Biomechanika Inżynierska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Biomechanika Inżynierska"

Transkrypt

1 wykład 2 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1

2 Dynamika części ciała W stawach: obrotowy W wyniku ruchu innych członów biomechanizmu staw może wykonywać ruch: postępowy W efekcie: ruch dowolny 2

3 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Każdy ruch można przedstawić jako złożenie (superpozycję) ruchów prostych (postępowego i obrotowego). Względność ruchu ruch określamy względem wybranego układu odniesienia (innego ciała) 3

4 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Ruch postępowy =m a = m Δ v F Δt =m Δ v Δ t F Popęd siły = przyrost pędu - Twierdzenie o popędzie siły Ruch obrotowy =I ε = I Δ ω M Δt = I ω Δ t M Popęd momentu siły = przyrost momentu pędu - Twierdzenie o momencie pędu 4

5 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Ruch postępowy Zasada zachowania pędu Jeżeli w układzie ciał działają tylko siły wewnętrzne, to całkowity pęd układu pozostaje stały. Ruch obrotowy Zasada zachowania momentu pędu Jeżeli w układzie ciał działają tylko siły wewnętrzne, to całkowity moment pędu układu pozostaje stały. 5

6 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Ruch postępowy Zasada zachowania pędu =0 F =0 Δ t F 0=mk v k m p v p Ruch obrotowy Zasada zachowania momentu pędu =0 M =0 Δ t M k I p ω p 0= I k ω 6

7 Dynamika części ciała 7

8 Dynamika części ciała Ruch części ciała 8 D3 Rotating Falling Cat,

9 Dynamika części ciała 9 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Ruch części ciała

10 Dynamika części ciała Moment bezwładności Jest wielkością charakteryzującą bezwładność ciał w ruchu obrotowym, względem ustalonej osi obrotu. Jest sumą iloczynów mas skupionych i kwadratów ich odległości od osi obrotu. k I Δ mi r i i=1 k 2 2 Δ mi r i Δ m 0 I = lim i i=1 10

11 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności k I = Δ mi r i 2 i=1 11

12 Dynamika części ciała Zbliżanie ciała do osi obrotu spowoduje zmniejszanie się momentu bezwładności do chwili, gdy środek ciężkości znajdzie się w osi obrotu. Wtedy moment bezwładności przyjmuje wartość najmniejszą z możliwych. Centralny moment bezwładności ciała, jest to moment wyznaczony względem osi przechodzącej przez środek masy ciała. 12

13 Dynamika części ciała Twierdzenie o momencie bezwładności (Steinera) Moment bezwładności bryły A względem osi 0' jest równy sumie jego momentu centralnego Ic (względem osi 0 równoległej do 0') oraz iloczynu masy ciała i kwadratu odległości między tymi osiami. 13

14 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Twierdzenie o momencie bezwładności (Steinera) I 0 ' = I c +md 2 14

15 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Twierdzenie o momencie bezwładności (Steinera) Ic centralny moment bezwładności podudzia, względem osi poprzecznej; I0' moment bezwładności względem osi poprzecznej stawu kolanowego 0' oś poprzeczna stawu kolanowego 0 oś poprzeczna przez środek masy podudzia d odległość między osiami m masa podudzia I 0 ' = I c +md 2 15

16 Dynamika części ciała Moment bezwładności układu brył? 16

17 Dynamika części ciała Moment bezwładności układu brył Układ brył o momentach bezwładności wyznaczonych względem danej osi 0 równych IA, IB i IC posiada wypadkowy moment bezwładności równy sumie momentów bezwładności poszczególnych ciał, wyznaczonych względem tej samej osi 0. 17

18 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U =I A + I B + I C 0' 18

19 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U =? 19

20 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U = I A+ I B + I C 20

21 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U = I A+ I B + I C I A = I ca +m A d A2 21

22 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Moment bezwładności układu brył I U = I A+ I B + I C I A = I ca +m A d A2 I B = I cb + mb d B 2 I C = I cc + mc d C 2 22

23 Dynamika części ciała Rodzaje osi obrotu Swobodne: przechodzące przez środek masy, spełniające warunek, że moment bezwładności względem nich jest najmniejszy lub największy. Ustalone: wszystkie inne (muszą zostać ustalone [na siłę] żeby obrót był możliwy) 23

24 Dynamika części ciała Rodzaje osi obrotu Osie swobodne: Stabilna oś dla której centralny moment bezwładności ma maksymalną wartość. Niestabilna - oś dla której centralny moment bezwładności ma minimalną wartość. 24

25 Dynamika części ciała Przykłady wartości momentów bezwładności człowieka Pozycja Oś obrotu Moment bezwładności [kgm2] Strzałkowa 12,0 15,0 Poprzeczna 10,5 13,0 Poprzeczna 4,0 5,0 Długa 1,0 1,2 Długa 2,0 2,5 25

26 Dynamika części ciała Jakiś z życia wzięty przykład na wykorzystanie momentu pędu... 26

27 Dynamika części ciała 27

28 Dynamika części ciała 2V y tl = g Maksymalizacja momentu pędu Iω i prędkości pionowej Vy 28

29 Dynamika części ciała Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

30 Dynamika części ciała P=Q+ F i=m g+m a Przesunięcie P wzgl. R moment + moment ruchu ramion Przesunięcie Fix wzgl. R moment Biomechanika Inżynierska+ moment ruchu ramion 30

31 Dynamika części ciała Inne przykłady zastosowania w praktyce zasady zachowania momentu pędu pokazujące jak zamiana momenty bezwładności pozwala modyfikować prędkość obrotową:

32 Modele ciała człowieka Modele ciała człowieka Model system założeń, pojęć i zależności między nimi, pozwalający opisać (modelować) w przybliżony sposób jakiś aspekt rzeczywistości. Żeby stworzyć model trzeba przyjąć jakieś założenia uprościć rzeczywistość tak, aby dało się ją opisać. 32

33 Modele ciała człowieka Modele ciała człowieka Model Należy stosować najprostszy możliwy model pozwalający rozwiązać postawiony problem. 33

34 Modele ciała człowieka Modele ciała człowieka Założenia: Ciało człowieka jest układem brył sztywnych członów. Człony połączone są stawami, w których wykonywane są tylko ruchy obrotowe. Możliwe jest wyznaczenie parametrów bezwładnościowych poszczególnych członów. Powyższe parametry traktuje się jako względnie stałe. 34

35 Modele ciała człowieka Modele ciała człowieka Modele tworzy się zależnie od potrzeb rodzaju analizowanego ruchu. Chodu Biegu Czynności codziennych Pływania itp. itd. 35

36 Modele ciała człowieka Modele: 36

37 Modele ciała człowieka Modele:

38 Modele ciała człowieka Gait analysis", Michael W. Whittle, 2007 Chodu 38

39 Modele ciała człowieka Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Jaki model byłby potrzebny w takim przypadku? 39

40 Modele ciała człowieka Jaki model byłby potrzebny w takim przypadku? 40

41 Modele ciała człowieka 14 Segment Początek Koniec Głowa (wraz z szyją) Szczyt głowy (vertex) Wcięcie jarzmowe mostka (suprasternale) Tułów Wcięcie jarzmowe mostka Spojenie łonowe (symphysion) Ramię (x 2) Oś stawu ramiennego: 2,5cm poniżej wyrostka barkowego Oś stawu łokciowego; linia przesunięta o 1 cm w dół od linii łączącej nadkłykcie kości ramiennej (radiale) Przedramię (x 2) Oś stawu łokciowego Oś stawu promieniowo-nadgarstkowego; punkt w połowie odcinka łączącego wyrostki rylcowate kości łokciowej i promieniowej Ręka (x 2) Oś stawu promieniowonadgarstkowego Koniec palca III (dactylion) Udo (x 2) Oś stawu biodrowego (dla ruchu w płaszczyźnie strzałkowej); punkt przesunięty ok. 1 cm do przodu od wierzchołka krętarza większego Oś stawu kolanowego; 2,5 cm powyżej szczeliny stawu kolanowego na granicy środkowej i tylnej części wymiaru strzałkowego kolana dzieląc go na trzy części Podudzie (x 2) Oś stawu kolanowego Oś stawu skokowo-goleniowego; około 0,8 cm powyżej szczytu kostki bocznej Stopa (x 2) Guz piętowy Palec I lub palec II (acropodion) 41

42 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? 42

43 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 43

44 Modele ciała człowieka Wyznaczanie mas części ciała: Metoda szacunkowa na podstawie podobieństwa budowy ciała w populacji i danych literaturowych wyznaczonych doświadczalnie. 44

45 Modele ciała człowieka Wyznaczanie mas części ciała: Metoda szacunkowa na podstawie podobieństwa budowy ciała w populacji i danych literaturowych wyznaczonych doświadczalnie. Źródło Liczba próbek Harles (1860) Braune i Fischer (1889) Clauser i wsp. (1969) Zatziorsky i wsp. (1981) M% M% M% M% Głowa 7,6 7,0 7,3 6,94 Tułów 44,2 46,1 50,7 43,457 Ramię 3,1 2,9 2,6 2,707 Przedramię 1,7 2,1 1,6 1,625 Ręka 0,9 0,8 0,7 0,614 Udo 11,8 10,7 10,3 14,165 Podudzie 4,6 4,8 4,3 4,33 Stopa 2,0 1,7 1,5 1,371 Jednostka Części ciała: 45

46 Modele ciała człowieka Jegomość 80 kg: Źródło Zatziorsky i wsp. (1981) Masa wyznaczona przez analogię Części ciała: Głowa 6,94 Tułów 43,457 Ramię 2,707 Przedramię 1,625 Ręka 0,614 Udo 14,165 Podudzie 4,33 Stopa 1,371 46

47 Modele ciała człowieka Jegomość 80 kg: Źródło Zatziorsky i wsp. (1981) Masa wyznaczona przez analogię % kg Głowa 6,94 5,6 Tułów 43,457 34,8 Ramię 2,707 2,2 Przedramię 1,625 1,3 Ręka 0,614 0,5 Udo 14,165 11,3 Podudzie 4,33 3,5 Stopa 1,371 1,1 Części ciała: 47

48 Modele ciała człowieka Wyznaczanie mas części ciała: Metoda wykorzystująca równania regresji wyznaczone doświadczalnie, uwzględniające również wymiary. Według C. F. Clausnera [badania na zwłokach, N = 8] Części ciała: Równanie regresji Głowa 0,104(O) + 0,015(Q) 2,189 Tułów 0,349(Q) + 0,423(D) + 0,229(O) 35,460 Ramię 0,007(Q) + 0,092(Omax) + 0,05(Dmax) 3,101 Przedramię 0,081(Onadg.) + 0,052(Oprzedr) 1,65 Ręka 0,029(Onadg.) + 0,075(Snadg-kostn) + 0,031(Sręki) 0,746 Udo 0,074(Q) + 0,123(O uda) + 0,027(fałd skórny nad grzeb. kości biodrowej) 4,126 Podudzie 0,111(O podudzia) + 0,047(W kłykcia bocznego kości udowej do podłoża) + 0,074(O na wys. kostki bocznej) 4,208 Stopa 0,003(Q) + 0,048(O na wys. kostki bocznej) + 0,027(D stopy) 0,869 D długość, O obwód, S szerokość, Q ciężar ciała, W - wysokość 48

49 Modele ciała człowieka Wyznaczanie mas części ciała: Metoda wykorzystująca równania regresji wyznaczonych doświadczalnie, uwzględniających również wymiary. Według V.N. Zatziorsky'ego [badania na żywych] Części ciała: Równanie regresji Głowa 1, ,0171 Q + 0,0143 W Górna część tułowia 8, ,1862 Q - 0,0584 W Środkowa część tułowia 7, ,2234 Q - 0,0663 W Dolna część tułowia -7, ,0976 Q + 0,04896 W Ramię 0,25 + 0,03012 Q - 0,0027 W Przedramię 0, ,01445 Q - 0,00114 W Ręka -0, ,0036 Q + 0,00175 W Udo -2, ,1463 Q + 0,0137 W Podudzie -1, ,0362 Q + 0,0121 W Stopa -0, ,0077 Q + 0,0073 W Q ciężar ciała, W wysokość ciała 49

50 Modele ciała człowieka Wyznaczanie mas części ciała: Metoda wykorzystująca równania regresji vs. Metoda szacunkowa (80 kg, 188 cm) Sz Głowa R.Z Tułów Ramię Ręka Udo Przedramię Podudzie Stopa 50

51 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 51

52 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 52

53 Modele ciała człowieka Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Założenia: Wymiarem dominującym każdej części ciała jest jej długość. Pod względem kształtu części ciała przypominają bryły obrotowe a więc mają oś symetrii. Rozkład materii w każdej części ciała jest symetryczny względem geometrycznej osi symetrii. Zatem środki ciężkości leżą na ich osi symetrii. Wyznaczenie środka ciężkości wymaga tylko określenia jego położenia na osi (jedna współrzędna) 53

54 Modele ciała człowieka Wyznaczanie środków ciężkości części ciała: Metoda szacunkowa na podstawie podobieństwa budowy ciała w populacji i danych literaturowych wyznaczonych doświadczalnie. Źródło Liczba próbek Harles (1860) Braune i Fischer (1889) Clauser i wsp. (1969) Zatziorsky i wsp. (1981) Wymiar r% r% r% r% Głowa 36,2-46,6 50,0 Vertex - SC Tułów 44,8 44,0 38,0 44,5 Suprasternale - SC Ramię - 47,0 51,3 45,0 Oś stawu - SC Przedramię 42,0 42,1 39,0 42,7 Oś stawu - SC Ręka 39,7-48,0 37,0 Oś stawu - SC Udo 48,9 44,0 37,2 45,5 Oś stawu - SC Podudzie 43,3 42,0 37,1 40,5 Oś stawu - SC Stopa 44,4 44,45 44,9 44,1 Pternion - SC OSC 41,4-41,2 - Vertex - SC Jednostka Części ciała: 54

55 Modele ciała człowieka Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Wyznaczanie środków ciężkości części ciała: 55

56 Modele ciała człowieka Wyznaczanie środków ciężkości części ciała: Metoda wykorzystująca równania regresji (Zatziorsky) Część ciała Wymiar Równanie Vertex - SC 8,357-0,0025 Q + 0,0230 W Suprasternale - SC 3, ,0076 Q + 0,0470 W Xyphoidale - SC 1, ,0058 Q + 0,0450 W Tułów dolna część Umbilicus - SC 1, ,0018 Q + 0,0434 W Ramię Akromion - SC 1, ,0300 Q + 0,0540 W Przedramię Radiale - SC 0,192-0,0280 Q + 0,0930 W Ręka Stylion - SC 4, ,0260 Q + 0,0330 W Udo Iliocristale - SC -2, ,0380 Q + 0,1350 W Tibiale - SC -6,050-0,0390 Q + 0,1420 W Pternion - SC 3, ,0650 Q + 0,0330 W Głowa Tułów górna część Tułów środkowa część Podudzie Stopa 56

57 Modele ciała człowieka X E= Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Środek ciężkości układu ciał: q 1 X A +q 2 X B +q 3 X C q 1 +q 2 +q 3 q1 Y A +q 2 Y B +q 3 Y C Y E= q 1 +q 2 +q 3 57

58 Modele ciała człowieka Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Wyznaczanie środka ciężkości ciała: Q, q1, q2,... qk ciężary części ciała q1 x 1 +q 2 x q 14 x 14 xosc = Q y OSC = q 1 y1 +q 2 y q 14 y 14 Q 14 qi x 1 xosc = i=1 Q 14 qi y 1 y OSC = i=1 Q 58

59 Modele ciała człowieka Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Wyznaczanie środka ciężkości ciała: M Q + M R =0 M Q= M R Q r= R l r= R l Q 59

60 Modele ciała człowieka Wyznaczanie środka ciężkości ciała: Znając położenie środka ciężkości segmentu ciała można wyznaczyć jego ciężar (masę). L(S S ' ) X 2 X ' 2 60 Bionika ruchu, Morecki A., Ekiel J., Fidelus K., 1971 Q 2=

61 Modele ciała człowieka Wyznaczanie środka ciężkości ciała: Położenie środka ciężkości człowieka stojącego w pozycji wyprostowanej: U młodych kobiet na ok. 55,5% wysokości ciała U młodych mężczyzn na ok. 56,5% wysokości ciała Różnica ta nie jest statystycznie istotna. 61

62 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 62

63 Modele ciała człowieka Metody wyznaczania momentów bezwładności części ciała: Segmenty przez zastąpienie prostą bryłą geometryczną (walcem) Moment względem osi symetrii walca: 1 2 I 1= m r 2 Moment względem dowolnej osi leżącej w płaszczyźnie podstawy: 1 2 I 2= m h 3 63

64 Modele ciała człowieka Metody wyznaczania momentów bezwładności części ciała: Segment kończyny przez zastąpienie prostą bryłą geometryczną (walcem) Przykład przedramię: m = 1,3 kg Vol = 1,3 dm3 h = 30 cm 64

65 Modele ciała człowieka Metody wyznaczania momentów bezwładności części ciała: Segment kończyny przez zastąpienie prostą bryłą geometryczną (walcem) Przykład: m = 1,3 kg r= Vol 3,714 h π Vol = 1,3 dm3 h = 30 cm I 1 = m r =0, kg m I 2= m h =0,0117 kg m 3 65

66 Modele ciała człowieka Metody wyznaczania momentów bezwładności części ciała: Pośrednia, na podstawie centralnych momentów bezwładności określonych w oparciu o dane doświadczalne. Równanie regresji I =B 0 + B1 Q + B 2 W Twierdzenie Steinera I 0 = I c +m d 2 66

67 Modele ciała człowieka Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

68 Modele ciała człowieka Metody wyznaczania momentów bezwładności części ciała: Empiryczne? 68

69 Modele ciała człowieka Bionika ruchu", Morecki A., 1971 Metody wyznaczania momentów bezwładności części ciała: Empiryczne: Metodą szybkiego odciążania (kończyny) ΔM I= Δϵ Metodą wahadła torsyjnego (całe ciało) D 2 2 (T T 1 ) 4π 69 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 I 2= I I 1 =

70 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? - właściwości modelu: Masy elementów Środki ciężkości Momenty bezwładności 70

71 Modele ciała człowieka Zadanie domowe: Jakie momenty sił wystąpią w stawach: Barkowym Łokciowym Nadgarstkowym Podczas rzucania puszki z piwem na wysokość 2-go piętra? Przyjąć dowolną technikę rzutu Obliczenia można wykonać w arkuszu kalkulacyjnym (dowolnie) 71

72 Dźwignie kostne Szkielet stanowi dla mięśni system dźwigni. Przełożenie momentu siły w stawie na siłę rozwijaną przez mięsień wymaga określenia warunków geometrycznych Kąta w stawie Punktu przyczepu mięśnia Kąta działania siły rozwijanej przez mięsień 72

73 Dźwignie kostne Dźwignia w stawie łokciowym Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

74 Dźwignie kostne Podział dźwigni: Dźwignia Dwustronna (I) Jednostronna II rodzaju III rodzaju 74

75 Dźwignie kostne Podział dźwigni: Dwustronna (I) II rodzaju III rodzaju Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

76 Dźwignie kostne Działanie dźwigni: Jak zamieniane są siły? Jak zamieniane są przemieszczenia? Jak zamieniane są prędkości? Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

77 Dźwignie kostne Dźwignie kostne działają jak przekładnie mechaniczne: Zamieniają ruch liniowy na obrotowy Są multiplikatorami: zwielokrotniają prędkość Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

78 Dźwignie kostne Na sprawność tej przekładni kluczowy wpływ ma kąt ścięgnowo-kostny. Kąt ścięgnowo-kostny: kąt między osią długą kości, na którą działa mięsień a kierunkiem przebiegu ścięgna tego mięśnia. Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki,

79 Dźwignie kostne Na sprawność tej przekładni kluczowy wpływ ma kąt ścięgnowo-kostny. zmiana kąta ścięgnowo-kostnego 79 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Zmiana kąta w stawie

80 Dźwignie kostne Przykład: PPF = 8,5 cm2 Siła właściwa 30N/cm2 1.β1 = 50º 2.β2 = 90º 3.β3 = 130º 80 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Powierzchnia przekroju fizjologicznego,

81 Dźwignie kostne Przykład: PPF = 8,5 cm2 Siła właściwa Sw = 30N/cm2 Fm = PPF * Sw = 255N 1.F0 = 195,3N; FS = 164N 2.F0 = Fm = 255N; 3.F0 = 195,3N; FS = -164N 81 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Powierzchnia przekroju fizjologicznego,

82 Dźwignie kostne Problem kąta ścięgnowo-kostnego można rozpatrywać również od innej Efekt będzie ten sam, ale w niektórych sytuacjach jest to podejście łatwiejsze. 82 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 strony jako zmianę ramienia siły.

83 Dźwignie kostne Zadanie domowe Wyznaczyć siłę rozwijaną przez mięsień piersiowy większy podczas wykonywania tzw. pompki (a konkretnie statycznego podporu). Założenia dodatkowe: 1. Kąt prosty w łokciu, ramię poziomo, w linii z pasem barkowym. 2. Metoda dowolna, byle rozsądna :) 83

84 Dźwignie kostne Pomiar momentów sił grup mięśni Bilans momentów w stawie: M i + M T + M s= M m + M z Mi wypadkowy moment sił bezwładności członów ruchomych MT zastępczy moment sił tarcia i tłumienia w stawie Ms moment sił sprężystości, wywołany odkształceniem biernych elementów układu ruchu (więzadła, torebki stawowe, ścięgna itp.) Mm sumaryczny moment sił mięśniowych wszystkich grup mięśniowych działających w stawie Mz wypadkowy moment sił zewnętrznych 84

85 Dźwignie kostne Mi wypadkowy moment sił bezwładności członów ruchomych M i = I z ϵ MT zastępczy moment sił tarcia i tłumienia w stawie M T =B ω Ms moment sił sprężystości, wywołany odkształceniem biernych elementów układu ruchu (więzadła, torebki stawowe, ścięgna itp.) M s= K α Mm sumaryczny moment sił mięśniowych wszystkich grup mięśniowych działających w stawie Mz wypadkowy moment sił zewnętrznych 85

86 Dźwignie kostne W warunkach statycznych, w pozycji spoczynkowej: ϵ=0 ω=0 α=α 0 =0 Równanie równowagi momentów w stawie można zapisać w postaci: M m= M Z 86

87 Dźwignie kostne Zatem: można zmierzyć wypadkowy moment sił wszystkich grup mięśniowych obsługujących staw. Na przykład: 87 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003

88 Dźwignie kostne Warunki statycznych pomiarów momentów sił mięśniowych: Oś stawu musi pokrywać się z osią dźwigni momentomierza (siła musi być przyłożona prostopadle do osi kości) Wartość kątów w stawach sąsiednich musi być znana (określona) Pozycja ciała (stawów sąsiednich) musi być ustabilizowana Rejestrowany moment musi być przyporządkowany do wartości kąta w badanym stawie 88

89 Dźwignie kostne Wyniki pomiarów momentów sił grup mięśni kończyn zginaczy (ZGŁ) i prostowników (PRŁ). 89 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Staw łokciowy. Uśredniona względna wartość momentu siły

90 Dźwignie kostne Wyniki pomiarów momentów sił grup mięśni kończyn zginaczy (ZGR) i prostowników (PRR). 90 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Staw ramienny. Uśredniona względna wartość momentu siły

91 Dźwignie kostne Wyniki pomiarów momentów sił grup mięśni kończyn zginaczy (ZGK) i prostowników (PRK). 91 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Staw kolanowy. Uśredniona względna wartość momentu siły

92 Dźwignie kostne Wyniki pomiarów momentów sił grup mięśni kończyn Mk r α Mk r Fn Fn Q Q Fs α Fs M k = r F s M k =r F s F s=q sin α M k =r Q sin α Dla α 0, sinα 0 a więc Mk 0 92

93 Dźwignie kostne Wyniki pomiarów momentów sił grup mięśni kończyn zginaczy (ZGB) i prostowników (PRB). 93 Biomechanika układu ruchu człowieka", T. Bober, J. Zawadzki, 2003 Staw biodrowy. Uśredniona względna wartość momentu siły

94 Dźwignie kostne Zamiany momentu siły w zależności od kąta ugięcia w stawie zależą nie tylko od kąta ścięgnowo-kostnego! Siła rozwijana przez mięsień zależy od jego wydłużenia... 94

95 Modele numeryczne Modelowanie numeryczne ciała ludzkiego w ruchu na przykładzie oprogramowania OpenSim 95

96 Modele numeryczne AnyBody Hu-M-An MSMS OpenSim SIMM Visual3D Dostępność Komercyjny Komercyjny (+ próbna) (+ próbna) Darmowy Darmowy Architektura Zamknięta Zamknięta Zamknięta Otwarta Zamknięta Zamknięta Tworzenie i edycja modeli Tak Tak Tak Tak Tak Tak Biblioteka modeli Tak Tak Tak Tak Tak Tak Wymiary 3D 2D/3D 3D 3D 3D 2D/3D Komercyjny Komercyjny Modelowanie układu mięśniowo-szkieletowego podczas pchnięcia kulą", B,Łysoń,

97 Modele numeryczne Modele składają się z sztywnych segmentów ciała połączonych stawami. Mięśnie stabilizują te stawy oraz generują siły oraz ruch. Modele układu mięśniowo-szkieletowego umożliwiają m.in.: badania koordynacji nerwowo-mięśniowej, wydajności ruchu w sporcie, ocenę obciążeń układu mięśniowo-szkieletowego. 97

98 Modele numeryczne Otwarte oprogramowanie OpenSim umożliwia: budowanie i modyfikację istniejących modeli układu mięśniowoszkieletowego, analizę i wizualizację modeli, prowadzenie symulacji dynamicznych ruchów złożonych. OpenSim umożliwia badanie wpływu geometrii układu, kinematyki stawów oraz właściwości mięśni i ścięgien na siły i ruchy, które mogą być wygenerowane przez mięśnie w danym modelu. 98

99 Modele numeryczne Symulacja biomechaniki układu mięśniowo-szkieletowego w środowisku OpenSim", K.Malewska,

100 Modele numeryczne 1. Skalowanie Dopasowanie modelu z biblioteki do wymiarów osoby poddanej badaniu. Dane z próby statycznej służą do dopasowania antropometrii modelu, rozkładu mas, jak i parametrów mięśni. Skalowanie ręczne lub wyliczane na podstawie pomiarów odległości pomiędzy znacznikami eksperymentalnymi (na obiekcie fizycznym) oraz umieszczonymi na modelu (numerycznym). Modelowanie układu mięśniowo-szkieletowego podczas pchnięcia kulą", B,Łysoń,

101 Modele numeryczne 2. Kinematyka odwrotna (IK) Narzędzie kinematyki odwrotnej również dopasowuje wirtualne markery modelu do danych eksperymentalnych. Robi to dla każdej kolejnej klatki zarejestrowanego ruchu. Zadaniem jest jak najwierniejsze oddanie ruchu odtworzonego z trajektorii markerów oraz utworzonego wcześniej modelu. Modelowanie układu mięśniowo-szkieletowego podczas pchnięcia kulą", B,Łysoń,

102 Modele numeryczne 3. Dynamika odwrotna (ID) Narzędzie dynamiki odwrotnej Wylicza siły reakcji i momenty w stawach na podstawie kinetyki, kinematyki oraz antropometrii modelu. Wykorzystuje klasyczne równanie ruchu, które pozwala wyznaczyć nieznany wektor sił uogólnionych F. M (q) q +C (q, q )+G(q)=F Modelowanie układu mięśniowo-szkieletowego podczas pchnięcia kulą", B,Łysoń,

103 Modele numeryczne 4. Algorytm Redukcji Sił Resztkowych (RRA) Koryguje model by zminimalizować efekty niedoskonałości modelowania błędy spowodowane przetwarzaniem danych trajektorii znaczników. Błędy te prowadzą do niezrównoważenia sił modelu z reakcją podłoża. Do spełnienia II zasady Newtona do równania należy wprowadzić dodatkową siłę R, zwaną siłą resztkową. F=ma+ R Redukcja sił resztkowych odbywa się poprzez zmianę położenia środka ciężkości tułowia, zmianę mas pojedynczych segmentów, w razie konieczności także wyliczenie nowej kinematyki modelu. Modelowanie układu mięśniowo-szkieletowego podczas pchnięcia kulą", B,Łysoń,

104 Modele numeryczne 5. Algorytm wyliczenia pobudzeń mięśniowych (CMC) W narzędziu CMC wyliczane są pobudzenia mięśniowe, które są niezbędne do śledzenia wyliczonych wcześniej zależności kątowych. Modelowanie układu mięśniowo-szkieletowego podczas pchnięcia kulą", B,Łysoń,

Biomechanika Inżynierska

Biomechanika Inżynierska wykład 2 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1 Modele ciała człowieka Model podstawowy 14-elementowy: Co jest potrzebne, żeby opisać jego ruch? 2 Modele ciała człowieka

Bardziej szczegółowo

Biomechanika Inżynierska

Biomechanika Inżynierska wykład 2 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1 Biomechanika Podstawowe pojęcia Biomechaniki Ruchliwość łańcucha biokinematycznego: 5 W =6n P i i i=3 W ruchliwość łańcucha

Bardziej szczegółowo

Biomechanika Inżynierska

Biomechanika Inżynierska Biomechanika Inżynierska wykład 4 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska Biomechanika Inżynierska 1 Modele ciała człowieka Modele: 4 6 10 14 Biomechanika Inżynierska 2 Modele

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Biomechanika Inżynierska

Biomechanika Inżynierska wykład 1 Instytut Metrologii i Inżynierii Biomedycznej Politechnika Warszawska 1 Sprawy organizacyjne Wykład: Wykład i laboratorium: dr inż. Szymon Cygan pok. 40 tel. 22-234-86-64 e-mail: s.cygan@mchtr.pw.edu.pl

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Rys. 1Stanowisko pomiarowe

Rys. 1Stanowisko pomiarowe ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

WYPROST staw biodrowy

WYPROST staw biodrowy www.pandm.org ZGIĘCIE staw biodrowy Suplinacyjna Stabilizacja miednicy Krętarz większy kości udowej Głowa strzałki Wzdłuż tułowia, równolegle do podłoża, skierowane do dołu pachowego Zgięcie Norma Między

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

3 zasada dynamiki Newtona

3 zasada dynamiki Newtona Siła a Reakcji Podłoża Ground Reaction Force (GRF) 3 zasada dynamiki Newtona Cięż ężar pudełka generuje w podłożu u siłę reakcji, która jest równa r cięż ężarowi co do wartości, ale ma przeciwny zwrot.

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 19

INSTRUKCJA DO ĆWICZENIA NR 19 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 19 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA ALIZA PŁASKIEGO DOWOLNEGO UKŁADU SIŁ NA PODSTAWIE OBCIĄŻENIA

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

Spis Tabel i rycin. Spis tabel

Spis Tabel i rycin. Spis tabel Spis Tabel i rycin Spis tabel 1. Podział stawów ze względu na ilość osi ruchów i ukształtowanie powierzchni stawowych. 20 2. Nazwy ruchów w stawach człowieka w pozycji anatomicznej..... 21 3. Zestawienie

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

BIOMECHANIKA NARZĄDU RUCHU CZŁOWIEKA

BIOMECHANIKA NARZĄDU RUCHU CZŁOWIEKA Praca zbiorowa pod redakcją Dagmary Tejszerskiej, Eugeniusza Świtońskiego, Marka Gzika BIOMECHANIKA NARZĄDU RUCHU CZŁOWIEKA BIOMECHANIKA narządu ruchu człowieka Praca zbiorowa pod redakcją: Dagmary Tejszerskiej

Bardziej szczegółowo

KINEMATYKA POŁĄCZEŃ STAWOWYCH

KINEMATYKA POŁĄCZEŃ STAWOWYCH KINEMATYKA POŁĄCZEŃ STAWOWYCH RUCHOMOŚĆ STAWÓW Ruchomość określa zakres ruchów w stawach, jedną z funkcjonalnych właściwości połączeń stawowych. WyróŜniamy ruchomość: czynną zakres ruchu jaki uzyskamy

Bardziej szczegółowo

MODEL MATEMATYCZNY DO ANALIZY CHODU DZIECKA NIEPEŁNOSPRAWNEGO*'

MODEL MATEMATYCZNY DO ANALIZY CHODU DZIECKA NIEPEŁNOSPRAWNEGO*' Aktualne Problemy Biomechaniki, nr 1/2007 15 Agnieszka GŁOWACKA, Koło Naukowe Biomechaniki przy Katedrze Mechaniki Stosowanej, Politechnika Śląska, Gliwice MODEL MATEMATYCZNY DO ANALIZY CHODU DZIECKA NIEPEŁNOSPRAWNEGO*'

Bardziej szczegółowo

Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy

Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy Akademia Wychowania Fizycznego we Wrocławiu Wydział Wychowania Fizycznego Biegi krótkie: technika, trening: nowe spojrzenie- perspektywy i problemy Dr hab. Krzysztof Maćkała AWF Wrocław 2 Wprowadzenie

Bardziej szczegółowo

Materiał pomocniczy dla nauczycieli kształcących w zawodzie:

Materiał pomocniczy dla nauczycieli kształcących w zawodzie: Materiał pomocniczy dla nauczycieli kształcących w zawodzie: ASYSTENT OSOBY NIEPEŁNOSPRAWNEJ przygotowany w ramach projektu Praktyczne kształcenie nauczycieli zawodów branży hotelarsko-turystycznej Priorytet

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Cel ćwiczenia WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Celem cwiczenia jest wyznaczenie współczynników oporu powietrza c x i oporu toczenia f samochodu metodą wybiegu. Wprowadzenie

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

T =2 I Mgd, Md 2, I = I o

T =2 I Mgd, Md 2, I = I o Kazimierz Pater, Nr indeksu: 999999 Wydział: Podstawowych Problemów Fizyki Kierunek: Fizyka Data: 99.99.9999 Temat: Wyznaczanie momentu bezwładności bryły sztywnej i sprawdzenie tw. Steinera Nr kat. ćwicz:

Bardziej szczegółowo

BIOMECHANICZNE PARAMETRY CHODU CZŁOWIEKA PO REKONSTRUKCJI WIĘZADŁA KRZYŻOWEGO PRZEDNIEGO. Sławomir Winiarski

BIOMECHANICZNE PARAMETRY CHODU CZŁOWIEKA PO REKONSTRUKCJI WIĘZADŁA KRZYŻOWEGO PRZEDNIEGO. Sławomir Winiarski Akademia Wychowania Fizycznego we Wrocławiu Wydział Wychowania Fizycznego BIOMECHANICZNE PARAMETRY CHODU CZŁOWIEKA PO REKONSTRUKCJI WIĘZADŁA KRZYŻOWEGO PRZEDNIEGO Sławomir Winiarski promotor dr hab. Alicja

Bardziej szczegółowo

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych. Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

MECHANIKA KOŃCZYNY GÓRNEJ OBRĘCZ I STAW ŁOKCIOWY

MECHANIKA KOŃCZYNY GÓRNEJ OBRĘCZ I STAW ŁOKCIOWY MECHANIKA KOŃCZYNY GÓRNEJ OBRĘCZ I STAW ŁOKCIOWY POŁĄCZENIA KOŃCZYNY GÓRNEJ OBRĘCZ KOŃCZYNY GÓRNEJ Kończyna górna jest połączona ze szkieletem tułowia za pomocą obręczy. W tym połączeniu znajdują się trzy

Bardziej szczegółowo

S YL AB US MODUŁ U ( PRZEDMIOTU) I nforma cje ogólne. Biomechanika z elementami ergonomii. Pierwszy

S YL AB US MODUŁ U ( PRZEDMIOTU) I nforma cje ogólne. Biomechanika z elementami ergonomii. Pierwszy YL AB U MODUŁ U ( PRZDMIOTU) I nforma cje ogólne Kod modułu Rodzaj modułu Wydział PUM Kierunek studiów pecjalność Poziom studiów Forma studiów Rok studiów Nazwa modułu Biomechanika z elementami ergonomii

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Przedmiot Mechanika teoretyczna Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Mechanika: ogólna, techniczna, teoretyczna. Dział fizyki zajmujący się badaniem

Bardziej szczegółowo

Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006

Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Modelowanie biomechaniczne Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Zakres: Definicja modelowania Modele kinematyczne ruch postępowy, obrotowy, przemieszczenie,

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Slajd 1 KOŃCZYNA DOLNA: MIĘŚNIE OBRĘCZY. Slajd 2. Slajd 3 MM WEWNĘTRZNE

Slajd 1 KOŃCZYNA DOLNA: MIĘŚNIE OBRĘCZY. Slajd 2. Slajd 3 MM WEWNĘTRZNE Slajd 1 Slajd 2 Slajd 3 KOŃCZYNA DOLNA: MIĘŚNIE OBRĘCZY Do tej grupy należą mięśnie działające na staw biodrowy jako: zginacze, prostowniki, odwodziciele, przywodziciele oraz rotatory uda. Otaczają one

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego

Bardziej szczegółowo

SZKIELET KOŃCZYNY DOLNEJ

SZKIELET KOŃCZYNY DOLNEJ Slajd 1 Slajd 2 Slajd 3 SZKIELET KOŃCZYNY DOLNEJ SZKIELET KOŃCZYNY DOLNEJ DZIELI SIĘ NA: kości obręczy kończyny dolnej, który stanowią kości miedniczne, kości części wolnej kończyny dolnej: - kość udowa

Bardziej szczegółowo

Symulacje komputerowe

Symulacje komputerowe Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Dynamika bryły sztywnej Wersja: 8

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Spis treści. Wstęp... 7

Spis treści. Wstęp... 7 Wstęp.............................................................. 7 I. Plan budowy ciała ludzkiego... 9 Okolice ciała ludzkiego........................................................................

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

MECHANIKA II. Dynamika układu punktów materialnych

MECHANIKA II. Dynamika układu punktów materialnych MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

POŁĄCZENIA KOŃCZYNY GÓRNEJ

POŁĄCZENIA KOŃCZYNY GÓRNEJ Slajd 1 Slajd 2 Slajd 3 POŁĄCZENIA KOŃCZYNY GÓRNEJ POŁĄCZENIE Z TUŁOWIEM Kończyna górna jest połączona z kośćcem tułowia za pomocą obręczy złożonej z obojczyka i łopatki. W tym połączeniu znajdują się

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Mechanika techniczna i wytrzymałość materiałów Rok akademicki: 2012/2013 Kod: STC-1-105-s Punkty ECTS: 3 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Poziom studiów:

Bardziej szczegółowo

Spis treści. Wstęp. I. Plan budowy ciała ludzkiego 9 Okolice ciata ludzkiego Układy narządów *P. Określenie orientacyjne w przestrzeni

Spis treści. Wstęp. I. Plan budowy ciała ludzkiego 9 Okolice ciata ludzkiego Układy narządów *P. Określenie orientacyjne w przestrzeni Wstęp 7 I. Plan budowy ciała ludzkiego 9 Okolice ciata ludzkiego Układy narządów *P Określenie orientacyjne w przestrzeni Płaszczyzny ciała Osie ciała II. Układ bierny i czynny ruchu (osteologia, syndesmołogia,

Bardziej szczegółowo

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Plan wynikowy z mi edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum Temat (rozumiany jako lekcja) Wymagania konieczne (ocena dopuszczająca) Dział

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 21

INSTRUKCJA DO ĆWICZENIA NR 21 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Biomechanika Dodawanie wektorów 1.Prostolinijny ruch post powy 2.Ruch wokół osi 3.Ruch zło ony

Biomechanika Dodawanie wektorów 1.Prostolinijny ruch post powy 2.Ruch wokół osi 3.Ruch zło ony Biomechanika- dotyczy układu ruchu żywego układu. Dzielimy ją na działy : -statyka -kinematyka -dynamika Statyka przedmiotem badań będzie oddziaływanie sił na ciało znajdujące się w spoczynku Kinematyka

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo