100% 7
8 Prezentacja wyników pomiaru Końcowe wyniki należy prezentować wraz z odpowiednio dobraną jednostką oraz z odpowiednią precyzją. O precyzji świadczy ilość cyfr znaczących (od 1 do 9, 0 jest cyfrą znaczącą tylko wtedy, kiedy znajdyje się pomiędzy cyframi znaczącymi, np cyfry znaczące; 30 1 cyfra znacząca, ponieważ 300 = 3*10 2, w przypadku 2 cyfr znaczących: 30 = 3,0 *10 1 ). Niepewności pomiarowe podajemy zawsze z dokładnością do co najwyżej 2 miejsc znaczących i tylko wtedy, kiedy cyfrą znaczącą jest 1 lub 2. W pozostałych przypadkach wyniki są zaokrąglane do 1 cyfry znaczącej. 8
9 Prezentacja wyników pomiaru Zaokrąglanie: : ostatnia cyfra nie ulega zmianie, jeśli cyfrą następną jest cyfra z przedziału [0,4], jeśli cyfra kolejna jest z przedziału [5,9], to ostatnia cyfra zostaje zwiększona o 1. Wynik pomiaru jest zakrąglony zawsze do tego samego miejsca dziesiętnego, co jego niepewność. Przykłady poprawnie zapisanych wielkości: m = (92,34 ± 0,12) * 10-3 kg m wzgl = 0,13% I = (12,7 ± 0,8) ) ma I wzgl = 6% 9
10 Niepewności pomiarowe Pomiary wielkości fizycznych oraz szacowanie ich niepewności zasadniczono można podzielić na 3 kategorie: 1) przewaga niepewności systematycznych nad przypadkowymi, 2) przewaga niepewności przypadkowych nad systematycznymi, 3) niepewności przypadkowe są porównywalne z systematycznymi. W każdej z tych kategorii dodatkowo należy rozważyć przypadki, kiedy: - pomiar mierzonej wielkości następuje bezpośrednio (np. pomiar średnicy pręta śrubą mikrometryczną), - pomiar mierzonej wielkości następuje pośrednio (np. wyznaczenie objętości ołowianej kulki poprzez pomiar jej średnicy). 10
11 Ogólne zasady sporządzania wykresu 1) Mierzona wartość jest odkładana na osi odciętych (X). Osie powinny zostać oznaczone symbolem lub nazwą zmiennej wraz z odpowiednią jednostką 2) Skale obu osi należy dobrać w taki sposób, aby krzywa wykresu przebiegała możlwie przez całą (większość) powierzchnię. W praktyce: osie nie muszą zaczynać się od 0, lecz od wartości mniejszej niż wartość zmierzona, a kończyć na wartości większej niż wartość zmierzona. 3) Przedziałki skali muszą być wyrażnie zaznaczone, tak, by łatwo było odczytać punkty pomiarowe. 4) Punkty doświadczalne powinny być wyrażnie zaznaczone, tak, aby łatwo było je odróżnić od przeprowadzonej krzywej (teoretycznej). 5) Należy nanieść niepewności pomiarowe, jeśli znane są niepewności zarówno wartości odłożonej na osi odciętych, jak i rzędnych, to zaznaczane są kreski przechodzące przez środek zmierzonego punktu (np, jeśli błąd zmierzonej wartości odłożonej na osi x wynosi a, to rysowana jest pozioma kreska o długości 2a, gdzie środek przechodzi dokładnie przez wartość punktu na osi odciętych) 11
12 Przykłady poprawnych wykresów 6) Prowadząc krzywą teoretyczną, nie łączymy ze sobą punktów pomiarowych. Wartości zmierzone powinny fluktuować wokół krzywej. Krzywa powinna mieścić się w granicach punktów pomiarowych. Krzywa powinna zostać przeprowadzona w sposób ciągły. f x = 1 2 exp x x x 0 wartość oczekiwana odchylenie standardowe Przykłady poprawnie zaprezentowanych danych 12
13 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) 1) Pomiar bezpośredni Na wielkość niepewności systematycznej składają się: - użyty przyrząd (klasa przyrządu): np. pomiar napięcia woltomierzem analogowym na zakresie 300V, klasa miernika to 1%: błąd związany z przyrządem wynosi V 1 = 300V * 1% = 3V - wykonanie czynności pomiarowej przez eksperymentatora: jeśli niepewność wychylenia się wskazówki w mierniku ocenimy na 1V, to całkowita niepewność pomiaru wyniesie V V = 4V Oba przyczynki nie kompensują się, lecz dodają z jednakowymi znakami. 13
14 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) 2a) Pomiar pośredni metoda różniczki zupełnej Przypadek ten dotyczy większości pomiarów, gdzie niepewności systematyczne dominują nad przypadkowymi: np. pomiar objętości walca poprzez pomiar jego wysokości oraz średnicy podstawy. Na przykładzie funkcji jednej zmiennej: Chcemy obliczyć zmianę ΔY Y funkcji f(x) przy zmianie jej arumentu Δx Y ± Y = f x± x Rozwijając w szereg Taylora mamy oraz zaniedbując wyrazy, gdzie Δx występuje w potędze wyższa niż 1: 1 Y ± Y = f x ± x df x dx 14
15 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) Ponieważ: Y = f x Y = Bezwzględna niepewność wielkości będącej funkcją jednej zmiennej (której wartość mierzymy) równa jest bezwzględnej niepewności wielkości mierzonej pomnozonej przez pochodną funkcji. df x dx x Uogólniając ten przypadek na funkcję wielu zmiennych Y= f(x, x,..., x ): 1 2 n Y = f x x 1 x 1 f x x 2 x 2... f x x x n n 15
16 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) 2a) Pomiar pośredni metoda różniczki zupełnej - przykład Mamy 2 równolegle połączone oporniki R oraz R 1. Błąd wyznaczenia oporności 2 każdego z nich wynosi 10%. Wyznaczyć wartość oporu zastępczego. R 1 =40, R 2 =60, R 1 =0,4, R 2 =0,6 1 R = 1 R 1 1 R 2 R= R 1 R 2 R 1 R 2 =24 R= R R 1 R 1 R R 2 R 2 R R 1 = R 2 R 1 R 2 R 1 R 2 R 1 R 2 2 R R 2 = R 1 R 1 R 2 R 1 R 2 R 1 R 2 2 R 1 R R 2 R=0,84 0, ,6 [ ]=0,72 R= 24,0±0,7 16
17 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) 2a) Pomiar pośredni metoda różniczki logarytmicznej W przypadku, kiedy funkcja Y= f(x, x,..., x 1 ) ma postać iloczynową, 2 n wygodniej jest stosować tę metodę. a Y = A x 1 a 1 x a n xn Po zlogarytmowaniu: ln Y =ln A a 1 ln x 1 a 2 ln x 2... a n ln x n Różniczka: dy Y =a 1 dx 1 x 1 a 2 dx 1 x 2 ln Y... a n dx n x n Y Y = x i a i x i 17
18 Niepewności systematyczne (duże( w porównaniu z przypadkowymi) Y = A x 1 a 1 x2 a 2... xn a n Y Y = x i a i x i Przykład: wyznaczenie oporności opornika, na którym zmierzono spadek napięcia U oraz przez który przepłynął prąd stały o natężeniu I U = 31,07±0,52 V I = 2,01±0,07 A R= U I = 31,07 2,01 V / A=15,46 R R = U U I =0,0167 0,0348=0,515 I R R= 15,4±0,8 18
19 Niepewności przypadkowe (duże( w porównaniu z systematycznymi) 1) Pomiar bezpośredni Przykład: została zmierzona n=1000 razy grubość ołowianego pręta za pomocą śruby mikrometrycznej (niepewność systematyczna od śruby to x x = 0,01 mm). Wyniki zestawiono na histogramie, gdzie szerokość jednego przedziału wynosi x =. 0,05 mm. Rysujemy rozkład częstości, a następnie dopasowujemy rozkład Gaussa, charakteryzujący się parametrami: wartością średnią a oraz odchyleniem standardowym σ. 19
20 Niepewności przypadkowe (duże( w porównaniu z systematycznymi) Średnia arytmetyczna: Odchylenie standardowe pojedynczego pomiaru: Średni błąd kwadratowy średniej: x m=x= i n x x i 2 n 1 S x = S x = S x 2 n = x x i n n 1 Wartości x±s x określają przedział, w jakim z prawdopodobieństwem 68% nalezy oczekiwać wartości rzeczywistej. Wzięcie przedziału równego x±2s x lub x±3s x spowoduje wzrost tego prawdopodobieństwa do 95,4% oraz 99,7%. W praktyce podajemy wynik na poziomie 1 odchylenia standardowego. 20
21 Niepewności przypadkowe (duże( w porównaniu z systematycznymi) 2) Pomiar pośredni Załóżmy, że przedmiotem pomiary jest wielkość Z=f(X, X,...X ). 1 2 n Mierzone bezpośrednio są wielkości wraz z ich niepewnościami: Można wykazać, że Z = f X 1, X 1,..., X n X 1, X 2,... X n S X 1,S X 1,..., S X n A także: S Z = f x 1, x 2,..., x n x i 2 2 x 1, x 2,..., x n s xi Przykład: Zmierzona została długość ołowianego pręta: Celem jest wyznaczenie objętości tego pręta. Zmierzono także średnice, otrzymano wynik: d±s d = 5,02±0,12 cm l±s l = 1,05±0,11 cm Objętość: V = d / 2 2 l=20,78 cm 3 Błąd: S V = f l, d 2 l s 2 l f l, d 2 s 2 d d =2.39cm 3 V = 20,8±2,4 cm 3 21
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl Tel: +48 22 234 58 51 Politechnika Warszawska Wydział Fizyki Pok. 117b (wejście przez 115) www:
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk Konsultacje: Poniedziałek: 10.15-11.00 Piątek: 11.15-12.00 e-mail: gos@if.pw.edu.pl Tel: +48 22 234 58 51 Politechnika Warszawska
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 1 24.02.2017 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 2016/2017 Prowadzący przedmiot Wykład: Laboratoria: dr inż. Łukasz Graczykowski
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Fizyka (Biotechnologia)
Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 1 24.02.2017 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Prowadzący przedmiot Wykład: Laboratoria: dr inż. Łukasz
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby
KARTA INFORMACYJNA PRZEDMIOTU
Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i
Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru
iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2018/19 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Dzięki uprzejmości: Paweł Korecki Instytut Fizyki UJ pok. 256 e-mail: pawel.korecki@uj.edu.pl http://users.uj.edu.pl/~korecki
Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH
Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać
Podstawy opracowania wyników pomiarów
Podstawy opracowania wyników pomiarów I Pracownia Fizyczna Chemia C 02. 03. 2017 na podstawie wykładu dr hab. Pawła Koreckiego Katarzyna Dziedzic-Kocurek Instytut Fizyki UJ, Zakład Fizyki Medycznej k.dziedzic-kocurek@uj.edu.pl
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Laboratorium Fizyczne Inżynieria materiałowa Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego błąd pomiaru = x i x 0 Błędy pomiaru dzielimy na: Błędy
WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY
METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW 1. WSTĘP
METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW 1. WSTĘP U podstaw wszystkich nauk przyrodniczych leży zasada: sprawdzianem wszelkiej wiedzy jest eksperyment, tzn. jedyną miarą prawdy naukowej jest doświadczenie.
Niepewności pomiarów
Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie
Określanie niepewności pomiaru
Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu
SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec
SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka Jakub S. Prauzner-Bechcicki Grupa: Chemia A Kraków, dn. 7 marca 2018 r. Plan wykładu Rozważania wstępne Prezentacja wyników
Podstawy niepewności pomiarowych Ćwiczenia
Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =
Dokładność pomiaru: Ogólne informacje o błędach pomiaru
Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.
Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.
Projektowanie systemów pomiarowych. 02 Dokładność pomiarów
Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.
Analiza i monitoring środowiska
Analiza i monitoring środowiska CHC 017003L (opracował W. Zierkiewicz) Ćwiczenie 1: Analiza statystyczna wyników pomiarów. 1. WSTĘP Otrzymany w wyniku przeprowadzonej analizy ilościowej wynik pomiaru zawartości
Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich
Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa
ROZKŁAD NORMALNY. 2. Opis układu pomiarowego
ROZKŁAD NORMALNY 1. Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE (Wstęp do teorii pomiarów). 2. Opis układu pomiarowego
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/
Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta
Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie
A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG.
A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. B. Metodyka wykonywania pomiarów oraz szacowanie niepewności pomiaru. Celem każdego
Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia
Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Zaznajomienie się z oznaczeniami umieszczonymi na przyrządach i obliczaniem błędów pomiarowych. Obsługa przyrządów
SYLABUS. Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy Centrum Mikroelektroniki i Nanotechnologii
SYLABUS Nazwa Wprowadzenie do metrologii Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod Studia Kierunek studiów Poziom kształcenia
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?
1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,
Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych
Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Marcin Polkowski (251328) 1 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia
02. WYZNACZANIE WARTOŚCI PRZYSPIESZENIA W RUCHU JEDNOSTAJNIE PRZYSPIESZONYM ORAZ PRZYSPIESZENIA ZIEMSKIEGO Z WYKORZYSTANIEM RÓWNI POCHYŁEJ
TABELA INFORMACYJNA Imię i nazwisko autora opracowania wyników: Klasa: Ocena: Numery w dzienniku Imiona i nazwiska pozostałych członków grupy: Data: PRZYGOTOWANIE I UMIEJĘTNOŚCI WEJŚCIOWE: Należy posiadać
WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU
Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU 1. Błąd a niepewność pomiaru Pojęcia błędu i niepewności
Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
Laboratorium Metrologii
Laboratorium Metrologii Ćwiczenie nr 1 Metody określania niepewności pomiaru. I. Zagadnienia do przygotowania na kartkówkę: 1. Podstawowe założenia teorii niepewności. Wyjaśnić znaczenie pojęć randomizacja
Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.
Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW
ĆWICZENIE 3 ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW 3.. Cel ćwiczenia Celem ćwiczenia jest nauczenie studentów określania błędów granicznych oraz niepewności całkowitej w pomiarach bezpośrednich i pośrednich
Pomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE
Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2
Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:
Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu
Pracownia Astronomiczna Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Każdy pomiar obarczony jest błędami Przyczyny ograniczeo w pomiarach: Ograniczenia instrumentalne
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów
wielkość mierzona wartość wielkości jednostka miary pomiar wzorce miary wynik pomiaru niedokładność pomiaru Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów 1. Pojęcia podstawowe
Graficzne opracowanie wyników pomiarów 1
GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
LABORATORIUM PROMIENIOWANIE w MEDYCYNIE
LABORATORIUM PROMIEIOWAIE w MEDYCYIE Ćw nr STATYSTYKA ZLICZEŃ PROMIEIOWAIA JOIZUJACEGO azwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa Cel ćwiczenia Rozpad izotopu promieniotwórczego wysyłającego
Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,
Analiza korelacyjna i regresyjna
Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i
FIZYKA LABORATORIUM prawo Ohma
FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl
Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.
Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Ć W I C Z E N I E N R J-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO
Niepewność pomiaru w fizyce.
Niepewność pomiaru w fizyce. 1. Niepewność pomiaru - wprowadzenie Każda badana doświadczalnie zależność fizyczna jest zależnością wyidealizowaną pomiędzy pewną liczbą wielkości fizycznych, to znaczy nie
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników
Zajęcia trwają 15 tygodni (2 godziny wykładu, 2 godziny laboratorium tygodniowo) Zaliczenie zajęć jest uwarunkowane zaliczeniem zajęć laboratoryjnych
Regulamin przedmiotu: Języki Programowania Zajęcia trwają 15 tygodni (2 godziny wykładu, 2 godziny laboratorium tygodniowo) Zaliczenie zajęć jest uwarunkowane zaliczeniem zajęć laboratoryjnych Prowadzący
Laboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Dokumentowanie wyników pomiarów protokół pomiarowy Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik
Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia
Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Ćw. 2: Analiza błędów i niepewności pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (200/20) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 2: Analiza błędów i niepewności pomiarowych
Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Statystyka inżynierska Rok akademicki: 2012/2013 Kod: JFM-1-210-s Punkty ECTS: 3 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia
Laboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Agrofi k zy a Wyk Wy ł k ad I Marek Kasprowicz
Agrofizyka Wykład I Marek Kasprowicz Agrofizyka nauka z pogranicza fizyki i agronomii, której obiektem badawczym jest ekosystem i obiekty biologiczne kształtowane poprzez działalność człowieka, badane
Statystyka matematyczna SYLABUS
Statystyka matematyczna nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS1-2SM Nazwa jednostki prowadzącej Wydział
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Wynik pomiaru jako zmienna losowa
Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1
Tranzystor bipolarny LABORATORIUM 5 i 6
Tranzystor bipolarny LABORATORIUM 5 i 6 Marcin Polkowski (251328) 10 maja 2007 r. Spis treści I Laboratorium 5 2 1 Wprowadzenie 2 2 Pomiary rodziny charakterystyk 3 II Laboratorium 6 7 3 Wprowadzenie 7
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,