Podstawy statystycznego modelowania danych - Wykªad 7
|
|
- Monika Lewandowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Podstawy statystycznego modelowania danych - Wykªad 7 Tomasz Suchocki ANOVA
2 Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne i przykªady zastosowania 3. ANOVA w pakiecie R Tomasz Suchocki, Podstawy... Wykªad 7 2/42
3 Historia 1. ANalysis Of VAriance ANOVA metoda statystyki matematycznej badanie obserwacji zale»nych od jednego lub wielu czynników porównywanie wielu ±rednich Tomasz Suchocki, Podstawy... Wykªad 7 3/42
4 Historia 2. Sir Ronald Fisher ( ) statystyk i genetyk instytut bada«rolniczych w Rothamsted koªo Harpenden The Correlation Between Relatives on the Supposition of Mendelian Inheritance pierwsze zastosowania zostaªy opublikowanne w 1921 roku szeroko stosowana od 1925 roku po ukazaniu si ksi»ki Statistical Methods for Research Workers Tomasz Suchocki, Podstawy... Wykªad 7 4/42
5 Historia Tomasz Suchocki, Podstawy... Wykªad 7 5/42
6 Podstawy teoretyczne Analiza wariancji jednoczynnikowa wieloczynnikowa interakcje?! Analiza kowariancji Tomasz Suchocki, Podstawy... Wykªad 7 6/42
7 Podstawy teoretyczne - ANOVA jednoczynnikowa Jak to dziaªa? 1. Hipoteza zerowa Nie ma ró»nic pomi dzy grupami! To tylko bª d! 2. Hipoteza alternatywna Istniej ró»nice pomi dzy grupami, które nie s spowodowane przez bª dy! 3. Statystyka F Oblicz statystyk F dla odpowiedniego modelu. Tomasz Suchocki, Podstawy... Wykªad 7 7/42
8 Podstawy teoretyczne - ANOVA jednoczynnikowa Jednoczynnikowa analiza wariancji: Y ij = µ + α i + ɛ ij j = 1,..., n i oraz i = 1,..., k α i efekt czynnika i ɛ ij niezale»ne zmienne o identycznych rozkªadach normalnych N (0, σ 2 ) Tomasz Suchocki, Podstawy... Wykªad 7 8/42
9 Podstawy teoretyczne - ANOVA jednoczynnikowa Model mo»na zapisa w innej postaci: Y ij = µ i + ɛ ij µ i = µ + α i Tomasz Suchocki, Podstawy... Wykªad 7 9/42
10 Podstawy teoretyczne - ANOVA jednoczynnikowa Model mo»na zapisa w innej postaci: Y ij = µ i + ɛ ij µ i = µ + α i zatem Y ij N (µ i, σ 2 ) Tomasz Suchocki, Podstawy... Wykªad 7 9/42
11 Podstawy teoretyczne - ANOVA jednoczynnikowa Model mo»na zapisa w innej postaci: Y ij = µ i + ɛ ij µ i = µ + α i zatem Y ij N (µ i, σ 2 ) Testujemy hipotezy: H 0 : µ 1 = µ 2 =... = µ k = µ H 0 : α 1 = α 2 =... = α k = 0 Tomasz Suchocki, Podstawy... Wykªad 7 9/42
12 Podstawy teoretyczne - ANOVA jednoczynnikowa Model mo»na zapisa w innej postaci: Y ij = µ i + ɛ ij µ i = µ + α i zatem Y ij N (µ i, σ 2 ) Testujemy hipotezy: H 0 : µ 1 = µ 2 =... = µ k = µ H 0 : α 1 = α 2 =... = α k = 0 A jak posta ma hipoteza alternatywna? Tomasz Suchocki, Podstawy... Wykªad 7 9/42
13 Podstawy teoretyczne - ANOVA jednoczynnikowa Hipoteza alternatywna: H 1 : i,j µ i µ j Tomasz Suchocki, Podstawy... Wykªad 7 10/42
14 Podstawy teoretyczne - ANOVA jednoczynnikowa Hipoteza alternatywna: H 1 : i,j µ i µ j Ale które ±rednie si ró»ni? testy post hoc - porównuj wszystkie pary ±rednich Tomasz Suchocki, Podstawy... Wykªad 7 10/42
15 Podstawy teoretyczne - ANOVA jednoczynnikowa Statystyka F: F = k i=1 n 2 i (Y i Y ) k i=1 n ( i 2 n k Y j=1 ij Y i ) k 1 gdzie Y = 1 n k i=1 n i j=1 Y ij Y i = 1 ni n i j=1 Y ij statystyka F ma rozkªad F Snedecora z k 1 i n k stopniami swobody Tomasz Suchocki, Podstawy... Wykªad 7 11/42
16 Podstawy teoretyczne - ANOVA jednoczynnikowa Testy post hoc: Test HSD Tukeya Test Studenta-Newmana-Keulsa Test LSD Fishera Test Scheego Tomasz Suchocki, Podstawy... Wykªad 7 12/42
17 Przykªad - ANOVA jednoczynnikowa Obecno± witaminy D 3 wpªywa na aktywno± genu CD14, co powoduje uruchomieniem procesu wykorzystywanego w terapii przeciwnowotworowej u chorych na bialaczk. Podanie witaminy D 3 w odpowiednio wysokim st»eniu powoduje mi dzy innymi odwapnienie ko±ci. Chcemy sprawdzi, czy istniej analogi witaminy D 3 o podobnym wpªywie na ekspresj genu CD14 ale bez skutków ubocznych. Tomasz Suchocki, Podstawy... Wykªad 7 13/42
18 Przykªad - ANOVA jednoczynnikowa Zbiór danych, dotyczy 66 lini komórkowych pobranych od dzieci chorych na ostr biaªaczk szpikow. Ka»da z linii komórkowych zostaªa poddana dziaªaniu kilku substancji, by zobaczy, jak dana substancja dziaªa na aktywno± genu CD14. Liczony byª % komórek z obecnym receptorem CD14. Kolejne kolumny zawieraj : zmienn mutacja - czy w danej lini komórkowej wyst puje mutacja genu zwi zanego z biaªaczk (cztery grupy: mutacja w genie CBFα, mutacja w FTL-3, mutacja w innym genie lub brak mutacji); pomiar % obecno±ci CD14 w komórkach hodowlanych bez ingerencji innej substancji; pomiar % obecno±ci CD14 w komórkach hodowlanych dla okre- ±lonego molowego st»enia witaminy D 3 lub jej analoga 1906 lub Tomasz Suchocki, Podstawy... Wykªad 7 14/42
19 Przykªad - ANOVA jednoczynnikowa Tomasz Suchocki, Podstawy... Wykªad 7 15/42
20 Przykªad - ANOVA jednoczynnikowa Tomasz Suchocki, Podstawy... Wykªad 7 16/42
21 Przykªad - ANOVA jednoczynnikowa Hipoteza zerowa: ±redni poziom receptora CD14 po podaniu analoga 2191 nie zale»y od mutacji H 0 : i,j µ i = µ j Tomasz Suchocki, Podstawy... Wykªad 7 17/42
22 Przykªad - ANOVA jednoczynnikowa Hipoteza zerowa: ±redni poziom receptora CD14 po podaniu analoga 2191 nie zale»y od mutacji H 0 : i,j µ i = µ j Hipoteza alternatywna: ±redni poziom receptora CD14 po podaniu analoga 2191 jest ró»ny przynajmniej dla dwóch mutacji H 1 : i,j µ i µ j Tomasz Suchocki, Podstawy... Wykªad 7 17/42
23 Przykªad - ANOVA jednoczynnikowa Wyniki: Tomasz Suchocki, Podstawy... Wykªad 7 18/42
24 Przykªad - ANOVA jednoczynnikowa Pomi dzy którymi mutacjami s istotne ró»nice: Tomasz Suchocki, Podstawy... Wykªad 7 19/42
25 Przykªad - ANOVA jednoczynnikowa Diagnostyka modelu: Tomasz Suchocki, Podstawy... Wykªad 7 20/42
26 Przykªad - ANOVA jednoczynnikowa Diagnostyka modelu cd.: Tomasz Suchocki, Podstawy... Wykªad 7 21/42
27 Podstawy teoretyczne - ANOVA wieloczynnikowa Wieloczynnikowa analiza wariancji: Y ijm = µ + α i + β j + γ ij + ɛ ijm j = 1,..., r, i = 1,..., k oraz m = 1,..., n i,j α i efekt czynnika i β j efekt czynnika j γ ij interakcja pomi dzy czynnikami α i i β j ɛ ijm niezale»ne zmienne o identycznych rozkªadach normalnych N (0, σ 2 ) Tomasz Suchocki, Podstawy... Wykªad 7 22/42
28 Podstawy teoretyczne - ANOVA wieloczynnikowa Hipotezy zerowe H 0 : α 1 = α 2 =... = α k = 0 H 0 : β 1 = β 2 =... = β r = 0 H 0 : i j γ i,j = 0 Hipotezy alternatywne H A : i α i 0 H A : j β j 0 H A : i j γ i,j 0 Tomasz Suchocki, Podstawy... Wykªad 7 23/42
29 Przykªad - ANOVA wieloczynnikowa Zbiór danych dotyczy 98 osób. Dla ka»dej z nich mamy informacj o genotypach dwóch markerów typu SNP. Dokªadna struktura kolumn prezentuje si nast puj co: genotyp SNP w genie kodujacym biaªko kompleksu Nfκβ genotyp SNP w genie CD28 genotyp genu koduj cego jeden z inferonów IFN (tutaj mamy informacj, czy pacjent jest hetero-, czy homozygot ) nat»enie objawów maniakalnych nat»enie objawów znieksztaªcenia postrzegania rzeczywisto±ci nat»enie objawów depresyjnych nat»enie objawów negatywnych (niewidzenie rzeczy istniej cych) nat»enie ª cznych objawów Tomasz Suchocki, Podstawy... Wykªad 7 24/42
30 Przykªad - ANOVA wieloczynnikowa Tomasz Suchocki, Podstawy... Wykªad 7 25/42
31 Przykªad - ANOVA wieloczynnikowa interaction.plot Tomasz Suchocki, Podstawy... Wykªad 7 26/42
32 Przykªad - ANOVA wieloczynnikowa Tomasz Suchocki, Podstawy... Wykªad 7 27/42
33 Przykªad - ANOVA wieloczynnikowa Tomasz Suchocki, Podstawy... Wykªad 7 28/42
34 Przykªad - ANOVA wieloczynnikowa Tomasz Suchocki, Podstawy... Wykªad 7 29/42
35 Przykªad - ANOVA wieloczynnikowa Model z interakcj, czy bez? Tomasz Suchocki, Podstawy... Wykªad 7 30/42
36 Przykªad - ANOVA wieloczynnikowa Wyniki: Tomasz Suchocki, Podstawy... Wykªad 7 31/42
37 Przykªad - ANOVA wieloczynnikowa Testy post hoc: Tomasz Suchocki, Podstawy... Wykªad 7 32/42
38 Przykªad - ANOVA jednoczynnikowa Diagnostyka modelu: Tomasz Suchocki, Podstawy... Wykªad 7 33/42
39 Analiza kowariancji Analiza kowariancji ª czy: analiz wariancji analiz korelacji analiz regresji Tomasz Suchocki, Podstawy... Wykªad 7 34/42
40 Analiza kowariancji Gªówny cel metody: odpowiedzie na pytanie czy analizowany czynnik (zmienna posiadaj ca kilka poziomów) wpªywa w sposób istotny na badan cech Ró»nice w porównaniu do analizy wariancji: mo»liwo± wyeliminowania wpªywu innej cechy (zmienna towarzysz ca) maj cej wpªyw na cech badan Tomasz Suchocki, Podstawy... Wykªad 7 35/42
41 Analiza kowariancji Posta modelu: y ij = µ + α i + β (x ij x) + e ij, gdzie y - badana cecha α - czynni do±wiadczalny β - wspóªczynnik regresji pomi dzy zmiennymi x - zmienna towarzysz ca Tomasz Suchocki, Podstawy... Wykªad 7 36/42
42 Analiza kowariancji - Przykªad Na poziom hemoglobiny w organizmie ma wpªyw pªe wiek pacjenta Rozwa»my model, gdzie poziom hemoglobiny jest zmienn zale»n, natomiast czynnikiem do±wiadczalnym jest pªe. W tym przypadku nie uwzgl dniamy wpªywu wieku pacjenta na poziom hemoglobiny. W analizie kowariancji mo»emy zastosowa nast puj cy model: hemoglobina - zmienna zale»na pªe - czynnik do±wiadczalny wiek - zmienna towarzysz ca Tomasz Suchocki, Podstawy... Wykªad 7 37/42
43 Analiza kowariancji - przykªad 2 Tomasz Suchocki, Podstawy... Wykªad 7 38/42
44 Analiza kowariancji Tomasz Suchocki, Podstawy... Wykªad 7 39/42
45 Analiza kowariancji Tomasz Suchocki, Podstawy... Wykªad 7 40/42
46 Analiza kowariancji Tomasz Suchocki, Podstawy... Wykªad 7 41/42
47 Dzi kuj za uwag Tomasz Suchocki, Podstawy... Wykªad 7 42/42
Pakiety statystyczne - Wykªad 8
Pakiety statystyczne - Wykªad 8 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany
Elementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
Metody statystyczne w biologii - Wykªad 8. Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t
Metody statystyczne w biologii - Wykªad 8 Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Regresja logistyczna 1. Podstawy teoretyczne i przykªady zastosowania
Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13
Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analizę wariancji, często określaną skrótem ANOVA (Analysis of Variance), zawdzięczamy angielskiemu biologowi Ronaldowi A. Fisherowi, który opracował ją w 1925 roku dla rozwiązywania
Statystyczna analiza danych (molekularnych) analiza wariancji ANOVA
Statystyczna analiza danych (molekularnych) analiza wariancji ANOVA Anna Gambin 19 maja 2013 Spis treści 1 Przykład: Model liniowy dla ekspresji genów 1 2 Jednoczynnikowa analiza wariancji 3 2.1 Testy
1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe
Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w
Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe
Modele wielorównaniowe. Estymacja parametrów
Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW
Podstawy statystycznego modelowania danych Analiza prze»ycia
Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 4 03 listopad 2014 1 / 47 Plan wykªadu 1. Testowanie zaªo»e«o proporcjonalnym hazardzie w modelu Cox'a 2. Wybór zmiennych do modelu Cox'a 3. Meta analiza
Testy post-hoc. Wrocław, 6 czerwca 2016
Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference
MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH
MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH Urszula Fory± Zakªad Biomatematyki i Teorii Gier, Instytut Matematyki Stosowanej i Mechaniki, Wydziaª
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE
WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano
Matematyka i statystyka matematyczna dla rolników w SGGW
Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Pakiety statystyczne Wykªad 14
Pakiety statystyczne Wykªad 14 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki Plan wykªadu Model mieszany 1. Podstawy teoretyczne 2. Przykªady w R 3. Przykªady zastosowania Tomasz
Metody probablistyczne i statystyka stosowana
Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801
Analiza wariancji i kowariancji
Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w
Informatyka w selekcji - Wykªad 1
Informatyka w selekcji - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu
Ekonometria - wykªad 1
Ekonometria - wykªad 1 0. Wprowadzenie Barbara Jasiulis-Goªdyn 28.02.2014 2013/2014 Ekonometria Literatura [1] B. Borkowski, H. Dudek, W. Szczesny, Ekonometria. Wybrane Zaganienia, PWN, Warszawa 2003.
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
In»ynierskie zastosowania statystyki wiczenia
Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie
Matematyka z elementami statystyki
Matematyka z elementami statystyki Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Korelacja Zale»no± funkcyjna wraz ze wzrostem jednej zmiennej nast puje ±ci±le okre±lona zmiana druiej zmiennej.
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions)
Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Alexander Bendikov Uniwersytet Wrocªawski 25 maja 2016 Elementarna statystyka Dwie próby: porównanie
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Wykład 5 Teoria eksperymentu
Wykład 5 Teoria eksperymentu Wrocław, 22.03.2017r Co to jest teoria eksperymentu? eksperyment - badanie jakiegoś zjawiska polegające na celowym wywołaniu tego zjawiska lub jego zmian oraz obserwacji i
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Modele wielorównaniowe. Problem identykacji
Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
Statystyka matematyczna - ZSTA LMO
Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia
Biostatystyka, # 5 /Weterynaria I/
Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 27-0-202 Pytania teoretyczne. Dlaczego w modelu nie powinno si umieszcza staªej i wszystkich zmiennych zero-jedynkowych, zwi zanych z poziomami zmiennej dyskretnej?
Rozwini cia asymptotyczne dla mocy testów przybli»onych
Rozwini cia asymptotyczne dla mocy testów przybli»onych Piotr Majerski, Zbigniew Szkutnik AGH Kraków Wisªa 2010 P. Majerski, Z. Szkutnik, AGH () Rozwini cia mocy testów przybli»onych Wisªa 2010 1 / 22
MODELE LINIOWE i MIESZANE
MODELE LINIOWE i MIESZANE WYKŠAD 5 13 kwiecie«2018 1 / 48 Plan wykªadu 1. Metody Monte Carlo we wnioskowaniu statystycznym 2. Pakiet R 2 / 48 Metody Monte Carlo we wnioskowaniu statystycznym 3 / 48 Zaªó»my,»e
Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan
Jednoczynnikowa analiza wariancji
Jednoczynnikowa analiza wariancji Zmienna zależna ilościowa, numeryczna Zmienna niezależna grupująca (dzieli próbę na więcej niż dwie grupy), nominalna zmienną wyrażoną tekstem należy w SPSS przerekodować
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH
STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 3 29 pa¹dziernik 2015 1 / 39 Plan wykªadu 1. Test log-rank dla wi cej ni» dwóch grup 2. Test Mantela-Haenszela dla wi cej ni» dwóch grup 3. Wst p do
Przykªadowe analizy. Grzegorz Kemski. 26 listopada 2008
26 listopada 2008 Plan wykªadu Prezentacja danych i metod statystycznych u»ytych w artykuªach: 'Why living-donor renal transplant yields better outcomes than cadaver renal transplant?' L. Guirado, E. Vela,
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Biostatystyka, # 4 /Weterynaria I/
Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka
Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji
gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),
Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH
Dodatek 3. Wielowymiarowe modele GARCH model DCC-GARCH MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 3) Modele MGARCH 1 / 11 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu
Statystyka matematyczna. Wykład V. Parametryczne testy istotności
Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich
Elementarna statystyka Test Istotno±ci (Tests of Signicance)
Elementarna statystyka Test Istotno±ci (Tests of Signicance) Alexander Bendikov Uniwersytet Wrocªawski 16 kwietnia 2016 Elementarna statystyka Test Istotno±ci (Tests of Signicance) 16 kwietnia 2016 1 /
Porównanie dwóch rozkładów normalnych
Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Ocena µ 1 µ 2 oraz σ 2 1/σ 2 2. Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1,
EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach
EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) W modelu rezerwy R n = u + n (W 1 + + W n ) wiemy,»e W i s iid o rozkªadzie geometrycznym na 0, 1, 2,...
Porównanie wielu rozkładów normalnych
Porównanie wielu rozkładów normalnych Założenia:. X i N(µ i, σi 2 ), i =,..., k 2. X,..., X k są niezależne Czy µ = = µ k? Czy σ 2 = = σ 2 k? Próby: X i,..., X ini, i =,..., k X i, varx i, s 2 i = varx
Zadanie 1. (8 punktów) Dana jest nast puj ca macierz: M =
Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dana jest nast puj ca macierz: M = 2 14 2 10 8 0 10 8. a) Znajd¹ rozwi zanie dwuosobowej gry o sumie zero maj cej powy»sz macierz wypªat. b) Przyjmuj
Elementarna statystyka Test Istotno±ci
Elementarna statystyka Test Istotno±ci Alexander Bendikov Uniwersytet Wrocªawski 27 kwietnia 2017 Alexander Bendikov (UWr) Elementarna statystyka Test Istotno±ci 27 kwietnia 2017 1 / 24 Wnioskowanie statystyczne:
Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo
Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4
Korelacja krzywoliniowa i współzależność cech niemierzalnych
Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej
Ekonometria. wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± (3) Ekonometria 1 / 29 Plan wicze«1 Wprowadzenie 2 Normalny rozkªad 3 Autokorelacja 4 Heteroskedastyczno± Test White'a Odporne bª
Wykªad 6: Model logitowy
Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Metody bioinformatyki (MBI)
Metody bioinformatyki (MBI) Wykªad 9 - mikromacierze DNA, analiza danych wielowymiarowych Robert Nowak 2016Z Metody bioinformatyki (MBI) 1/42 mikromacierze DNA Metoda badawcza, pozwalaj ca bada obecno±
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Porównywanie wielowymiarowych wektorów warto±ci ±rednic
Porównywanie wielowymiarowych wektorów warto±ci ±rednich Politechnika Gda«ska 20 marca 2014 Cel prezentacji Niezb dny wst p teoretyczny Cel prezentacji W naszej prezentacji przedstawimy zagadnienia zwi
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
Wst p do ekonometrii II
Wst p do ekonometrii II Wykªad 1: Modele ADL. Analiza COMFAC. Uogólniona MNK (1) WdE II 1 / 36 Plan wykªadu 1 Restrykcje COMFAC w modelach ADL ADL(1,1) ADL(2,2) 2 Uogólniona MNK Idea UMNK Znajdowanie macierzy
Analiza wariancji. dr Janusz Górczyński
Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik
Statystyka w analizie i planowaniu eksperymentu
28 marca 2012 Analiza wariancji klasyfikacja jednokierunkowa - wst ep Przypuśćmy, że chcemy porównać wieksz a (niż dwie) liczbe grup. Aby porównać średnie w kilku grupach, można przeprowadzić analize wariancji.
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci
Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
Informatyka w selekcji - Wykªad 4
Informatyka w selekcji - Wykªad 4 Plan wykªadu SAS 1. Praca z programem 2. Edycja danych 3. Procedury graczne 4. Analiza w pakiecie SAS na»ywo, Wykªad 5 2/36 Praca z programem, Wykªad 5 3/36 Praca z programem
Stacjonarne szeregi czasowe
e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa
Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości
Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Informatyka 007 009 aktualizacja dla 00 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu. Przypomnienie testu dla
Stosowana Analiza Regresji
Model jako : Stosowana Analiza Regresji Wykład XI 21 Grudnia 2011 1 / 11 Analiza kowariancji Model jako : Oprócz czynnika o wartościach nominalnych chcemy uwzględnić wpływ predyktora o wartościach ilościowych
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich
Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego
Testowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych
Na podstawie dokonanych obserwacji:
PODSTAWOWE PROBLEMY STATYSTYKI MATEMATYCZNEJ Niech mamy próbkę X 1,..., X n oraz przestrzeń prób X n, i niech {X i } to niezależne zmienne losowe o tym samym rozkładzie P θ P. Na podstawie obserwacji chcemy
Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni
Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Przedmiot: Statystyczne Sterowanie Procesami Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu:
Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
TESTOWANIE HIPOTEZ STATYSTYCZNYCH
TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę