Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
|
|
- Michalina Janowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania Programu Operacyjnego Kapitał Ludzki
2 1 Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne 2 Problem Algorytm Przykład 3 Model maszyny liniowej Uczenie maszyny
3 Funkcje logiczne Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne Niech B = {true, false} wartości logiczne, Stosujemy kodowanie false = 0 true = 1 Rozważmy proste funkcje logiczne f : B n B np. NOT, AND, OR, NAND, NOR, XOR itp. Chcemy modelować takie funkcje za pomocą perceptronu progowego (w 0 = θ bias, w 1, w 2,..., w n )
4 NOT Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne NOT Jedno wejście p, p NOT (p) Problem jest rozwiązywalny przez pojedynczy perceptron.
5 y AND Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne AND 1.5 p q AND(p, q) Dwa wejścia p, q, Problem liniowo separowalny x np. w 1 = w 2 = +1, w 0 = 1.5
6 y OR Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne OR 1.5 p q OR(p, q) Dwa wejścia p, q, Problem liniowo separowalny x np. w 1 = w 2 = +1, w 0 = 0.5
7 Projekcja Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne P i (x 1,..., x n ) = +1 x i = +1 Dwa wejścia p, q, p 1...p i 1 p i p i+1 p n P i (p 1, p 2,..., p n ) Problem liniowo separowalny.
8 Uogólniony AND Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne AND n wejść p 1, p 2,..., p n, p 1 p 2... p n AND(p 1, p 2,..., p n ) Problem liniowo separowalny.
9 Uogólniony OR Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne OR n wejść p 1, p 2,..., p n, Problem liniowo separowalny. p 1 p 2... p n OR(p 1, p 2,..., p n )
10 y XOR Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne XOR p q XOR(p, q) Dwa wejścia p, q, Problem nie jest liniowo separowalny x
11 NXOR / IFF Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne NOT XOR / IF and only IF Dwa wejścia p, q, p q IFF (p, q) Problem nie jest liniowo separowalny.
12 NAND i NOR Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne NAND (NOT AND) oraz NOR (NOT AND) Negacja koniunkcji i alternatywy, Po dwa wejścia p, q, Oba problemy okazują się separowalne liniowo, Można zbudować dowolny układ kombinatoryczny, Zadanie: wskazać wagi perceptronów rozwiązujących problemy.
13 Separowalne liniowo funkcje logiczne Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne Wszystkich funkcji logicznych o n zmiennych jest 2 2n, Ilość funkcji separowalnych liniowo rośnie wielomianowo, Dla małych wymiarów n 2 2n il. funkcji sep Tabela za R. Rojas A systematic introduction to neural networks
14 NAND Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne Sieć perceptronów jako dowolne urządzenie cyfrowe, NANDputer
15 Problem Algorytm Przykład 1 Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne 2 Problem Algorytm Przykład 3 Model maszyny liniowej Uczenie maszyny
16 Cel Problem Algorytm Przykład Dany jest nauczony perceptron progowy (zestaw wag + próg w 1,.., w n, θ = w 0 ), Dany jest symboliczny wektor wejściowy (x 1,.., x n ), x i = ±1 (tak lub nie), Perceptron zwrócił klasyfikację o np. TAK, Chcemy uzyskać wyjaśnienie dlaczego TAK.
17 Cel Problem Algorytm Przykład Poprzez wyjaśnienie rozumiemy podzbiór oryginalnych cech x i1,..., x ik, taki że Każda z cech wspiera zwróconą klasyfikację o, Wyjaśnienie jest wystarczające, tj. w pełni determinuje odpowiedź o niezależnie od pozostałych cech, Wyjaśnienie jest zwięzłe, zawiera tak mało cech jak to możliwe.
18 Algorytm Problem Algorytm Przykład Dane: Nauczony perceptron prosty z funkcją progową, próg θ, wejście u = (u 1,..., u n ), Wynik: Uzasadnienie klasyfikacji zwróconej na przykładzie u tj. najmniej liczna lista cech, które charakteryzują u, mają największy wpływ na klasyfikację, Uwaga: Algorytm jest mutacyjny, tj. modyfikuje próg neuronu. Sugerowane jest operowanie na kopii parametrów.
19 Algorytm Problem Algorytm Przykład 1 Obliczamy odpowiedź perceptronu o na przykładzie u. 2 Przypisujemy p := θ (kopia progu). 3 Znajdujemy czynnik kluczowy tj. u i takie, że u i w i o > 0 tj. cecha wspiera wynikową odpowiedź, w i ma największą wartość spośród wszystkich u i, które wspierają odpowiedź o, u i jeszcze nie był użyty jako fragment uzasadnienia w poprzednich krokach.
20 Algorytm Problem Algorytm Przykład 4 Sprawdź czy w i > l i i u l w l + p, niewykorzystany gdzie p jest kopią progu funkcji aktywującej. jeżeli tak, to dodaj u i do uzasadnienia i zwróć gotowy zestaw cech: uzasadnienie+ = bo u i = (..). jeżeli nie, to dodaj u i do uzasadnienia: uzasadnienie+ = bo u i = (..) oraz p = p u i w i Po czym oznacz jednostkę u i jako wykorzystaną i wróć do 2. 5 UWAGA: Jeżeli i w iu i = θ, to uzasadnienie nie będzie możliwe.
21 Przykład 1 Problem Algorytm Przykład przykład x = (+1, , +1), wagi dodatnie w 1 > w 2 > w 3 > w 4 > 0, odpowiedź O( x) = +1.
22 Przykład 1/3 Problem Algorytm Przykład Ponieważ...
23 Przykład 2/3 Problem Algorytm Przykład Ponieważ spełnia w 1...
24 Przykład 3/3 Problem Algorytm Przykład Ponieważ spełnia w 1 i spełnia w 2.
25 Przykład 2 Problem Algorytm Przykład przykład x = (+1, +1, 1, +1), niektóre wagi są ujemne w 2 < w 3 < 0 < w 4 < w 1, odpowiedź O( x) = +1, x 2 w 2 nie wspiera odpowiedzi.
26 Przykład 1/4 Problem Algorytm Przykład Ponieważ...
27 Przykład 2/4 Problem Algorytm Przykład Ponieważ spełnia w 1...
28 Przykład 3/4 Problem Algorytm Przykład Ponieważ spełnia w 1, nie spełnia w 3...
29 Przykład 4/4 Problem Algorytm Przykład Ponieważ spełnia w 1, nie spełnia w 3 i spełnia w 4.
30 Model maszyny liniowej Uczenie maszyny 1 Przypomnienie algebry boolowskiej Perceptron jako bramka logiczna Uwagi kombinatoryczne 2 Problem Algorytm Przykład 3 Model maszyny liniowej Uczenie maszyny
31 Zagadnienie Model maszyny liniowej Uczenie maszyny Chcemy zbudować (nieskomplikowany) system, który będzie w stanie dokonać klasyfikacji na więcej niż dwie kategorie Dodatkowo chcemy aby system mógł sam nauczyć się reguł klasyfikacji na podstawie małej próbki danych
32 Maszyna Liniowa Model maszyny liniowej Uczenie maszyny Ang. multi-class (linear) classifier, Zwraca klasyfikację, która nie musi być binarna, Grupa perceptronów, z których zawsze dokładnie jeden zgłasza odpowiedź,
33 Maszyna Liniowa Model maszyny liniowej Uczenie maszyny out
34 Maszyna Liniowa Model maszyny liniowej Uczenie maszyny Komponenty: n wejść x 1,.., x n, m perceptronów, każdy z własnym zestawem wag (w 11,.., w n1 ) do (w 1m,.., w nm ), Ewentualnie obciążenie (bias) dla każdego neuronu w 01,.., w 0m, Każdy z perceptronów (j = 1..m) oblicza swoją sumę ważoną a j = n w ij x i (+w 0j ). i=1 Uwaga! Funkcja aktywacji f jest identycznościowa. Cała jednostka zwraca numer perceptronu, który dał największą sumę ważoną (numer kategorii).
35 Rozpoznawanie znaków Model maszyny liniowej Uczenie maszyny MAX A
36 y Interpretacja geometryczna Model maszyny liniowej Uczenie maszyny z y x x
37 Interpretacja geometryczna Model maszyny liniowej Uczenie maszyny Bez biasu / progu. Z biasem w 0 / progiem θ y y
38 Zagadnienie uczenia Model maszyny liniowej Uczenie maszyny Dane: Cel: Maszyna liniowa z n wejściami oraz m kategoriami, Zbiór danych uczących E (i) = (E (i) (i) 1,..., E m ), i = 1...P, m < P wraz z odpowiadającymi im poprawnymi klasyfikacjami T 1,..., T P {1,..., m}. Chcemy znaleźć wagi w ij, dla których jednostka klasyfikuje poprawnie możliwie wiele przykładów uczących.
39 Algorytm Model maszyny liniowej Uczenie maszyny 1 Przypisujemy małe i losowe wagi (różne!), 2 Losujemy przykład uczący (E, C) z listy, 3 Jeżeli neuron daje błędną klasyfikację (jest k, a powinno być l), to korygujemy wagi: dla i = 1..n (wymiar wejścia) 4 Wracamy do 2, w ki = E i w li + = E i 5 Dodajemy modyfikację kieszeni i zapadki, jak dla perceptronu prostego.
40 Interpretacja geometryczna Model maszyny liniowej Uczenie maszyny Etap startowy Etap końcowy w1 = [-0.63, 0.47, 0.74] w2 = [-2.49, 2.26, -2.35] w3 = [2.64, -0.89, 1.46] w4 = [0.13, -2.71, 1.08] w1 = [0.12, 1.50, -0.48] w2 = [-2.29, -0.56, -2.57] w3 = [1.14, -1.10, 1.79] w4 = [0.68, -0.71, 2.18] z ERR = 33 z ERR = x y x y
41 Interpretacja geometryczna Model maszyny liniowej Uczenie maszyny click
42 Model maszyny liniowej Uczenie maszyny Dana maszyna liniowa z n wejściami i k kategoriami, Skonstruujemy równoważny perceptron z n k wejściami (i jednym wyjściem binarnym).
43 Model maszyny liniowej Uczenie maszyny Przykładowe wejście maszyny liniowej: (E i, L i ) Konstruujemy k 1 przykładów dla perceptronu: ( E i E i ). ( E i, E i ) ( E i E i ). ( E i E i ) L i -ty blok Wszystkie z odpowiedzią +1
44 Model maszyny liniowej Uczenie maszyny Maszyna liniowa: out
45 Model maszyny liniowej Uczenie maszyny Odpowiadający perceptron: out
46 Model maszyny liniowej Uczenie maszyny Maszyna liniowa i odpowiadający perceptron: out out
47 Model maszyny liniowej Uczenie maszyny Perceptron zwróci +1 na danych [0..0, E i, 0..0, E i, 0..0] (gdzie E i jest w l-tym bloku) wtw, gdy maszyna dla E i zwróci kategorię l, W rozważaniach dotyczących uczenia perceptronu nie braliśmy pod uwagę kolejności wejść, Uczenie perceptronu jest równoważne uczeniu maszyny liniowej - podobne ograniczenia, Zob. Zimak06.pdf, str. 16 (pdf: str. 31)
48 Zadania Model maszyny liniowej Uczenie maszyny Podaj wszystkie funkcje boolowskie o 2-ch argumentach. Określ które z nich są liniowo separowalne. (Wsk. wszystkich jest 16, separowalnych jest 14), Dla problemów z sekcji 1, które są separowalne, podaj wagi perceptronu, który implementuje taką bramkę logiczną, Dane są jednowymiarowe dane uczące z odpowiadającymi kategoriami 2 1, 0 3, Maszyna liniowa z trzema klasami ma startowe wagi: i w i0 w i Przeprowadź kilka pierwszych kroków algorytmu uczenia maszyny liniowej.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 2 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 213-1-15 Projekt pn. Wzmocnienie potencjału
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego
Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.
Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału dydaktycznego
Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.
Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-04 In memoriam prof. dr hab. Tomasz Schreiber
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych
Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja
Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Wprowadzenie do Sieci Neuronowych lista zadań 1
Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa 2010-10-04 1 Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Podstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.
Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie
Arytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Algebra Boole a i jej zastosowania
lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz
Wprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci
Wstęp do Techniki Cyfrowej... Algebra Boole a
Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w
Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie
Oprogramowanie Systemów Obrazowania SIECI NEURONOWE
SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,
Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka
Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga
Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.
Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2017-10-04 Projekt
Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna.
Architektura komputerów ćwiczenia Zbiór zadań IV Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Wprowadzenie 1 1 fragmenty książki "Organizacja i architektura systemu
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Technika cyfrowa Synteza układów kombinacyjnych
Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1
Sztuczne sieci neuronowe (SNN)
Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe
Bramki logiczne V MAX V MIN
Bramki logiczne W układach fizycznych napięcie elektryczne może reprezentować stany logiczne. Bramką nazywamy prosty obwód elektroniczny realizujący funkcję logiczną. Pewien zakres napięcia odpowiada stanowi
Tranzystor JFET i MOSFET zas. działania
Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej
Temat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski
Wykład nr 1 Techniki Mikroprocesorowe dr inż. Artur Cichowski ix jy i j {0,1} {0,1} Dla układów kombinacyjnych stan dowolnego wyjścia y i w danej chwili czasu zależy wyłącznie od aktualnej kombinacji stanów
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
Cyfrowe układy scalone c.d. funkcje
Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe
Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
Technika cyfrowa Synteza układów kombinacyjnych (I)
Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
ELEMENTY SZTUCZNEJ INTELIGENCJI. Sztuczne sieci neuronowe
ELEMENTY SZTUCZNEJ INTELIGENCJI Sztuczne sieci neuronowe Plan 2 Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie regułą delta Perceptron wielowarstwowy i jego uczenie
Informatyka I. Typy danych. Operacje arytmetyczne. Konwersje typów. Zmienne. Wczytywanie danych z klawiatury. dr hab. inż. Andrzej Czerepicki
Informatyka I Typy danych. Operacje arytmetyczne. Konwersje typów. Zmienne. Wczytywanie danych z klawiatury. dr hab. inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2019 1 Plan wykładu
6. Perceptron Rosenblatta
6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.
Wprowadzenie do Sieci Neuronowych Laboratorium Organizacja zajęć. Perceptron. Jarosław Piersa --3 Organizacja zajęć. Co będzie Dużo programowania (pisanie programów), Trochę matematyki, Małe zadania do
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
Wykład 1. Informatyka Stosowana. 3 października Informatyka Stosowana Wykład 1 3 października / 26
Wykład 1 Informatyka Stosowana 3 października 2016 Informatyka Stosowana Wykład 1 3 października 2016 1 / 26 Wykłady : 45h (w semestrze zimowym) ( Egzamin) 30h (w semetrze letnim ) ( Egzamin) Zajęcia praktyczne:
Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.. Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci
Ćwiczenie 23. Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia
Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia Ćwiczenie 23 Poznanie symboli własności. Zmierzenie parametrów podstawowych bramek logicznych TTL i CMOS. Czytanie schematów elektronicznych,
Zwykle układ scalony jest zamknięty w hermetycznej obudowie metalowej, ceramicznej lub wykonanej z tworzywa sztucznego.
Techniki wykonania cyfrowych układów scalonych Cyfrowe układy scalone dzielimy ze względu na liczbę bramek elementarnych tworzących dany układ na: małej skali integracji SSI do 10 bramek, średniej skali
Układy kombinacyjne 1
Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL
Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..
Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.
Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
WSTĘP. Budowa bramki NAND TTL, ch-ka przełączania, schemat wewnętrzny, działanie 2
WSTĘP O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą rodziną
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie
Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:
Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy