Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych
|
|
- Bożena Kowalczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych Wojciech Marian Czarnecki Jacek Tabor GMUM Grupa Metod Uczenia Maszynowego Instytut Informatyki Wydziaª Matematyki i Informatyki Uniwersytet Jagiello«ski 13 Listopada 2013
2 GMUM WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26
3 5 Podsumowanie WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 1 Gªówna idea 2 uogólnione j dro Gaussa 3 Budowanie j dra 4 Ewaluacja
4 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Wst p Nasze podej±cie: Nowa metoda budowy j dra Lepsze dopasowanie si do geometrii danych Wyniki: Nieco zwi kszona jako± kalsykacji Zwiekszona stabilno± modelu Prosta metoda dziaªaj ca z ka»d implementacj SVM
5 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Gªówna idea Maszyna Wektorów No±nych
6 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Gªówna idea Maszyna Wektorów No±nych
7 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Gªówna idea Maszyna Wektorów No±nych - j dro Gaussa
8 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Gªówna idea Intuicja geometryczna
9 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Gªówna idea Intuicja geometryczna
10 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Gªówna idea Zanurzenie w przestrzeni cech j dro Gaussa φ(x) = N (x, I ) j dro Mahalanobisa (mrbf) φ(x) = N (x, cov(x )) uogólniony przypadek φ(x) = N (x, Σ x ) gdzie Σ x jest warto±ci pewnej transformacji x'a ( f (x) = Σ x )
11 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 uogólnione j dro Gaussa uogólnione j dro Gaussa Funkcja K(, ) jest j drem wtedy i tylko wtedy gdy jest poprawnym iloczynem skalarnym w pewnej przestrzeni. N (m 1, Σ 1 )(x) N (m 2, Σ 2 )(x)dx = 1 = 1 (2π)d det(σ 1 +Σ 2 ) e 2 m 1 m 2 2 Σ 1 +Σ 2.
12 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 uogólnione j dro Gaussa uogólnione j dro Gaussa 1 K γ (x, y) = det(σx +Σ y ) e γ x y 2 Σ x +Σ y.
13 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Gªówny algorytm Budowanie j dra 1 Ustal pewien podziaª Voronoi W 1,..., W k 2 Przypisz Σ x = cov(x W i ), gdzie x W i 3 Stwórz j dro K dla danych N (x, Σ x ), x X
14 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Gªówny algorytm Budowanie j dra 1 Wykonaj klastrowanie metod k-±rednich na X 1,..., X k 2 Policz kowariancj Σ i ka»dego podzbioru X i 3 Je±li które± kowariancje s nieodwracalne - zastap je kombinacj wypukª z kowariancj caªego zbioru (u»ywaj c pewnej maªej staªej ε) 4 Policz czynniki normalizuj ce dla ka»dej pary (i, j) i zapisz je w n ij 5 Policz odwrotno±ci sum macierzy kowariancji dla ka»dej pary (i, j) i zapisz je w S ij 6 Zwró funkcj j dra K γ (x, y) := n v(x),v(y) exp( γ(x T S v(x),v(y) y)), gdzie v(x) zwraca numer klastra do którego nale»y x
15 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Budowanie j dra Gªówny algorytm - uwaga Aby unikn ci ªych przelicze«odwrotno±ci macierzy/wyznaczników podczas poszukiwania parametrów, mo»na wykorzysta Kˆγ (x, y) = n v(x),v(y) exp(ln(k γ (x, y)/n v(x),v(y) ) ˆγ γ ).
16 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja - UCI Ewaluacja Tablica: Najlepszy wynik wg. accuracy liczony u»ywaj c walidacji krzy»owej z k = 5. RBF mrbf V 2 RBF Splice Diabetes Australian Breast-cancer Liver-disorders
17 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja - UCI Ewaluacja Tablica: Najlepszy wynik wg. accuracy liczony u»ywaj c walidacji krzy»owej z k = 5. rozmiar RBF mrbf V 2 RBF 1000 Splice Diabetes Australian Breast-cancer Liver-disorders
18 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja Diabetes - grid search dla miary accuracy
19 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja Stabilno± j der Gaussowskich w SVM P f (α) := prob{f (C, γ) α : (C, γ) G}.
20 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja Stabilno± j der Gaussowskich w SVM
21 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja Dlaczego k-±rednich? Przetestowali±my metody oparte o opodziaª Voronoi: k-±rednich z metryk Euklidesa k-±rednich z metryk Mahalanobisa ±rodki cie»ko±ci klas oraz nie u»ywaj ce podziaªu Voronoi: Gaussian Mixture Models
22 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja Dlaczego k-±rednich? Tablica: Najlepszy wynik wg. accuracy liczony u»ywaj c walidacji krzy»owej z k = 5, algorytmy klastruj ce dzieliªy dane na dwa klastry. metoda accuracy V k RBF V k RBF + class centers V k RBF + GMM V k RBF + Mahalanobis k-means 0.966
23 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja Czym to si ró»ni of k-±rednich + SVM? k-±rednich + SVM Uczenie 1 Poklastruj przestrze«u»ywaj c k-±rednich 2 Dla ka»dego klastra naucz niezale»ny SVM: SVM 1,..., SVM k Testowanie x 1 Przypisz x do klastra c(x) 2 Zwró wynik SVM c(x)
24 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Ewaluacja Czym to si ró»ni of k-±rednich + SVM? Tablica: Najlepszy wynik wg. accuracy liczony u»ywaj c walidacji krzy»owej z k = 5, algorytmy klastruj ce dzieliªy dane na dwa klastry. metoda accuracy V k RBF mrbf + k-±rednich RBF + k±rednich 0.963
25 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Dlaczego k = 2? Ewaluacja
26 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Nasz wkªad Podsumowanie 1 Proste uogólnienie j dra Gaussa o zªo»ono±ci obliczeniowej j dra Mahalanobisa mo»liwe do u»ycia z ka»d implementacj SVM 2 Dodaje nowy typ informacji do denicji j dra 3 Poprawia wyniki klaskacji 4 Wzrasta stabilno± modelu 5 Proces tworzenia j dra nie wymaga znajomo±ci etykiet wi c mo»e korzysta z niepoetykietowanego zbioru (np. w scenariuszu uczenia aktywnego) 6 Empiryczna analiza alternatywnych podej±
27 WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada / 26 Dzi kuj za uwag Podsumowanie Pytania? wojciech.czarnecki@uj.edu.pl Mog udost pni : Artykuª (prosz o ) Podobny (ideologicznie) artykuª pracuj cy z liniowym SVM (równie» prosz o )
Nieklasyczna analiza skªadowych gªównych
* Wydziaª Matematyki i Informatyki UAM Pozna«Referat ten jest przygotowany na podstawie wspólnych wyników uzyskanych z Karolem Der gowskim z Instytutu Zarz dzania Pa«stwowej Wy»szej Szkoªy Zawodowej w
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Przeksztaªcenia liniowe
Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y
W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji
W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt
Uczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
Macierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
Wstęp do przetwarzania języka naturalnego. Wykład 11 Maszyna Wektorów Nośnych
Wstęp do przetwarzania języka naturalnego Wykład 11 Wojciech Czarnecki 8 stycznia 2014 Section 1 Przypomnienie Wektoryzacja tfidf Przypomnienie document x y z Antony and Cleopatra 5.25 1.21 1.51 Julius
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Macierze i Wyznaczniki
dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Aproksymacja funkcji metod najmniejszych kwadratów
Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Listy i operacje pytania
Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1
Mierzalne liczby kardynalne
czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja
Dynamiczne wªasno±ci algorytmu propagacji przekona«
BP propagacji przekona«4. Interdyscyplinarne Warsztaty Matematyczne Wydziaª Fizyki Politechnika Warszawska B dlewo, 26 maja, 2013 BP 1 2 3 4 5 6 BP Rysunek: Zbiór zmiennych losowych. BP Rysunek: Zbiór
PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:
Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy
1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.
GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem
Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego
Systemy Wyszukiwania Informacji: Metoda list inwersyjnych
Systemy Wyszukiwania Informacji: Metoda list inwersyjnych dr agnieszka Nowak - Brzezi«ska Instytut Informatyki, Zakªad Systemów Informatycznych ul. Badzi«ska 39, Sosnowiec, Tel (+48 32) 368 97 65 e-mail:agnieszka.nowak@us.edu.al
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
Wektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Przetwarzanie sygnaªów
Przetwarzanie sygnaªów Wykªad 8 - Wst p do obrazów 2D Marcin Wo¹niak, Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 27 Plan wykªadu 1 Informacje wstepne 2 Przetwarzanie obrazu 3 Wizja komputerowa
Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych
SVM: Maszyny Wektorów Podpieraja cych
SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja
Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012
Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n
Uczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych
MiASI. Modelowanie analityczne. Piotr Fulma«ski. 18 stycznia Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska
MiASI Modelowanie analityczne Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 18 stycznia 2010 Spis tre±ci 1 Czym jest modelowanie analityczne? 2 Podstawowe kategorie poj ciowe
Wst p do ekonometrii II
Wst p do ekonometrii II Wykªad 1: Modele ADL. Analiza COMFAC. Uogólniona MNK (1) WdE II 1 / 36 Plan wykªadu 1 Restrykcje COMFAC w modelach ADL ADL(1,1) ADL(2,2) 2 Uogólniona MNK Idea UMNK Znajdowanie macierzy
Przykªady problemów optymalizacji kombinatorycznej
Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:
UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow
UCZENIE MASZYNOWE III - SVM mgr inż. Adam Kupryjanow Plan wykładu Wprowadzenie LSVM dane separowalne liniowo SVM dane nieseparowalne liniowo Nieliniowy SVM Kernel trick Przykłady zastosowań Historia 1992
x y x y x y x + y x y
Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0
Metody bioinformatyki (MBI)
Metody bioinformatyki (MBI) Wykªad 9 - mikromacierze DNA, analiza danych wielowymiarowych Robert Nowak 2016Z Metody bioinformatyki (MBI) 1/42 mikromacierze DNA Metoda badawcza, pozwalaj ca bada obecno±
Modele wielorównaniowe. Estymacja parametrów
Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW
WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg
2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)
Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy
Lekcja 9 Liczby losowe, zmienne, staªe
Lekcja 9 Liczby losowe, zmienne, staªe Akademia im. Jana Dªugosza w Cz stochowie Liczby losowe Czasami potrzebujemy by program za nas wylosowaª liczb. U»yjemy do tego polecenia liczba losowa: Liczby losowe
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Prawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING
AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING Magdalena Wiercioch Uniwersytet Jagiello«ski 3 kwietnia 2014 Plan Uczenie gª bokie (deep learning) Auto-enkodery Rodzaje Zasada dziaªania Przykªady
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)
przewidywania zapotrzebowania na moc elektryczn
do Wykorzystanie do na moc elektryczn Instytut Techniki Cieplnej Politechnika Warszawska Slide 1 of 20 do Coraz bardziej popularne staj si zagadnienia zwi zane z prac ¹ródªa energii elektrycznej (i cieplnej)
Liniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
Stacjonarne szeregi czasowe
e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa
Przykład implementacji przeciażeń operatorów problem kolizji
Przykład implementacji przeciażeń operatorów problem kolizji Bogdan Kreczmer ZPCiR IIAiR PWr pokój 307 budynek C3 bogdan.kreczmer@pwr.wroc.pl Copyright c 2005 2008 Bogdan Kreczmer Niniejszy dokument zawiera
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH
Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 3) Modele MGARCH 1 / 11 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
Rachunek zda«. Relacje. 2018/2019
Rachunek zda«. Relacje. 2018/2019 Zdanie logiczne. Zdaniem logicznym nazywamy ka»de wyra»enie, któremu mo»na przyporz dkowa jedn z dwóch warto±ci logicznych: 0 czyli faªsz b d¹ 1 czyli prawda. Zdanie logiczne.
Entropia Renyi ego, estymacja gęstości i klasyfikacja
Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów
5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
a) f : R R R: f(x, y) = x 2 y 2 ; f(x, y) = 3xy; f(x, y) = max(xy, xy); b) g : R 2 R 2 R: g((x 1, y 1 ), (x 2, y 2 )) = 2x 1 y 1 x 2 y 2 ;
Zadania oznaczone * s troch trudniejsze, co nie oznacza,»e trudne.. Zbadaj czy funkcjonaª jest dwuliniowy, symetryczny, antysymetryczny, dodatniookre±lony: a) f : R R R: f(x, y) = x y ; f(x, y) = 3xy;
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Lekcja 9 - LICZBY LOSOWE, ZMIENNE
Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my
MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH
MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH Urszula Fory± Zakªad Biomatematyki i Teorii Gier, Instytut Matematyki Stosowanej i Mechaniki, Wydziaª
Estymacja parametru gªadko±ci przy u»yciu falek splajnowych
Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Politechnika Gda«ska Wydziaª Fizyki Technicznej i Matematyki Stosowanej Wisªa, 3-7.12.2012 Przestrze«Biesowa Przestrze«Biesowa B s p,q, 1 p,
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Funkcje powi za«, miary zale»no±ci i grube ogony, czyli kilka sªów o zale»no±ci w statystyce i matematyce nansowej
Funkcje powi za«, miary zale»no±ci i grube ogony, czyli kilka sªów o zale»no±ci w statystyce i matematyce nansowej Uniwersytet Jagiello«ski 9 maja 2012 Kilka wst pnych sªów: Kowariancja i korelacja Grube
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:
Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy
Lokalne transformacje obrazów
Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Lokalne transformacje obrazów 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z wªasno±ciami lokalnych transformacji obrazu i ich wykorzystaniem
ANALIZA MATEMATYCZNA Z ALGEBR
ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe
Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Indeksowane rodziny zbiorów
Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T
Podstawy statystycznego modelowania danych - Wykªad 7
Podstawy statystycznego modelowania danych - Wykªad 7 Tomasz Suchocki ANOVA Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne i przykªady zastosowania 3. ANOVA w pakiecie R Tomasz
Maªgorzata Murat. Modele matematyczne.
WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia
Podziaª pracy. Cz ± II. 1 Tablica sortuj ca. Rozwi zanie
Cz ± II Podziaª pracy 1 Tablica sortuj ca Kolejka priorytetowa to struktura danych udost pniaj ca operacje wstawienia warto±ci i pobrania warto±ci minimalnej. Z kolejki liczb caªkowitych, za po±rednictwem
Macierze. Dziaªania na macierzach. 1. Niech b d dane macierze , D = , C = , B = 4 12 A = , F = , G = , H = E = a) Obliczy A + B, 2A 3B,
Macierze Dziaªania na macierzach Niech b d dane macierze A = E = [ 2 3 0 3 2 3 2 0 [ 0 8, B = 4 2, F = [ 2 3, C = 3 2 2 3 0 0 0 4 0 6 3 0, G =, D = 0 2 0 2 0 3 0 3 0 2 0 0 2 2 0 0 5 0 2,, H = 0 0 4 0 0
Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.
Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy
Entropia Renyi ego, estymacja gęstości i klasyfikacja #2
Entropia Renyi ego, estymacja gęstości i klasyfikacja #2 Wojciech Czarnecki Jacek Tabor 13 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/37 37 2 / Wojciech
Protokoªy komunikacyjne
Protokoªy komunikacyjne http://www.mimuw.edu.pl/ sl/teaching/semprot/ 1/18 Podpisy cyfrowe Artur Cichocki Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: A.Cichocki@zodiac.mimuw.edu.pl
Liczenie podziaªów liczby: algorytm Eulera
Liczenie podziaªów liczby: algorytm Eulera Wojciech Rytter Podziaªy liczb s bardzo skomplikowanymi obiektami kombinatorycznymi, przedstawimy dwa algorytmy liczenia takich oblektów. Pierwszy prosty algorytm
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Ekstremalnie maªe zbiory
Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci
Wzorce projektowe kreacyjne
Wzorce projektowe kreacyjne Krzysztof Ciebiera 14 pa¹dziernika 2005 1 1 Wst p 1.1 Podstawy Opis Ogólny Podstawowe informacje Wzorce kreacyjne sªu» do uabstrakcyjniania procesu tworzenia obiektów. Znaczenie
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji
Podstawy logiki i teorii zbiorów wiczenia
Spis tre±ci 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Ró»nica symetryczna 4 5 Kwantykatory 5 6 Relacje 7 7 Relacje porz dku i równowa»no±ci 8 8 Funkcje
DREAM5 Challenges. Metody i rezultaty. Praktyki wakacyjne 2010 sesja sprawozdawcza
DREAM5 Challenges Metody i rezultaty Julia Herman-I»ycka Jacek Jendrej Praktyki wakacyjne 2010 sesja sprawozdawcza Plan prezentacji 1 Czym jest uczenie maszynowe 2 Motywacja i sformuªowanie problemów 3
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Dodatek 2. Wielowymiarowe modele GARCH model GoGarch
Dodatek 2. Wielowymiarowe modele GARCH model GoGarch MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 2) Model GoGARCH 1 / 14 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu MGARCH
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 29 Mirosław Sobolewski (UW) Warszawa, wrzesień