WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ
|
|
- Aneta Dorota Sikorska
- 7 lat temu
- Przeglądów:
Transkrypt
1 1 WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ
2 2 PIERWSZE KROKI W GEOMETRII Opracowała: Anna Nakoneczny Myślę, że my nigdy do dzisiejszego czasu nie żyliśmy w takim geometrycznym okresie. Wszystko wokół- geometria. To są słowa wypowiedziane przez wielkiego francuskiego architekta Le Corbusier na początku XX wieku, które bardzo dokładnie charakteryzują i nasze czasy. Świat, w którym żyjemy, zgromadził geometrię domów i ulic, gór i pól, wytwory przyrody i człowieka. Lepiej orientować się w nim, odkrywając nowe, rozumieć piękno i mądrość otaczającego nas świata. Geometria powstała w głębokiej starożytności. Budując mieszkania i kościoły, upiększając je ornamentami, rozdając ziemię, mierząc odległości i powierzchnie, człowiek stosował swoją wiedzę o formach, wymiarach i wzajemnym położeniu przedmiotów, on wykorzystywał swoją geometryczną wiedzę, uzyskaną z obserwacji i doświadczeń. Prawie wszyscy wielcy uczeni starożytni i średniowieczni byli wybitnymi geometrami. Na zajęciach z geometrii, gdzie spotkacie się z interesującymi zadaniami będą obserwacje i doświadczenia. Wytrwałość i staranność przy wykonywaniu ćwiczeń pomogą wam w osiągnięciu celu. One są także ważne, jak pomysłowość i przenikliwość przy rozwiązywaniu zadań. W toku zajęć będziecie spotykać ćwiczenia typu: narysować jakąś figurę, zmierzyć jakąś wielkość. Wszystko co jest potrzebne do tych ćwiczeń to: linijka, cyrkiel i kątomierz. Za pomocą linijki można: Poprowadzić linie proste Zmierzyć odcinki Skonstruować odcinek danej długości Linijką bez podziałki zwaną matematyczną linijką można tylko narysować linie proste.
3 3 Cyrkiel pozwala: Skonstruować okrąg Zmierzyć odcinki Porównać długości odcinków Odkładać na prostej odcinki danej długości Kątomierz wykorzystuje się do pomiaru i konstrukcji kątów. Skala kątomierza przedstawia półokrąg podzielany na 180 równych części. Jedną taką część nazywa się STOPNIEM. W stopniach mierzymy kąty i łuki okręgów. ROZPOCZNIEMY OD KILKU ZADAŃ, Z POZORU BARDZO RÓŻNYCH,ILUSTRUJĄCYCH PEWNE KRAŃCE GEOMETRII. I TAK, W PODRÓŻ! SZCZĘŚLIWEJ PODRÓŻY!!! Zadania: 1. Ułóżcie sześć zapałek tak, aby obrazowały cztery trójkąty( bok każdego Trójkąta powinien być równy długości zapałki) 2. Rozetnij różnymi sposobami kwadratową kartkę na cztery równe części 3. Czy można narysować otwartą kopertę nie odrywając ołówka od papieru i nie prowadząc więcej niż raz żadnej linii? A zamkniętą. 4. Cztery państwa mają kształt trójkątów. Narysujcie jak rozmieszczone są one względem siebie, jeśli każde z nich ma wspólne granice z trzema państwami. 5. Naroża drewnianego sześcianu pomalowano białą farbą. Każdą jego krawędź podzielono na pięć równych części, po czym pocięto go tak, że otrzymano maleńkie sześcianiki, których krawędź jest pięć razy mniejsza od krawędzi danego sześcianu. Ile otrzymano maleńkich sześcianików? Ile otrzymano sześcianików, w których pomalowano trzy krawędzie?, dwie krawędzie?, tylko jedną krawędź? Ile pozostało nie pomalowanych sześcianików?
4 4 PRZESTRZEŃ I WYMIAR Pewnego razu znany matematyk próbował objaśnić swojemu znajomemu poecie, co to jest przestrzeń. Ten długo słuchał i w końcu zauważył: To nie tak. Ja wiem, że przestrzeń jest niebieska i w niej latają ptaki!. Niestety, matematycy patrzą na przestrzeń inaczej. Geometria bada wzajemne rozmieszczenie figur w przestrzeni. To jest t przestrzeń, która nas otacza. Popatrzmy wokół. Co to znaczy? Wyobraźmy sobie, że przed nami stoi dom i chcemy go opisać. Ten dom ma np. długość na trzy klatki schodowe, szerokość na dwa okna, a wysokość na pięć pięter. Te trzy wymiary wykorzystujemy codziennie, mówiąc o otaczających nas przedmiotach: wysokość drzewa, długość drogi, szerokość chodnika. Wszystkie przedmioty w otaczającym nas świecie mają trzy wymiary. A teraz wyobraźmy sobie, że wysokość znikła. Wtedy cały świat staje się płaski, pozostały tylko DWA WYMIARY-długość i szerokość (PRZESTRZEŃ DWUWYMIAROWA). Jakie geometryczne figury mogą żyć w tym świecie? Oczywiście to kwadrat, odcinek, okrąg. A cóż jeszcze? Przedłużmy eksperyment zabierzmy teraz i szerokość. Zostanie PRZESTRZEŃ JEDNOWYMIAROWA z jednym wymiarem-długością. Ten świat w pełni leży na prostej, jego mieszkańcy-odcinki, półproste, punkty. Jak oni widzą jeden drugiego? W zadziwiającym świecie geometrii istnieje i figura, która nie ma wymiarów-długości, szerokości i wysokości. Czy odgadliści, co to jest? Oczywiście to jest PUNKT.
5 5 Następujący obrazek pokazuje, jak powiększenie liczby wymiarów pociąga za sobą zmianę figur geometrycznych. brak wymiarów +długość przestrzeń + sze - rokość jednowymiarowa punkt odcinekfigura liniowa przestrzeń + wysokość przestrzeń dwuwymiarowa trójwymiarowa kwadratfigura płaska sześcian figura przestrzenna
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Scenariusz lekcji matematyki w kl. IV
Scenariusz lekcji matematyki w kl. IV TEMAT LEKCJI: Okrąg i koło. Treści nauczania z podstawy programowej : Wielokąty, koła, okręgi. Uczeń wskazuje na rysunku, a także rysuje cięciwę, średnicę, promień
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 O KONSTRUKCJACH GEOMETRYCZNYCH 1. Starożytni matematycy posługiwali się konstrukcjami geometrycznymi. 2. Wykonanie konstrukcji polega na narysowaniu
MATEMATYKA DLA CIEKAWSKICH
MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część II Na rysunku przedstawiony jest obszar pewnego miasta wraz z zaznaczonymi szkołami podstawowymi. Wyobraźmy sobie, że mamy przydzielić
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą
Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
INNOWACJA PEDAGOGICZNA GRY I ZABAWY MATEMATYCZNE Z ELEMENTAMI EKOLOGII
INNOWACJA PEDAGOGICZNA GRY I ZABAWY MATEMATYCZNE Z ELEMENTAMI EKOLOGII NAUCZYCIELE PROWADZĄCY: Anna Szymczak, Agnieszka Pruss Czas realizacji: Rok Szkolny 2017/2018 Grupa dzieci: 4, 5 i 6- latki Przedszkole
O sięganiu głębiej CZWARTY WYMIAR
O sięganiu głębiej CZWARTY WYMIAR Czym jest wymiar? Flatlandia; czyli kraina płaszczaków Edwin A. Abbott Życie w krainie 2. wymiaru Świat w którym żył Kwadrat jest kształtu kartki papieru, a zaludniają
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Najlepsze: AO, LS. Największe
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
A co oznacza samo słowo geometria? W dosłownym znaczeniu to "mierzyć Ziemię", ponieważ "GEO-ZIEMIA", a "METRIA-MIERZYĆ".
Podstawowe figury geometryczne i ich własności WSTĘP Geometria... na pewno spotkałeś/łaś się już z takim określeniem. Jest to jeden z działów matematyki, który dotyczy różnych figur (takich jak odcinek,
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Karta pracy do doświadczeń
Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Matematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Geometria w starożytnym świecie Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Bryły platońskie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Matematyczne słowa Autorki innowacji: Jolanta Wójcik Magda Kusyk
Szkoła Podstawowa im Kornela Makuszyńskiego w Łańcuchowie Krzyżówki matematyczne klasy V, które powstały jako efekt realizacji innowacji pedagogicznej Matematyczne słowa Autorki innowacji: Jolanta Wójcik
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY V W ROZBICIU NA OCENY Treści i umiejętności Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu na poszczególne oceny celująca bardzo
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 196324 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozwiazaniem
SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o
SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych
KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90
KONSTRUKCJE ZA POMOCĄ CYRKLA Ćwiczenia Czas: 90 TWIERDZENIE MOHRA-MASCHERONIEGO jeżeli dana konstrukcja geometryczna jest wykonalna za pomocą cyrkla i linijki, to jest wykonalna za pomocą samego cyrkla,
Pomiar pól wielokątów nieregularnych w terenie.
Pomiar pól wielokątów nieregularnych w terenie. Czas trwania zajęć: 45 minut Kontekst w jakim wprowadzono doświadczenie: Pierwsza część zajęć odbywa się w terenie (boisko szkolne lub inny teren o nieutwardzonej
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V
WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V (n - el prowadzący M. Stańczyk) Wymagania programowe z matematyki w klasie V szkoły podstawowej czyli kompetencje i umiejętności uczniów z matematyki w klasie
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...
Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)
Ile takich samych butelek wody należy dolać do dzbanka, aby sok stanowił 25% napoju? Wybierz odpowiedź spośród podanych.
Zadanie 1. Do dzbanka wlano 2 jednakowe butelki soku. Ile takich samych butelek wody należy dolać do dzbanka, aby sok stanowił 25% napoju? Wybierz odpowiedź spośród podanych.. 2. 4 C. 6 D. 8 Zadanie 2.
XV Olimpiada Matematyczna Juniorów
XV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (26 września 209 r.) Rozwiązania zadań testowych. odatnia liczba a jest mniejsza od. Wynika z tego, że a) a 2 > a; b) a > a; c)
Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i
Rok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4
Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4 Na ocenę dopuszczającą uczeń 1. Zapisać słowami podaną cyframi liczbę naturalną, (co najwyżej liczbę
PODSTAWOWE FIGURY GEOMETRYCZNE
TEST SPRAWDZAJĄCY Z MATEMATYKI dla klasy IV szkoły podstawowej z zakresu PODSTAWOWE FIGURY GEOMETRYCZNE autor: Alicja Bruska nauczyciel Szkoły Podstawowej nr 1 im. Józefa Wybickiego w Rumi WSTĘP Niniejsze
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych
Młodzieżowe Uniwersytety Matematyczne. dr Michał Lorens
Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ODLEGŁOŚĆ NA POWIERZCHNI WIELOŚCIANU dr Michał Lorens 28.04.2012 Projekt
DOKŁADNOŚĆ POMIARU DŁUGOŚCI
1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;
PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE
PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników
Program przedmiotowo- wychowawczy z matematyki w kl.v
Program przedmiotowo- wychowawczy z matematyki w kl.v Dział Treści programowe Stawiane zadania Wartości Przewidywane efekty Liczby naturalne Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych
Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy
Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść
Praca klasowa nr 2 - figury geometryczne (klasa 6)
Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH
ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH Arkadiusz Biel Kraków 2011 Wielokąty gwiaździste są ciekawym przypadkiem wielokątów, gdyż posiadają
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Rysowanie precyzyjne. Polecenie:
7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na
MATEMATYKA. klasa IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. 1) Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
Kryteria oceniania wiadomości i umiejętności matematycznych ucznia klasy VI
Kryteria oceniania wiadomości i umiejętności matematycznych ucznia klasy VI Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań koniecznych na ocenę dopuszczającą. Wykazuje rażący brak wiadomości
GEOPLAN Z SIATKĄ TRÓJKĄTNĄ
TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego
Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia
w jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
Scenariusz zajęć nr 6
Autor scenariusza: Maria Piotrowska Blok tematyczny: Ja i moja klasa Scenariusz zajęć nr 6 I. Tytuł scenariusza zajęć: Figury w klasie. II. Czas realizacji: 2 jednostki lekcyjne. III. Edukacje (3 wiodące).
KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012
Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019 Zasada trzech etapów (jeszcze raz) Trzy etapy, enaktywny, ikoniczny
Temat: Pole równoległoboku.
Scenariusz lekcji matematyki w klasie V Temat: Pole równoległoboku. Ogólne cele edukacyjne - rozwijanie umiejętności posługiwania się językiem matematycznym - rozwijanie wyobraźni i inwencji twórczej -
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 12
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 12 Zadanie domowe Jednoznaczność. Uogólnienie. Liniowe równanie diofantyczne. Zadanie domowe Pojęcie kąta
2. Na każdej stronie wpisz, w odpowiednim miejscu, kod zdającego.
POZIOM 3 - ZAAWANSOWANY CZAS 120 MINUT INSTRUKCJA DLA ZDAJĄCEGO 1. Przed sobą masz egzamin na poziomie 3 zaawansowanym. 2. Na każdej stronie wpisz, w odpowiednim miejscu, kod zdającego. 3. W zadaniach
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
(ok p.n.e.)
(ok. 572-497 p.n.e.) Pitagoras pochodził z wyspy Samos. Znany jest głównie z słynnego twierdzenia o trójkącie prostokątnym, powszechnie zwanego jako twierdzenie Pitagorasa. Twierdzenie Pitagorasa ilustracja
Wielokąty foremne. (Konstrukcje platońskie)
Wielokąty foremne (Konstrukcje platońskie) 1 Definicja 1. Wielokąt wypukły nazywa się foremny, jeżeli ma wszystkie kąty równe i wszystkie boki równe. Przykładami wielokątów foremnych są trójkąt równoboczny,
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine 1. Autor: Anna Wołoszyn 2. Grupa docelowa: klasa 1 Gimnazjum 3. Liczba godzin: 2 4. Temat zajęć: Symetria względem
Obwody i pola figur -klasa 4
Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie
Kształtowanie w uczniach umiejętności identyfikowania zależności i analogii matematycznych w otaczającym świecie.
Tytuł Mity, magia i matematyka Autor Sławomir Dziugieł Dział Figury płaskie - symetrie i inne przekształcenia geometryczne Innowacyjne cele edukacyjne Kształtowanie w uczniach umiejętności identyfikowania
Scenariusz lekcji matematyki w kl. V.
Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
Troszkę Geometrii. Kinga Kolczyńska - Przybycień
Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Kilka słów o mierzeniu Otóż jak sama nazwa Geometria (z gr geo-ziemia, metria-miara) ma ona coś wspólnego
Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.
Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,
Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017
NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki
Powtórzenie wiadomości o figurach na płaszczyźnie
Literka.pl Powtórzenie wiadomości o figurach na płaszczyźnie Data dodania: 2009-06-13 16:49:26 Autor: Sylwia Tillack Konspekt opracowany na podstawie podręcznika i ćwiczeń Matematyka z Plusem wydawnictwa
Skrypt 14. Figury płaskie Okrąg wpisany i opisany na wielokącie. 7. Wielokąty foremne. Miara kąta wewnętrznego wielokąta foremnego
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 14 Figury płaskie Okrąg wpisany i opisany
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
PLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego)
PLNIMETRI pp 2015/16 WŁSNOŚI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) Zad.1 Wyznacz kąty trójkąta jeżeli stosunek ich miar wynosi 5:3:1. Zad.2 Znajdź