Entropia Renyi ego, estymacja gęstości i klasyfikacja #2
|
|
- Amalia Baranowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Entropia Renyi ego, estymacja gęstości i klasyfikacja #2 Wojciech Czarnecki Jacek Tabor 13 lutego / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/37 37
2 2 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 2/37 37
3 Idea Mamy dane X, Y R d Będziemy szukać takiego v R d, żeby po zrzutowaniu na v nasze dane miały możliwie dużą dywergencję maximize v R d D cs ([X] v, [Y ] v ) n N ( v, Z i, σz), 2 Z {X, Y }, i=1 σ Z = (4/3) 1/5 Z 1/5 std( v, Z ), Z {X, Y } where [Z] v = 1 Z Klasyfikowanie punktu x będzie odbywać się poprzez wybor większej gęstości: m(x; v) = arg max [Z] v(x) Z {X,Y } 3 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 3/37 37
4 Nasz problem optymalizacyjny Błąd na zbiorze uczącym maximize log ip XX(v) + log ip Y Y (v) 2 log ip XY (v) v R d subject to v = 1 where ip AB(v) = N AB N AB = x A,y B exp ( 1 2π(H A (v) + H B (v)) A B, v, x y 2 ), 2(H A (v) + H B (v)) H Z (v) = (4/3) 1/5 Z 1/5 std( v, Z ) Z {X, Y } Regularyzacja 4 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 4/37 37
5 Plan prezentacji obecny tydzien 1 Umiejscowienie modelu w uczeniu maszynowym 2 Modele liniowe, wymiar VC i Structural risk minimization 3 Nasz model a SVM 4 Jawna postać dywergencji 5 Gradientowa optymalizacja na sferze 6 Aspekty algorytmiczne i wydajnościowe 7 Ewaluacja 8 Co dalej? 5 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 5/37 37
6 Metoda największego spadku Dla ustalonego punktu startowego x, α i > 0 i funkcji f x 0 = x x t+1 = x t α t x f(x t ) 6 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 6/37 37
7 Metoda największego spadku Dla ustalonego punktu startowego x, α i > 0 i funkcji f x 0 = x x t+1 = x t α t x f(x t ) Analogicznie metoda największego wzrostu x 0 = x x t+1 = x t + α t x f(x t ) Rysunek: f : R 2 R 6 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 6/37 37
8 Metoda największego spadku na sferze Założmy, że x i = 1 x 0 = x x 7 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 7/37 37
9 Metoda największego spadku na sferze Założmy, że x i = 1 x 0 = x x g t = x f(x t ) 7 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 7/37 37
10 Metoda największego spadku na sferze Założmy, że x i = 1 x 0 = x x g t = x f(x t ) h t = g t ( g t, x t )x t 7 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 7/37 37
11 Metoda największego spadku na sferze Założmy, że x i = 1 x 0 = x x g t = x f(x t ) h t = g t ( g t, x t )x t n t = h t h t 7 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 7/37 37
12 Metoda największego spadku na sferze Założmy, że x i = 1 x 0 = x x g t = x f(x t ) h t = g t ( g t, x t )x t n t = h t h t x t+1 = x t cos(α t ) + n t sin(α t ) 7 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 7/37 37
13 Metoda największego spadku na sferze Założmy, że x i = 1 x 0 = x x g t = x f(x t ) h t = g t ( g t, x t )x t n t = h t h t x t+1 = x t cos(α t ) + n t sin(α t ) Rysunek: f : R 2 R na sferze 7 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 7/37 37
14 Metoda największego spadku na sferze Założmy, że x i = 1 x 0 = x x g t = x f(x t ) h t = g t ( g t, x t )x t n t = h t h t x t+1 = x t cos(α t ) + n t sin(α t ) Rysunek: f : R 2 R na sferze Można na to patrzeć inaczej x t+1 = R t x t 7 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 7/37 37
15 Gradient Dywergencji Cauchyego Schwarza D CS (v) = ip XX(v) ip XX(v) + ip Y Y (v) ip Y Y (v) 2 ip XY (v) ip XY (v), ip XY (v) =N XY x X,y Y { ( v, x y 2 exp ( v, x y 2 2H XY (v) 2H XY (v) 1) H XY (v) 2 v, x y (x y) H XY (v) =H X (v) + H Y (v), H XY (v) = H X (v) + H Y (v), ( 4 5 ( 3)2 H Z (v) = Z z z Z z Z v, v, z ) z 12/5 z Z z Z ) }, 8 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 8/37 37
16 Przykład Australian X, Y R 14 X = 307 Y = 383 X Y = 690 australian1mp4 dane dot otrzymania kredytu mieszane typy cech (8 nominalnych i 6 ciągłych) oryginalnie używane do pokazywania wydajności drzew decyzyjnych 9 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 9/37 37
17 Złożoność poszczegolnych elementow optymalizacji Przy obecnym (naiwnym) podejściu złożoność wynosi: operacja D cs (v) ip (v) odczytanie wartości Θ(( X + Y ) 2 ) Θ( X Y ) policzenie gradientu Θ(( X + Y ) 2 ) Θ( X Y ) optymalizacja O(st( X + Y ) 2 ) O(st X Y ) gdzie s liczba punktow początkowych, t maksymalna liczba iteracji 10 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 10/37 37
18 Jak wygląda nasza funkcja na sferze? Zaznaczam, że niełatwo było ją zwizualizować w związku z tym rysunek jest bardzo poglądowy 11 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 11/37 37
19 Jak wygląda nasza funkcja na sferze? Zaznaczam, że niełatwo było ją zwizualizować w związku z tym rysunek jest bardzo poglądowy 11 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 11/37 37
20 Szczegoły opytymalizacji gradientowej Musimy rozwiązać dwa problemy: Jak wybierać x (punkt początkowy) Skąd brać α t (wielkość kroku) 12 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 12/37 37
21 Jak wybierać x Metoda podstawowa: losowy punkt ze sfery jednostkowej 13 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 13/37 37
22 Jak wybierać x Metoda podstawowa: losowy punkt ze sfery jednostkowej Okazuje się, że nie jest to aż tak trywialne, jak studentowi niskiego roku może się wydawać Po lewej: wybor z jednostajnym rozkładem prawdopodobieństwa pary (θ, φ) z [0, 2π) [0, π) 13 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 13/37 37
23 Jak wybierać x Metoda podstawowa: losowy punkt ze sfery jednostkowej Okazuje się, że nie jest to aż tak trywialne, jak studentowi niskiego roku może się wydawać Używamy metody Muller a (1959): x = x / x, gdzie x N d (0, 1) 14 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 14/37 37
24 Jak wybierać α t W naiwnej wersji przyjmuje się często, że α t = const (np w podstawowej wersji propagacji wstecznej) 15 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 15/37 37
25 Jak wybierać α t W naiwnej wersji przyjmuje się często, że α t = const (np w podstawowej wersji propagacji wstecznej) Można rozsądniej (zgodnie z teorią optymalizacji): α t = arg max α R + f(x t + α x f(x t )) 15 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 15/37 37
26 Jak wybierać α t W naiwnej wersji przyjmuje się często, że α t = const (np w podstawowej wersji propagacji wstecznej) Można rozsądniej (zgodnie z teorią optymalizacji): α t = arg max α R + f(x t + α x f(x t )) od strony implementacyjnej, niech A = {2 x, dla x [ 15, 14,, 0]} {0} α t = arg max α A D cs(x t cos(α t ) + n t sin(α t )) Czyli wybieramy maksimum po kole wielkim zadanym przez kierunek gradientu dywergencji 15 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 15/37 37
27 Pseudokod 1: for i = 1 to T do 2: x N d (0, 1) 3: x 0 x / x 4: if i = 1 then 5: best x 0 6: end if 7: while x t x t 1 do 8: g t x D cs (x t ) 9: h t g t + ( g t, x t )x t 10: if h t < ε then 11: break 12: end if 13: n t h t h t 14: α t arg max α A D cs(x t cos(α t) + n t sin(α t)) 15: x t+1 x t cos(α t ) + n t sin(α t ) 16: t = t : end while 18: if D cs (best) < D cs (x t ) then 19: best x t 20: end if 21: end for 22: return best 16 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 16/37 37
28 Czas zbudować klasyfikator dla zadanego v Dla uproszczenia, można przyjąć, że po prostu utrzymujemy estymatory gęstości [X] v oraz [Y ] v na podstawie ktorych podejmujemy decyzję W sposob oczywisty ma taka decyzja złożoność O( X + Y ) (nie licząc kosztu rzutowania na v, czyli O(d)) Ṣklasyfikowanie n punktow kosztuje O(nd( X + Y )) 17 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 17/37 37
29 Czas zbudować klasyfikator dla zadanego v Niech D = X Y oraz l(x) = 1: (x 1,, x n) = sort(v T D) 2: t 0 3: k 1 4: last l(x 1 ) 5: for i = 1 to n do 6: if last l(x i ) then { +1, jeśli x X 1, jeśli x Y 7: t j x i+x i 1 2 8: k k + 1 9: last l(x i ) 10: end if 11: end for 12: t j { +l(x1 ), iff i {0,, k} : 2 i v, x (t 13: cl v(x) = i, t i+1 ) l(x 1 ), iff i {0,, k} : 2 i v, x (t i, t i+1 ) 14: return cl v 18 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 18/37 37
30 Czas zbudować klasyfikator dla zadanego v Po zbudowaniu k-progowego klasyfikatora liniowego podjęcie decyzji wymaga rzutowania oraz wyszukania największego początku przedziału mniejszego od wartości rzutu Ṣklasyfikowanie n punktow kosztuje O(nd log(k)) 19 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 19/37 37
31 Czas zbudować klasyfikator dla zadanego v Czy aby na pewno ten algorytm jest ok? 20 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 20/37 37
32 Czas zbudować klasyfikator dla zadanego v Czy aby na pewno ten algorytm jest ok? Użycie estymatorow gęstości dawało nam silną regularyzację W wersji używającej etykiet tak nie jest i w efekcie k może być olbrzymie (nawet rowne X + Y )! 20 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 20/37 37
33 Czas zbudować klasyfikator dla zadanego v Czy aby na pewno ten algorytm jest ok? Użycie estymatorow gęstości dawało nam silną regularyzację W wersji używającej etykiet tak nie jest i w efekcie k może być olbrzymie (nawet rowne X + Y )! Mamy dwa wyjścia: { +1, jeśli [X]v (v Przyjąć l(x) = T x) > [Y ] v (v T x) 1, jeśli [X] v (v T x) [Y ] v (v T x) 20 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 20/37 37
34 Czas zbudować klasyfikator dla zadanego v Czy aby na pewno ten algorytm jest ok? Użycie estymatorow gęstości dawało nam silną regularyzację W wersji używającej etykiet tak nie jest i w efekcie k może być olbrzymie (nawet rowne X + Y )! Mamy dwa wyjścia: { +1, jeśli [X]v (v Przyjąć l(x) = T x) > [Y ] v (v T x) 1, jeśli [X] v (v T x) [Y ] v (v T x) Zbudować l-progowy klasyfikator liniowy, dla dowolnego l < k 20 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 20/37 37
35 Czas zbudować klasyfikator dla zadanego v Budowa l-progowego klasyfikatora liniowego Wystarczy zauważyć, że mając dany optymalny k-progowy klasyfikator, l-progowy można uzyskać usuwając z k-progowego k l niesąsiednich przedziałow, ktore minimalizują sumę implikowanych błędow na zbiorze uczacym (czyli liczbę przykładow uczących w tych usuwanych przedziałach) Rozwiązanie tego problemu jest znanym problemem algorytmicznym, rozwiązywalnym dynamicznie 21 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 21/37 37
36 Ewaluacja 22 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 22/37 37
37 Implementacja C++ boost leży na prywatnym repozytorium na github (tak, mamy swoje konto) 23 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 23/37 37
38 Implementacja C++ boost leży na prywatnym repozytorium na github (tak, mamy swoje konto) Problem otwarty Dlaczego sumowanie czynnikow w D cs w pythonie (numpy) jest ok 100 razy wolniejsze? 23 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 23/37 37
39 Co my w zasadzie maksymalizujemy? Maksymalizujemy: fakt: Dywegencję Cauchyego-Schwarza (niezbyt odkrywcze), 24 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 24/37 37
40 Co my w zasadzie maksymalizujemy? Maksymalizujemy: fakt: Dywegencję Cauchyego-Schwarza (niezbyt odkrywcze), hipoteza: Ważoną dokładność (weighted accuracy), 24 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 24/37 37
41 Co my w zasadzie maksymalizujemy? Maksymalizujemy: fakt: Dywegencję Cauchyego-Schwarza (niezbyt odkrywcze), hipoteza: Ważoną dokładność (weighted accuracy), hipoteza: MCC (Matthew s Correlation Coefficient) 24 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 24/37 37
42 Co my w zasadzie maksymalizujemy? Maksymalizujemy: fakt: Dywegencję Cauchyego-Schwarza (niezbyt odkrywcze), hipoteza: Ważoną dokładność (weighted accuracy), hipoteza: MCC (Matthew s Correlation Coefficient) Ẉ obecnej formule, nasz model nie maksymalizuje accuracy 24 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 24/37 37
43 Co my w zasadzie maksymalizujemy? Maksymalizujemy: fakt: Dywegencję Cauchyego-Schwarza (niezbyt odkrywcze), hipoteza: Ważoną dokładność (weighted accuracy), hipoteza: MCC (Matthew s Correlation Coefficient) Ẉ obecnej formule, nasz model nie maksymalizuje accuracy While there is no perfect way of describing the confusion matrix of true and false positives and negatives by a single number, the Matthews correlation coefficient is generally regarded as being one of the best such measures 24 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 24/37 37
44 Czy dywergencja to dobra miara? Obserwacja empiryczna Ẉ obecnej formule, nasz model maksymalizuje MCC 25 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 25/37 37
45 Zbiory danych z UCI dataset d X Y australian bank breast cancer diabetes fourclass german number heart liver-disorders sonar splice / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 26/37 37
46 Zbiory danych z UCI dataset d X Y australian bank breast cancer diabetes fourclass german number heart liver-disorders sonar splice filemp4 27 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 27/37 37
47 RMLC vs Perceptron, SVM (bez strojenia) 28 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 28/37 37
48 RMLC wewnątrz foldow vs Perceptron, SVM (bez strojenia) 29 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 29/37 37
49 RMLC wewnątrz foldow vs Perceptron, SVM (bez strojenia) 30 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 30/37 37
50 RMLC (fast) vs Perceptron, SVM (bez strojenia) 31 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 31/37 37
51 RMLC vs SVM-balanced, SVM (ze strojeniem) 32 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 32/37 37
52 RMLC vs SVM-balanced, SVM (ze strojeniem) 33 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 33/37 37
53 Podsumowanie ogolne Zaproponowaliśmy nowy klasyfikator, z rosądną podbudową teoretyczną Używamy nietypowej funkcji kosztu (nie opartej o bezpośrednią klasyfikację) Budujemy klasyfikator z stosunkowo rzadko rozpatrywanej dziedziny Wskazaliśmy prostą (acz kosztowną) metodę optymalizacji 34 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 34/37 37
54 Podsumowanie ewaluacji Wyniki: Wskazują na wysoką korelację pomiędzy D cs a zdolnością generalizacyjną modelu Na prostych danych (UCI) są zbliżone (jakościowo) do tych z SVM Jednoczesnie budujemy istotnie rożny klasyfikator, i w niektorych przypadkach dostajemy istotnie lepsze wyniki Pokazują, że można istotnie przyspieszyć naszą metodę startując od rozwiązania taniego modelu Uważamy, że RMLC może być wartościową alternatywą dla SVM a i warto go zastosować tam, gdzie wynik uzyskiwany przez SVM nie jest zadowalający 35 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 35/37 37
55 Co dalej? Zmiana H X (v) na HX(v) γ = γh X (v) Napisanie w końcu pracy :-) Modyfikacja dla maksymalizacji accuracy Intrygujący przypadek kernelizowany Delinearyzacja poprzez sieci neuronowe i/lub projekcje losowe Przypadek wyżej wymiarowy (2 i 3) Zmiana jądra na Epanuchnikova Zastosowanie do wizualizacj danych etykietowanych Zwiększenie wydajności procedury optymalizacyjnej 36 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 36/37 37
56 Dziekuję za uwagę Pytania? Propozycje? Idee? 37 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 37/37 37
Entropia Renyi ego, estymacja gęstości i klasyfikacja
Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Optymalizacja systemów
Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński
czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Metody probabilistyczne klasyfikatory bayesowskie
Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 3 Regresja logistyczna autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest zaimplementowanie modelu
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun
Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1 Podstawowe definicje Politechnika Warszawska Strona 2 Podstawowe definicje Zbiór treningowy
Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1
Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
Algorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych
WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada 2013 1 / 26 Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych Wojciech Marian Czarnecki Jacek Tabor GMUM Grupa Metod Uczenia Maszynowego
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach
Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne
Wprowadzenie Prostym podejściem do klasyfikacji jest estymacja funkcji regresji r(x) =E(Y X =x)zpominięciemestymacjigęstościf k. Zacznijmyodprzypadkudwóchgrup,tj.gdy Y = {1,0}. Wówczasr(x) =P(Y =1 X =x)ipouzyskaniuestymatora
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału.
Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału Wiktor Miszuris 2 czerwca 2004 Przepustowość kanału Zacznijmy od wprowadzenia równości IA, B HB HB A HA HA B Można ją intuicyjnie
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Wstęp do programowania
Wstęp do programowania Wykład 5 Podstawowe techniki programownia w przykładach Janusz Szwabiński Plan wykładu: Metoda babilońska wyliczania pierwiastka Liczby pierwsze i sito Eratostenesa Metoda bisekcji
11. 11. OPTYMALIZACJA KONSTRUKCJI
11. OPTYMALIZACJA KONSTRUKCJI 1 11. 11. OPTYMALIZACJA KONSTRUKCJI 11.1. Wprowadzenie 1. Optymalizacja potocznie i matematycznie 2. Przykład 3. Kryterium optymalizacji 4. Ograniczenia w zadaniach optymalizacji
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017
Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x
Zastosowanie Excela w matematyce
Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ
Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW
Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
5 Błąd średniokwadratowy i obciążenie
5 Błąd średniokwadratowy i obciążenie Przeprowadziliśmy 200 powtórzeń przebiegu próbnika dla tego samego zestawu parametrów modelowych co w Rozdziale 1, to znaczy µ = 0, s = 10, v = 10, n i = 10 (i = 1,...,
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)
ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2
Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania
Jakość uczenia i generalizacja
Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
SVM: Maszyny Wektorów Podpieraja cych
SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Algorytmy i struktury danych
Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Mariusz Różycki University of Cambridge Zajęcia będą mieć formę wykładową. Slajdy można znaleźć na stronie kursu: http://lw.mi.edu.pl/informatyka/algorytmy.
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.
Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji W. Debski, 11.12.2014 Liniowy problem odwrotny m est (λ) = m apr + (G T G + λi) 1 G T ( dobs G m apr) +δ debski@igf.edu.pl: W3-1 IGF PAN, 11.12.2014 Metoda algebraiczna
Szablony funkcji i szablony klas
Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2011 Bogdan Kreczmer Niniejszy dokument
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
Klasyfikacja metodą Bayesa
Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Programowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty