ZAGADKI WYKŁAD 1: NIESKOŃCZONE. 1 Nieskończone łapówki
|
|
- Czesław Walczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 ZAGADKI WYKŁAD : NIESKOŃCZONE To jedno z najważniejszych pojęć matematycznych. Zawsze było ono też źródłem wielu problemów filozoficznych. Budziło i budzi emocje: strach, podziw, itd. Żongluje się nim dość swobodnie w systemach religijnych. Czy potrafimy porządnie zdefiniować nieskończoność? Zastanów się przez chwilę, czy widzisz możliwość precyzyjnego określenia, że czegoś jest nieskończenie wiele, bez odwoływania się do np.: czasu, przestrzeni, uporządkowania. Prawdopodobnie w miarę łatwo przychodzi ci obcowanie z nieskończonościa potencjalna z przypadkiem, gdy można bez ograniczeń stale powiększać jakąś kolekcję obiektów. Możesz natomiast z pewnym-takim-wahaniem być skłonna do uznania, że istnieje również nieskończoność aktualna oraz że możemy wykonywać pewne operacje na ujmowanych w całość obiektach nieskończonych. Z pewnością zaczniesz się buntować, gdy dowiesz się o istnieniu całej skali różnych (!) nieskończoności. Nieskończone pojawia się w matematyce w różnych postaciach. Mówi się więc o zbiorach nieskończonych wtedy myślimy o czymś nieskończenie dużym. Możemy jednak także próbować rozmyślać o czymś nieskończenie małym. Obiekty matematyczne mogą też być nieskończenie złożone. Matematycy nie znają strachu przed sumowaniem nieskończenie wielu wielkości, potrafią ustalać, kiedy takie sumowanie daje w wyniku wielkość skończoną, a kiedy tak nie jest. Świat fizyczny może być skończony, ale jego opisy mogą wymagać posłużenia się np. przestrzeniami o nieskończonej liczbie wymiarów. Teorie lingwistyczne zmuszone są do zakładania, że zbiór poprawnych syntaktycznie wyrażeń dowolnego języka jest nieskończony. Nawet tak banalna sfera Egzystencji Ludzkiej, jaką są finanse nie potrafi obyć się bez nieskończoności. Nieskończone łapówki Wyobraź sobie, że ktoś zamierza ofiarować ci nieskończona liczbę kopert: pierwsza zawiera złotówkę, druga dwa złote, trzecia trzy złote, itd. n-ta koperta zawiera n złotych. Pomijamy oczywiście czysto fizyczne aspekty darowizny, czyli zakładamy, że dla każdej liczby naturalnej n istnieje koperta, która pomieści n złotych. Taka darowizna urządza cię do końca życia (i długo potem). Powiedzmy jednak, że darczyńca daje ci wybór: albo pozostajesz przy obecnej wersji podarunku, albo przyjmujesz od niego nieskończona liczbę kopert, z których pierwsza zawiera dwa złote, druga cztery złote, trzecia sześć złotych, itd. n-ta koperta zawiera 2n złotych. Możesz też wyobrazić sobie, że masz do czynienia z dwoma
2 łapówkarzami jeden przedstawia ci pierwszą ofertę, a drugi drugą. Co opłaca się wybrać? Z jednej strony, w drugim przypadku dostajesz w sumie dwa razy więcej pieniędzy niż w pierwszym. Z drugiej natomiast strony, w drugim przypadku dostajesz w sumie tylko połowę tego, co dostałbyś w pierwszym przypadku (bo znikają wszystkie koperty zawierające nieparzysta liczbę złotówek). Co wybierasz? Która z propozycji jest obiektywnie korzystniejsza? 2 Spirala o nieskończonej liczbie zwojów Narysujmy półokrąg o promieniu r, o środku w początku układu współrzędnych na płaszczyźnie (powiedzmy w górnej półpłaszczyźnie). Teraz narysujmy półokrąg (o promieniu r 2 ) w dolnej półpłaszczyźnie, którego końce umieszczone są na osi odciętych w punktach o współrzędnych (0, 0) oraz (r, 0). W kolejnym kroku rysujemy półokrąg (o promieniu r 4 ) w górnej półpłaszczyźnie, którego końce znajdują się na osi odciętych w punktach o współrzędnych (0, 0) oraz ( r 2, 0). Operacje te powtarzać możemy w nieskończoność powstaje w ten sposób spirala o nieskończenie wielu zwojach, otaczających coraz ciaśniej pewien punkt na osi odciętych. Jaka jest długość tej spirali? 3 Spirala nieskończona Niech a > a 2 > a 3 >..., gdzie a n R + dla n N. Budujemy spiralę z odcinków o długościach: a, a + a 2, a 2 + a 3,... (powiedzmy, prawoskrętną, kąt skrętu π 2 ). Długość tej spirali to: 2 a n. Spirala mieści się na ograniczonym n= obszarze. Dla ciągu a n = q n oraz q = spirala ma długość 40. Stosujemy w tym przypadku znany ze szkoły wzór, wykorzystany w poprzednim punkcie. A jaka jest jej długość dla ciągu a n = n? 4 Gra Smullyana Przypuśćmy, że masz nieskończenie wiele kul, ponumerowanych dodatnimi liczbami całkowitymi, przy czym każda taka liczba jest umieszczona na nieskończenie wielu kulach (masz więc nieskończenie wiele kul z jedynką, nieskończenie wiele z dwójką, nieskończenie wiele z trójką, itd.). Masz też pudełko, które zawiera skończenie wiele ponumerowanych kul. Celem zabawy jest opróżnienie pudełka, wedle następującej reguły. W każdym kroku wyjmujesz pewną kulę, a na jej miejsce wkładasz całkiem dowolną liczbę kul o mniejszych numerach. Ponieważ nie ma 2
3 mniejszych od jedynki dodatnich liczb całkowitych, więc kuli z jedynką niczym nie zastępujesz. Rozwiązanie wygląda prosto: wystarczy, że zastąpisz każdą kulę w pudełku kulą z jedynką, a potem wyjmiesz te wszystkie kule z jedynką po kolei. Ciekawe w tej zabawie jest jednak to, że nie można z góry ograniczyć liczby kroków potrzebnych to opróżnienia pudełka pamiętajmy, że można utrudniać poprzez dokładanie dowolnej skończonej liczby kul, byle o numerze mniejszym niż numer kuli zastępowanej. Czy potrafisz uzasadnić, że zabawa musi zakończyć się po skończonej liczbie kroków? 5 Lampa Thomsona Lampa Thomsona działa w sposób następujący. Świeci, gdy jest włączona, nie świeci, gdy jest wyłączona. W momencie t = 0 jest włączona, w momencie t = jest wyłączona, w momencie t = 3 2 jest włączona, w momencie t = 7 4 jest wyłączona, itd. Nie jest istotne, w jakich jednostkach mierzymy czas powiedzmy, że będą to minuty. Tak więc, lampa świeci przez minutę, potem przez pół minuty nie świeci, potem przez ćwierć minuty świeci, potem przez jedną ósmą minuty nie świeci, itd. Czy w czasie t = 2 lampa świeci czy nie? 6 Kule Laugdogoitii Współcześnie rozważa się np. następujący paradoks (także podpadający pod kategorię supertasks), który sformułował Pérez Laugdogoitia. Wyobraźmy sobie, że na odcinku AB rozmieszczone są jednakowe masy punktowe w nieskończonej liczbie, w ten sposób, że pierwsza z nich znajduje się w punkcie B, druga w punkcie 2, trzecia w 4, czwarta w 8, itd. Jeśli wprawimy w ruch z prędkością v pierwszą z nich (tak, że podąży ona w kierunku drugiej), to zgodnie z mechaniką Newtona po zderzeniu pierwszej masy z drugą ta pierwsza zatrzyma się, a druga uzyska prędkość v, zderzy się z trzecią, druga zatrzyma się, a trzecia uzyska prędkość v, itd. W czasie t = v ustaną wszystkie zderzenia. Czy wtedy w punkcie A pojawi się któraś z tych mas punktowych? Ponadto, skoro równania ruchu nie zależą od kierunku upływu czasu, to czy masy punktowe rozmieszczone w podany wyżej sposób mogą spontanicznie ( same z siebie ) zapoczątkować serię zderzeń spowodowanych ich ruchem w kierunku przeciwnym do wcześniej rozważanego, tak, iż masa w punkcie B zacznie poruszać się (z dowolną właściwie prędkością)? 3
4 7 Mucha i PKP Odległość z A do B wynosi 300 kilometrów. Z obu tych miejscowości wyjeżdżają jednocześnie dwa pociągi PKP Intercity i pędzą ku sobie z prędkością 50 kilometrów na godzinę. Jednocześnie mucha wylatuje z A, dolatuje do pociągu, który wyruszył z B, zawraca, dolatuje do pociągu, który wyruszył z A, i tak dalej. Mucha leci cały czas z prędkością 00 kilometrów na godzinę. Mucha powtarza swój lot do momentu, w którym pociągi się spotkają (tzn. zaczną się mijać, PKP Intercity nie przewiduje w rozkładzie jazdy zderzeń pociągów). Ile kilometrów przeleci mucha? Porównaj matematyczną treść zagadki z jej interpretacją fizyczną. 8 Pragnienie arcybiskupa Wierni w jednej z parafii na dalekiej północy kraju podarowali swojemu arcybiskupowi kształtną flaszkę wypełnioną winem. Ma ona mianowicie kształt następujący: składa się z walca o promieniu i wysokości równej jednostce (np. jednemu metrowi) oraz szyjki, która jest powierzchnią powstałą poprzez obrót wykresu funkcji f(x) = x w przedziale od do nieskończoności. Czy arcybiskup będzie pił z niej wiecznie, zakładając, że codziennie pragnie, powiedzmy, ćwiarteczki? 9 Maksymalny nawis Tę zagadkę formułuje się zwykle dla kart lub monet układanych tak, aby tworzyły nawis wystający poza stół (ale spotykamy także inne zabawne fabuły np. budowlane). Kładziemy na stole monetę w ten sposób, aby wystawała nieco poza krawędź stołu. Na niej kładziemy następną monetę tak, aby wystawała nieco poza krawędź pierwszej. I tak dalej. Jakiej wielkości nawis możemy w ten sposób utworzyć, bez zawalenia się całości pod wpływem siły grawitacji? 0 Sztuczki Eulera Euler genialnie radził sobie z sumami (oraz iloczynami) nieskończonymi, choć w jego czasach nie dysponowano jeszcze ścisłymi kryteriami zbieżności. Euler udowodnił np.: (oraz wielką mnogość innych rezultatów do dzisiaj n= n 2 = π2 6 nie zdołano opublikować wszystkich jego rękopisów). Czy potrafisz uzasadnić, że jest wielkością skończoną? n 2 n= 4
5 Spierano się o wartość nieskończonego szeregu (Grandiego): Mamy bowiem: ( ) + ( ) + ( ) + ( ) +... = 0, ale także: ( ) ( ) ( )... =. Tak więc, jeśli S miałaby być sumą rozważanego szeregu, to S = S, czyli S = 2. Euler (który traktował jak liczbę oraz uznawał, że = ), uzasadniał, iż <. Czy potrafisz podać argumentację, która mogłaby zostać w tym celu wykorzystana? Rozwiązania zagadek podane zostaną na wykładzie. Jerzy Pogonowski Uniwersytet im. Adama Mickiewicza 5
ZAGADKI WYKŁAD 2: LICZBY I WIELKOŚCI
ZAGADKI WYKŁAD 2: LICZBY I WIELKOŚCI W szkole przemoca nauczono cię tabliczek: dodawania i mnożenia. Zmuszono cię również do poznania algorytmicznych przepisów, ustalających jak (całkowicie bezmyślnie)
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 28 marca 2015 Czas pracy: 90 minut
/Gimnazjum Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 28 marca 2015 Czas pracy: 90 minut Zadanie 1 (1 pkt) Na diagramie przedstawiono wysokość miesięcznych
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W tym tekście zobaczymy rozwiązanie zadania 41 z Informatora o egzaminie maturalnym z matematyki od roku szkolnego 014/015 oraz rozwiązania
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.
Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Zagadki Lilavati. Wymyślanie i sprawdzanie zadań Ciągi i odległości. Dla klasy III i klas wyższych Czas trwania: 45 minut
Zagadki Lilavati Wymyślanie i sprawdzanie zadań Ciągi i odległości Dla klasy III i klas wyższych Czas trwania: 45 minut Zagadki Lilavati to seria scenariuszy lekcji matematycznych. Powstały one dzięki
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rozdział 2.3: Przykłady przestrzeni probabilistycznych. Katarzyna Rybarczyk-Krzywdzińska Przestrzeń probabilistyczna Przestrzeń
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
ZAGADKI. JERZY POGONOWSKI Zakład Logiki i Kognitywistyki UAM
ZAGADKI WYKŁAD 4: KSZTAŁT I PRZESTRZEŃ KOGNITYWISTYKA UAM (III, IV, V) JERZY POGONOWSKI Zakład Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl www.logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl
KARTA PRACY NAUCZYCIELA
KARTA PRACY NAUCZYCIELA Przedmiot: Klasa: Temat: Data Uwagi: Matematyka III gimnazjum Objętość brył podobnych Nie wszystkie zadania muszą zostać wykonane. Wszystko zależy od poziomu wiadomości danej klasy.
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 28 MARCA 2015 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wysokość miesięcznych zarobków
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi
Matematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY
WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY Witaj w podróży. Jest to podróż matematyczna oparta na historii mojej, Jamesa, która jednak nie wydarzyła się naprawdę. Kiedy byłem dzieckiem, wynalazłem maszynę -
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 22 sierpnia
Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa
Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula
5. Logarytmy: definicja oraz podstawowe własności algebraiczne.
5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Zadanie 1. Dla n naturalnego mamy zdanie: Jeżeli n jest liczbą pierwszą, to n jest równa 2 lub jest liczbą nieparzystą. Możemy je zapisać
Elementy logiki matematycznej
Elementy logiki matematycznej Przez p, q będziemy oznaczać zdania. Każdemu zdaniu możemy przyporządkować wartość logiczną 1, gdy jest prawdziwe oraz wartość logiczną 0, gdy jest fałszywe. Oznaczmy wartość
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATURĄ MAJ 2015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony ( zadania 1 19). Ewentualny brak zgłoś przewodniczącemu
Matematyka dyskretna. Andrzej Łachwa, UJ, A/10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 8A/10 Zbiory przeliczalne Przyjmujemy, że Zn = {0, 1, 2, 3, n-1} dla n>0 oraz Zn = przy n=0. Zbiór skończony to zbiór bijektywny z
Sortowanie. Tomasz Żak zak. styczeń Instytut Matematyki i Informatyki, Politechnika Wrocławska
Tomasz Żak www.im.pwr.wroc.pl/ zak Instytut Matematyki i Informatyki, Politechnika Wrocławska styczeń 2014 Przypuśćmy, że po sprawdzeniu 30 klasówek układamy je w kolejności alfabetycznej autorów. Jak
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne
Matematyczne Podstawy Kognitywistyki
Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
ZALICZENIE WYKŁADU: 26.I.2017
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 6.I.017 KOGNITYWISTYKA UAM, 016 017 Imię i nazwisko:............. POGROMCY HYDR LERNEJSKICH 1. Pokaż, że nie jest prawem rachunku zbiorów: (A C)
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Gwiazda sześcioramienna ma wszystkie boki równe i składa się
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!
Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -
Przekształcanie wykresów.
Sławomir Jemielity Przekształcanie wykresów. Pokażemy tu, jak zmiana we wzorze funkcji wpływa na wygląd jej wykresu. A. Mamy wykres funkcji f(). Jak będzie wyglądał wykres f ( ) + a, a stała? ( ) f ( )
Etap szkolny konkursu Baltie 2010, kategorie C, D
Zadanie 1 Baltie na spirali Liczba punktów: 70 Pracujemy w trybie 3D z Baltiem. a) Fioletowy Baltie wyczaruje spiralną drogę przemiennie z modeli 7 i 32 (zobacz rys. 1.1 i 1.2). Baltie zaczyna czarować
SCENARIUSZ DO BADANIA DOJRZAŁOŚCI OPERACYJNEJ ROZUMOWANIA NA POZIOMIE KONKRETNYM U DZIECI 6-LETNICH
SCENARIUSZ DO BADANIA DOJRZAŁOŚCI OPERACYJNEJ ROZUMOWANIA NA POZIOMIE KONKRETNYM U DZIECI 6-LETNICH Opracowała i prowadziła dla nauczycieli wychowania przedszkolnego z powiatu chrzanowskiego w oparciu
4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Wykłady z matematyki Liczby zespolone
Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
PESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie.
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w
02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,
Jeśli lubisz matematykę
Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków
Zajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
07DRAP - Zmienne losowe: dyskretne i ciągłe
07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
Co to jest niewiadoma? Co to są liczby ujemne?
Co to jest niewiadoma? Co to są liczby ujemne? Można to łatwo wyjaśnić przy pomocy Edukrążków! Witold Szwajkowski Copyright: Edutronika Sp. z o.o. www.edutronika.pl 1 Jak wyjaśnić, co to jest niewiadoma?
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 sierpnia
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Funkcje trygonometryczne w trójkącie prostokątnym
Funkcje trygonometryczne w trójkącie prostokątnym Oznaczenia boków i kątów trójkąta prostokątnego użyte w definicjach Sinus Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek przyprostokątnej
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku.
Liczby pierwsze Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczbą pierwszą nazywany każdą taką liczbę naturalną, która posiada dokładnie dwa dzielniki naturalne, czyli jest podzielna
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 2 KWIETNIA 2016 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Pomiędzy dworcem kolejowym i lotniskiem kursuja
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 MARCA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) ( 5 Liczba 3 4 2 1 2
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Łożysko z pochyleniami
Łożysko z pochyleniami Wykonamy model części jak na rys. 1 Rys. 1 Część ta ma płaszczyznę symetrii (pokazaną na rys. 1). Płaszczyzna ta może być płaszczyzną podziału formy odlewniczej. Aby model można
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa
Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony
Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0
Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =
Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE
WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ
1 WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 2 PIERWSZE KROKI W GEOMETRII Opracowała: Anna Nakoneczny Myślę, że my nigdy do dzisiejszego czasu nie żyliśmy w takim geometrycznym okresie. Wszystko
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A- ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron. W zadaniach 1. do. są podane 4 odpowiedzi: A, B, C, D, z których
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Kolorowanie płaszczyzny, prostych i okręgów
Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Zbiór Cantora. Diabelskie schody.
Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka