Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Save this PDF as:
Wielkość: px
Rozpocząć pokaz od strony:

Download "Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1"

Transkrypt

1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić w ciąg nieskończony (po kolei jedna za drugą). Dysponując jedynką, łatwo jest otrzymać wszystkie inne liczby naturalne. Trzeba tylko cierpliwie dodawać... Zbiór liczb naturalnych oznaczamy symbolem N. Czy zero jest liczbą naturalną? To zależy od definicji. Czasem matematycy przyjmują, że zero jest liczbą naturalną, a czasem zaczynają od jedynki. My przyjmujemy, że zero jest liczbą naturalną. Ile jest liczb naturalnych? Liczb naturalnych jest nieskończenie wiele. Liczby całkowite. Z {... 5, 4, 3,, 1, 0, 1,, 3, 4, 5...} Zbiór liczb całkowitych można więc zdefiniować, jako rozszerzenie zbioru liczb naturalnych o wszystkie wyniki operacji odejmowania liczb naturalnych od zera. Liczbami całkowitymi nazywamy więc wszystkie liczby naturalne, zero oraz wszystkie liczby przeciwne do naturalnych. Zbiór wszystkich liczb całkowitych oznaczamy literą Z lub C. 3 Dzielniki liczb naturalnych. Liczbę naturalną m 0 nazywamy dzielnikiem liczby naturalnej n wtedy i tylko wtedy, gdy iloraz n : m jest liczbą naturalną. 3.1 Liczby wymierne. Liczby, które można zapisać w postaci ułamka (ułamek - wynik dzielenia, przy czym w liczniku są liczby całkowite, a w mianowniku - naturalne prócz zera), nazywa się liczbami wymiernymi. Liczbę x nazywamy liczbą wymierną, gdy { } p x q : p C q N

2 Robert Malenkowski Zbiór liczb wymiernych oznaczamy literą W. Każda liczba całkowita i każda liczba naturalna jest liczbą wymierną. 4 Liczby niewymierne. Są liczby, których nie można przedstawić w postaci ilorazu dwóch liczb całkowitych. Nazywamy je liczbami niewymiernymi. Liczb niewymiernych jest całe mnóstwo - dużo więcej niż wszystkich możliwych liczb wymiernych. Natknęli się na nie pitagorejczycy, rozważając długości przekątnych kwadratu. Liczby niewymierne to liczby, które nie są wymierne. Liczby niewymiernej nie można przedstawić w postaci ułamka, a rozwinięcie dziesiętne liczby niewymiernej jest nieskończone i nieokresowe. Zbiór liczb niewymiernych oznaczamy N W lub IW. Przykłady liczb niewymiernych: π,, 3, Kolejność wykonywania działań 1. Jako pierwsze działania w nawiasach.. Potęgowanie i pierwistkowanie. 3. Mnożenie i dzielenie. 4. Dodawanie i odejmowanie. 6 Działania na ułamkach zwykłych 6.1 Dodawanie i odejmowanie ułamków. Jeżeli ułamki mają takie same mianowniki to dodajemy liczniki, a mianownik zostawiamy bez zmian. Jeżeli chcemy dodać liczby mieszane, dodajemy całości do całości, a ułamki do ułamków. Jeżeli ułamki zwykłe mają różne mianowniki, to najpierw należy sprowadzić ułamki do wspólnego mianownika, a potem dodać liczniki, pozostawiając mianownik bez zmian. Dodawanie ułamków jest przemienne i łączne. Aby odjąć ułamki o jednakowych mianownikach, odejmujemy ich liczniki, a mianownik zostawiamy bez zmian. Jeżeli chcemy odjąć liczby mieszane, odejmujemy całości od całości, a ułamki od ułamków Aby odjąć ułamki o róznych mianownikach, najpierw sprowadzamy je do wspólnego mianownika, następnie odejmujemy.

3 Robert Malenkowski 3 6. Mnożenie ułamków. Aby pomnożyć liczbę naturalną przez ułamek (lub odwrotnie), mnożymy licznik ułamka przez tę liczbę, a mianownik zostawiamy bez zmian. Jeżeli chcemy pomnożyć dwa ułamki, mnożymy licznik pierwszego ułamka przez licznik drugiego i mianownik pierwszego ułamka przez mianownik drugiego. Podczas mnożenia jeśli to możliwe można stosować skracanie ułamków. Należy pamiętać, aby skracając zawsze wybierać jedną liczbę z licznika, drugą z mianownika. Jeżeli chcemy pomnożyć przez siebie dwie liczby mieszane, to obie zamieniamy na ułamki niewłaściwe i mnożymy licznik przez licznik, a mianownik przez mianownik. Mnożenie ułamków jest przemienne i łączne. 6.3 Dzielenie ułamków. Odwrotność liczby. Jeżeli iloczyn dwóch liczb jest równy 1, to mówimy, że jedna liczba jest odwrotnością drugiej. Aby podzielić dwie liczby należy dzielną pomnożyć przez odwrotność dzielnika. 7 Porównywanie ułamków zwykłych Trudniej jest porównać dwa ułamki zwykłe od dwóch liczb naturalnych, na które wystarczy, że zerkniemy, a już potrafimy wskazać większą z nich. W przypadku dwóch ułamków o jednakowych licznikach lub mianownikach porównywanie nie jest trudne. W przypadku ułamków o różnych licznikach i różnych mianownikach, należy sprowadzić te ułamki do wspólnego mianownika lub licznika, bo w przeciwnym wypadku wskazanie większej może być kłopotliwe. Jeżeli ułamki zwykłe mają takie same mianowniki to ten jest większy, który ma większy licznik. Jeżeli ułamki zwykłe mają takie same liczniki to ten jest większy, który ma mniejszy mianownik. Jeżeli ułamki nie mają ani równych liczników, ani równych mianowników, to można sprowadzić ułamki do wspólnego mianownika lub licznika za pomocą operacji rozszerzania. 8 Cechy podzielności liczb. Cecha podzielności przez Liczba jest podzielna przez jeżeli jej ostatnią cyfrą jest:, 4, 6, 8 albo 0. Cecha podzielności przez 3 Liczba jest podzielna przez 3, jeśli suma jej cyfr tworzy liczbę podzielną przez 3. Cecha podzielności przez 4 Liczba jest podzielna przez 4, jeśli jej dwie ostatnie cyfry tworzą liczbę podzielną przez

4 Robert Malenkowski 4 4 lub jeśli dwukrotnie jest podzielna przez. Cecha podzielności przez 5 Liczba jest podzielna przez 5, jeśli jej ostatnią cyfrą jest 0 albo 5. Cecha podzielności przez 6 Liczba jest podzielna przez 6, jeśli jest parzysta i suma jej cyfr tworzy liczbę podzielną przez 3. Cecha podzielności przez 7 Liczba jest podzielna przez 7, jeśli różnica między liczbą wyrażoną trzema ostatnimi cyframi danej liczby a liczbą wyrażoną wszystkimi pozostałymi cyframi tej liczby (lub odwrotnie) jest podzielna przez 7. Cecha podzielności przez 8 Liczba jest podzielna przez 8, jeśli jej trzy ostatnie cyfry tworzą liczbę podzielną przez 8 lub jeśli trzykrotnie jest podzielna przez. Cecha podzielności przez 9 Liczba jest podzielna przez 9, jeśli suma jej cyfr tworzy liczbę podzielną przez 9. Cecha podzielności przez 10 Liczba jest podzielna przez 10 jeśli jej ostatnią cyfrą jest zero. Cecha podzielności przez 11 Liczba jest podzielna przez 11, jeśli różnica sumy jej cyfr stojących na miejscach parzystych i sumy cyfr stojących na miejscach nieparzystych dzieli się przez Liczby pierwsze. Liczba naturalna (różna od 0 i 1), która ma dokładnie dwa dzielniki (1 i samą siebie), nazywana jest liczbą pierwszą. Liczby pierwsze mniejsze od 0: {, 3, 5, 7, 11, 13, 17, 19}. 9.1 Przykładowe zadania. Zadanie 1. Wykonaj działania i określ czy wynik należy do zbioru W (liczby wymierne) czy do zbioru N W (liczby niewymierne). ( ) : , 00 Rozwiązanie. ( ) : , 00 ( ) :

5 Robert Malenkowski 5 ( ) Odpowiedź. Wynik tych działań jest ułamkiem o liczniku i mianowniku całkowitym więc należy do zbioru liczb wymiernych. Zadanie. Sznurek długości 10 m pocięto na trzy części, których stosunek jest równy 3 : 5 : 7. Jaką długość ma najkrótsza z tych części. a) 3m b) m c) 1, 75m d), 1m Rozwiązanie. Aby rozwiązać to zadanie należy zsumować współczynniki stusunku podziału: W następnym kroku dzielimy nasz sznurek na 15 równych części, czyli 10m : m 3 m. Zatem 1 część ma długość metra. Zgodnie z treścią zadania trzy części sznurka 3 będą miały długości równe: 3 3 m m 5 3 m 10 3 m 31 3 m 7 3 m 14 3 m 4 3 m Stąd łatwo zauważyć, że najkrótsza część będzie miała m. Odpowiedź. B.

6 Robert Malenkowski 6 10 Zadania do samodzielnego rozwiązania Zadanie 1. Na osi liczbowej odcinek AB, gdzie A ( ) ( ) 3 1 i B , podzielono punktami C i D na trzy równe części. Oblicz współrzędne punktów C i D. Zadanie. Podaj przykład liczb wymiernych a i b spełniających warunek < a < b < 5 13 Zadanie 3. Dana jest liczba a ( ). Która z podanych wypowiedzi jest fałszywa. a)liczba a jest dzielnikiem liczby 16. b) Liczba a jest podzielna przez 4. c) Liczba a jest potęgą liczby. d) Liczba a jest podzielna przez 8. Zadanie 4. Sznurek długości 5 m pocięto na trzy części, których stosunek jest równy : 4 : 9. Jaką długość ma najdłuższa z tych części. a) 15m b) 17m c) 15, 75m d) 16, 1m Zadanie 5. Znajdź najmniejszą liczbę całkowitą większą od liczby x, jeżeli x Zadanie 6. Pan Nowak zareaerwował w biurze turystycznym wyjazd wakacyjny w cenie 170 zł, za który ma zapłacić w trzech ratach. Pierwsza rata stanowi 3 ceny 7 wyjazdu, druga - 3 pozostałej kwoty. Oblicz ostatnią ratę. 4 Zadanie 7. Podaj liczbę n spełniającą nierówność:. n < 3 < n + 1

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie IV

Kryteria ocen z matematyki w klasie IV Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Skrypt 1. Liczby wymierne dodatnie. Liczby naturalne, całkowite i wymierne - przypomnienie wiadomości

Skrypt 1. Liczby wymierne dodatnie. Liczby naturalne, całkowite i wymierne - przypomnienie wiadomości Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 1 Liczby wymierne dodatnie Liczby naturalne,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ

WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ WSZYSTKO CO CHCECIE WIEDZIEĆ O MATEMATYCE ALE BOICIE SIĘ SPYTAĆ Dla wszystkich, których przerażają opasłe podręczniki szkolne do matematyki, opracowałem w przystępnej formie to co trzeba wiedzieć by rozpocząć

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Kompendium wiedzy dla gimnazjalisty. Matematyka

Kompendium wiedzy dla gimnazjalisty. Matematyka Kompendium wiedzy dla gimnazjalisty Matematyka Tekst: Anna Augustyn Konsultacja merytoryczna: Katarzyna Kabzińska Ilustracje: Maciej Maćkowiak Redakcja: Elżbieta Wójcik Korekta: Natalia Kawałko Projekt

Bardziej szczegółowo

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. Publikacja zawiera przykłady krótkich sprawdzianów wiadomości z zakresu zbiorów liczbowych oraz praw i działań w tych zbiorach

Bardziej szczegółowo

Matematyka. Klasa IV

Matematyka. Klasa IV Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby

Bardziej szczegółowo

PLAN KIERUNKOWY. Liczba godzin: 180

PLAN KIERUNKOWY. Liczba godzin: 180 Klasa V Matematyka Liczba godzin: 180 PLAN KIERUNKOWY Wstępne Wykonuje działania pamięciowo i pisemnie w zbiorze liczb naturalnych Zna i stosuje reguły kolejności wykonywania działań Posługuje się ułamkami

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 PODSTAWOWE PONADPODSTAWOWE LICZBY I DZAŁANIA porównywać liczby porządkować liczby w kolejności od najmniejszej do największej lub odwrotnie przedstawiać liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

KRYTERIA OCENIANIA KLASA IV KLASA V KLASA VI

KRYTERIA OCENIANIA KLASA IV KLASA V KLASA VI KRYTERIA OCENIANIA II ETAP EDUKACYJNY MATEMATYKA KLASA IV KLASA V KLASA VI DOPUSZCZAJĄCY odejmować liczby w zakresie 100 z przekroczeniem progu dziesiętnego znać kolejność wykonywania działań, gdy nie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju.

Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Wiadomości i umiejętności przez Was opanowane będą sprawdzane w formie: odpowiedzi i wypowiedzi ustnych, prac

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7 Zadanie domowe Zadanie domowe Liczby naturalne (Sztuka nauczania matematyki w szkole podstawowej i gimnazjum,

Bardziej szczegółowo

Ułamki zwykłe. mgr Janusz Trzepizur

Ułamki zwykłe. mgr Janusz Trzepizur Ułamki zwykłe mgr Janusz Trzepizur Ułamek jako część całości W ułamku wyróżniamy licznik i mianownik. kreska ułamkowa licznik mianownik (czytamy: jedna druga) czyli połowa całości. Dwie takie połowy tworzą

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7 Zadanie domowe 0 = 4 4 + 4 4, 2 = 4: 4 + 4: 4, 3 = 4 4: 4 4, 4 = 4 4 : 4 + 4, 6 = 4 + (4 + 4): 4, 7 =

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,

Bardziej szczegółowo

KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE. Przedmiot: matematyka. Klasa: 5

KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE. Przedmiot: matematyka. Klasa: 5 KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE Przedmiot: matematyka Klasa: 5 OCENA CELUJĄCA Rozwiązuje nietypowe zadania tekstowe wielodziałaniowe. Proponuje własne metody szybkiego liczenia. Rozwiązuje

Bardziej szczegółowo

Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej

Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie

Bardziej szczegółowo

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą

Bardziej szczegółowo

Rozkład materiału nauczania z matematyki dla klasy V

Rozkład materiału nauczania z matematyki dla klasy V Rozkład materiału nauczania z matematyki dla klasy V Lp. Temat lekcji uwagi D Lekcja organizacyjna. Zapoznanie uczniów z programem nauczania oraz systemem oceniania. LICZBY NATURALNE 1-22 1. Liczba, a

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy

Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy MARIUSZ WRÓBLEWSKI Przykładowe zadania - I półrocze, klasa 5, poziom podstawowy. W każdej z zapisanych poniżej liczb podkreśl cyfrę jedności. 5 908 5 987 7 900 09 5. Oblicz, ile razy kąt prosty jest mniejszy

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DO KLASY V

WYMAGANIA EDUKACYJNE Z MATEMATYKI DO KLASY V WYMAGANIA EDUKACYJNE Z MATEMATYKI DO KLASY V *na ocenę śródroczną 1. LICZBY I DZIAŁANIA zna dziesiątkowy system pozycyjny, różnicę między cyfrą a liczbą, pojęcie osi liczbowej, zależność wartości liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V wg podstawy programowej z VIII 2008 r.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V wg podstawy programowej z VIII 2008 r. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V wg podstawy programowej z VIII 2008 r. Ocena niedostateczna: I. Liczby naturalne. Uczeń Rozumie dziesiątkowy system pozycyjny Rozumie różnicę miedzy cyfrą

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie IV. na ocenę dopuszczającą: na ocenę dostateczną: Uczeń musi umieć:

Kryteria ocen z matematyki w klasie IV. na ocenę dopuszczającą: na ocenę dostateczną: Uczeń musi umieć: Kryteria ocen z matematyki w klasie IV Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiętnego, znać kolejność wykonywania działań, gdy nie występuję

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV Dział I Liczby naturalne część 1 Uczeń otrzymuje ocenę dopuszczającą, jeśli: 1. odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki)

Bardziej szczegółowo

Matematyka z kluczem

Matematyka z kluczem Matematyka z kluczem Wymagania edukacyjne z matematyki Klasa 4 rok szkolny 2017/2018 Danuta Górak Dział I Liczby naturalne część 1 Wymagania na poszczególne oceny 1. odczytuje współrzędne punktów zaznaczonych

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału

Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału Lp. Temat lekcji Punkty z podstawy programowej z dnia 1 lutego 2017 r. Wymagania podstawowe Wymagania ponadpodstawowe

Bardziej szczegółowo

NaCoBeZU z matematyki dla klasy 7

NaCoBeZU z matematyki dla klasy 7 NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem Ocena dopuszczająca: Pojęcie liczby naturalnej, całkowitej, wymiernej Rozszerzenie osi liczbowej na liczby ujemne Porównywanie

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V

WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V (n - el prowadzący M. Stańczyk) Wymagania programowe z matematyki w klasie V szkoły podstawowej czyli kompetencje i umiejętności uczniów z matematyki w klasie

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY V : 1. doda i odejmie liczby naturalne sposobem pisemnym z przekraczaniem progów

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie piątej

Wymagania edukacyjne z matematyki w klasie piątej Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VI

Wymagania edukacyjne z matematyki w klasie VI edukacyjne z matematyki w klasie VI Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą. Do uzyskania oceny dostatecznej uczeń musi spełniać kryteria wymagane na ocenę

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy IV

Wymagania edukacyjne z matematyki dla klasy IV *na ocenę śródroczną: 1. LICZBY I DZIAŁANIA Wymagania edukacyjne z matematyki dla klasy IV zna pojęcie sumy, różnicy, iloczynu i ilorazu rozumie rolę liczby 0 w dodawaniu i odejmowaniu rozumie rolę liczb

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Ocena Dopuszczający Osiągnięcia ucznia odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI IV KLASA SZKOŁY PODSTAWOWEJ

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI IV KLASA SZKOŁY PODSTAWOWEJ WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI IV KLASA SZKOŁY PODSTAWOWEJ DZIAL 1 LICZBY I DZIAŁANIA Uczeń zna pojęcie składnika i sumy. Uczeń zna pojęcie odjemnej, odjemnika i różnicy. Uczeń rozumie rolę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017

WYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017 WYMAGANIA EDUKACYJNE WRAZ Z KRYTERIAMI OCENIANIA WIADOMOŚCI I UMIEJĘTNOŚCI MATEMATYCZNYCH UCZNIÓW KLAS 5 ROK SZKOLNY 2016/2017 WYMAGANIA EDUKACYJNE I OKRES II OKRES I. LICZBY NATURALNE rozumieć dziesiątkowy

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać

Bardziej szczegółowo

MATEMATYKA klasa IV wymagania edukacyjne na poszczególne oceny

MATEMATYKA klasa IV wymagania edukacyjne na poszczególne oceny MATEMATYKA klasa IV wymagania edukacyjne na poszczególne oceny Wymagania konieczne (ocena dopuszczająca) Dział I - Liczby naturalne część 1 Wymagania podstawowe (ocena dostateczna) Wymagania rozszerzające

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki dla klas Va i Vb w roku szkolnym 2015/2016 DZIAŁ 1. LICZBY NATURALNE RACHUNEK PAMIĘCIOWY

Wymagania na poszczególne oceny szkolne z matematyki dla klas Va i Vb w roku szkolnym 2015/2016 DZIAŁ 1. LICZBY NATURALNE RACHUNEK PAMIĘCIOWY Wymagania na poszczególne oceny szkolne z matematyki dla klas Va i Vb w roku szkolnym 2015/2016 DZIAŁ 1. LICZBY NATURALNE RACHUNEK PAMIĘCIOWY nazywa i wskazuje w dodawaniu składniki i sumę, a w odejmowaniu

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA KL. V

WYMAGANIA EDUKACYJNE MATEMATYKA KL. V WYMAGANIA EDUKACYJNE MATEMATYKA KL. V Na ocenę dopuszczającą uczeń umie: I. LICZBY NATURALNE - zapisywać liczby za pomocą cyfr - odczytywać liczby zapisane cyframi - zapisywać liczby słowami - porównywać

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

dobry (wymagania rozszerzające) dodaje i odejmuje w pamięci liczby naturalne z przekraczaniem progu dziesiątkowego

dobry (wymagania rozszerzające) dodaje i odejmuje w pamięci liczby naturalne z przekraczaniem progu dziesiątkowego dopuszczający (wymagania konieczne) odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane cyframi (w zakresie 1 000 000) zapisuje cyframi

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI Ocenę niedostateczną (1) otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą, Wymagania na ocenę dopuszczającą (2) rozróżnia liczby pierwsze i

Bardziej szczegółowo

PLAN DYDAKTYCZNY Z MATEMATYKI DLA KLASY IV

PLAN DYDAKTYCZNY Z MATEMATYKI DLA KLASY IV PLAN DYDAKTYCZNY Z MATEMATYKI DLA KLASY IV OPRACOWANY W OPARCIU O PROGRAM NAUCZANIA MATEMATYKA Z PLUSEM NUMER TEMAT LEKCJI UWAGI I GŁÓWNE ZAGADNIENIA LEKCJI 1 2 3 LICZBY NATURALNE 1-2 3-4 5-6 7-8 9-11

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

ZAŁĄCZNIK 1 Szczegółowe wymagania edukacyjne na poszczególne oceny do nowej podstawy programowej dla kl.4

ZAŁĄCZNIK 1 Szczegółowe wymagania edukacyjne na poszczególne oceny do nowej podstawy programowej dla kl.4 ZAŁĄCZNIK 1 Szczegółowe wymagania edukacyjne na poszczególne oceny do nowej podstawy programowej dla kl.4 POZIOM KONIECZNY K Zna pojęcie składnika i sumy, odjemnej, odjemnika i różnicy Pamięciowo dodaje

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA V

Wymagania na poszczególne oceny szkolne KLASA V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych

Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Ocena dopuszczająca (wymagania konieczne) Ocena dostateczna

Bardziej szczegółowo

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie V

Kryteria ocen z matematyki w klasie V Uczeń musi umieć: Kryteria ocen z matematyki w klasie V na ocenę dopuszczającą: -odczytywać liczby zapisane cyframi -porównywać liczby naturalne, - przedstawiać liczby naturalne na osi liczbowej, - pamięciowo

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V Dział I LICZBY NATURALNE Ocena dopuszczająca 1. doda i odejmie liczby naturalne sposobem pisemnym z przekraczaniem progów dziesiątkowych 2. pomnoży pisemnie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

Sprowadzanie ułamków do wspólnego mianownika(

Sprowadzanie ułamków do wspólnego mianownika( STOPIEŃ BARDZO WYMAGANIA NA OCENY ŚRÓDROCZNE: LICZBY NATURALNE - POWTÓRZENIE WIADOMOŚCI I OSIĄGNIĘCIA Zapisywanie i odczytywanie liczb w dziesiątkowym systemie pozycyjnym. Obliczanie wartości wyrażeń arytmetycznych

Bardziej szczegółowo

C z y p a m i ę t a s z?

C z y p a m i ę t a s z? C z y p a m i ę t a s z? Liczby naturalne porządkowe, Przykłady: 0,1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne do nich i 0. Przykłady:, -3, -1, 0, 17, Liczby wymierne można przedstawid

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne Katalog wymagań programowych na poszczególne stopnie szkolne matematyka kl.6 I. Liczby naturalne -oblicza różnice czasu -wymienia jednostki opisujące prędkość,drogę i czas -dodaje,odejmuje,mnoży,dzieli

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. V

Wymagania edukacyjne z matematyki dla kl. V Wymagania edukacyjne z matematyki dla kl. V Semestr I Wymagane wiadomości i umiejętności na ocenę: dopuszczającą: pojęcie cyfry nazwy elementów działań kolejność wykonywania działań, gdy nie występują

Bardziej szczegółowo

Załącznik 1 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

Załącznik 1 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Załącznik 1 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Dział programu: LICZBY I DZIAŁANIA rozwiązywać nietypowe zadania tekstowe wielodziałaniowe dot. dodawania i pamięciowego dostrzegać

Bardziej szczegółowo