Polish Academy of Sciences

Wielkość: px
Rozpocząć pokaz od strony:

Download "Polish Academy of Sciences"

Transkrypt

1 INSTITUTE OF MATHEMATICS Polish Academy of Sciences

2

3 INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK LIPIEC 1993 PREPRINT 30. SERIA D FELIKS PRZYTYCKI. JAN SKRZYPCZAK WSTĘP DO TEORII I T E R A C J I WYMIERNYCH NA SFERZE RΙΕΜΑΝΝΑ

4 INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK ŚNIADECKICH 8 SKR. POCZT WARSZAWA

5 Spis treści CZĘŚĆ II I Przedmowa i wstęp do Wstępu 1 II Zbiór Julii i jego własności. Przypadek wielomianów 4 1. Zbiór Julii 4 (Podstawowe własności, punkty wyjątkowe, gęstość punktów okresowych) 2. Sprzężenie w okolicy ścieku i basen A dla wielomianów.. 17 (Sprzężenie z λ z lub z k ) 3. Wielomiany stopnia dwa 23 (Spójność J(fc) <=> c Μ) III Składowe uzupełnienia zbioru Julii Niestała funkcja graniczna 30 (Sytuacja gdy w zbiorze granicznym dla ciągu funkcji f n \u dla składowej U istnieje funkcja niestała. Składowe osobliwe: dyski Siegela, pierścienie Hermana.) 2. Wszystkie funkcje graniczne są funkcjami stałymi 41 (Składowa okresowa U na której wszystkie funkcje graniczne ciągu f n \u są stałe. Baseny bezpośredniego przyciągania ścieków i punktów neutralnych wymiernych (parabolicznych).) IV Punkty krytyczne Punkty krytyczne w składowych okresowych Punkty krytyczne w zbiorze Julii. Expanding 59 V Punkty neutralne 66 (Klasyczne oszacowania liczby orbit, okresowych ścieków i punktów neutralnych) VI Podsumowanie 80 iii

6 CZĘŚĆ II VII Twierdzenia Sullivana 83 (Nieistnienie składowych błądzących) 1. Homeomorfizmy quasikonforemne i mierzalne struktury konforemne Sformułowanie Dowód w przypadku (I) Dowód w przypadku (II) Przestrzenie Teichmullera 98 DODATKI Dodatek 1. Automorfizmy dysku Poincare go: podstawowe definicje Dodatek 2. Dowód Twierdzenia Montela 110 Bibliografia 117 iv

7 CZĘŚĆ I I Przedmowa i wstęp do Wstępu Przedstawiony tekst to notatki części cyklu wykładów wygłoszonych przez pierwszego z autorów w Instytucie Matematyki Uniwersytetu Warszawskiego w roku 1987/1988. Drugi z autorów był wtedy studentem, słuchaczem tych wykładów i on jest głównym redaktorem tego tekstu. Wykład składał się z dwóch części: 1. Ogólnej dotyczącej klasycznej części teorii iteracji funkcji wymiernych z czasów Julii i Fatou oraz zastosowanie teorii przekształceń kwazikonforemnych w Twierdzeniu Dennisa Sullivana o nieistnieniu dziedzin błądządzych i oszacowaniu liczby orbit dziedzin okresowych. 2. Dotyczącej iteracji wielomianów kwadratowych - teorii Douady'ego-Hubbarda geometrii zbiorów Julii i zbioru Mandelbrota. Przedstawiony tekst dotyczy tylko części 1, i to też z dużymi lukami. W ostatnich latach pojawiło sie kilka nowych podręcznikowych tekstów dotyczących podstaw teorii iteracji funkcji wymiernych [Beardon, Carleson, Milnor]. Uznaliśmy jednak, że nasz tekst mimo już paroletniego leżenia na półce nadal może jeszcze być pożyteczny nawet w formie niekompletnej i postanowiliśmy go udostępnić czytelnikom w postaci tego skryptu. W teorii iteracji funkcji wymiernych klasyfikuje się punkty sfery Riemanna C w zależności od zachowania się ich trajektorii. Jeśli f oznacza przekształcenie wymierne (iloraz dwóch wielomianów) to chodzi o trajektorie w przód z, f(z), f 2 (z),... gdzie f n oznacza złożenie η razy przekształcenia /: f n = f o f o f o... o f. Popularnym obiektem badań jest 1

8 2 zbiór Julii: J(f) := { z C dla każdego otoczenia U punktu z ciąg iteracji f n \u nie jest normalny w sensie Montela} Podstawy tej teorii stworzyli na początku XX wieku matematycy francuscy Gaston Julia i Pierre Fatou. Jednak do lat 70-tych teoria ta była mało znana i uważana za nudną. Za to w ciągu ostatnich 15 lat uzyskano wiele pięknych rysunków zbiorów Julii przy użyciu komputerów. Dzięki temu między innymi stara teoria odżyła i dokonano w niej dużych postępów. Na ogół zbiór Julii ma niezwykły "fraktalny" kształt: jego wymiar Hausdorffa jest większy niż wymiar topologiczny jego dowolnie małe fragmenty są podobne do dużych (własność samopodobieństwa). Innym popularnym zbiorem, tym razem w zbiorze parametrów jest tzw. zbiór Mandelbrota M. Oznaczmy fc(z) = z 2 + c. Definiujemy Μ = {c Ć : f n c (0) } Z tym zbiorem związanych jest wiele nadal nie rozwiązanych problemów, na przykład nie wiadomo czy miara Lebesgue'a w wymiarze 2 brzegu Μ jest dodatnia czy nie i nie wiadomo czy ten brzeg jest lokalnie spójny. Ciekawe, że dla wielu parametrów zbiór Julii dla fc jest podobny do zbioru Mandelbrota w otoczeniu tego parametru c.

9 Rysunek z książki H.-O. Peitgen, Ρ. H. Richter The Beauty of Fractals". 3

10 II Zbiór Julii i jego własności. Przypadek wielomianów

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 III Składowe spójności uzupełnienia zbioru Julii

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61 IV Punkty krytyczne

62

63

64

65

66

67

68

69

70

71

72 V Punkty neutralne

73

74

75

76

77

78

79

80

81

82

83

84

85

86 VI Podsumowanie

87

88

89 CZĘŚĆ II VII Twierdzenie Sullivana

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111 DODATKI Dodatek 1. Automorfizmy dysku Poincare'go: podstawowe definicje. Sfera Riemanna C to płaszczyzna zespolona C uzupełniona punktem w oo ze strukturą holomorficzną daną przez mapy hi, h2 : C C, h\(z) = z,h.2(z) = l/z. Standardowa metryka Riemanna na C to przeniesiona przez hi, i = 1,2 metryka euklidesowa na C podzielona przez funkcję (1 -I- \z\ 2 ) 2 to znaczy dla v, w Ε TzC (υ, w) = (Re(v) Re(w) + Im(v) Im(u/))/(l + \z\ 2 ) 2 (h2 oh~ l jest izometrią w tej metryce.) Grupą Móbiusa nazywamy grupę wszystkich przekształceń sfery Riemanna generowanych przez inwersje względem okręgów i symetrie względem prostych w C. Oznaczmy ją przez Moeb2. Grupę wszystkich elementów Moeb2 zachowujących orientację będziemy oznaczać przez Moeb^. Można sprawdzić, że Moebt = izh az ^ a,6,c,d 6 C, ad - bc φ ()} L cz + d J Te przekształcenia stanowią grupę wszystkich holomorficznych automorfizmów C. Nazywa się je homografiami. Można teraz wyróżnić w Moeb2 i MoebJ podgrupy A i odpowiednio A + elementów zachowujących dysk jednostkowy D = {z C : z < 1}. Są to odpowiednio wszystkie przekształcenia będące złożeniami inwersji względem okręgów prostopadłych do okręgu jednostkowego <9D = { z = 1} lub hoinografie postaci Λ, a < 1, λ = 1, tak zwane przekształcenia Blaschke. Są to dokładnie wszystkie konforemne, odpowiednio holomorficzne, automorfizmy D.

112

113

114

115

116 Dodatek 2. Dowód Twierdzenia Montela.

117

118

119

120

121

122

123 Bibliografia. [Be] A. Beardon, It.eration of Rational Functions. Graduate Texts in Math. 132, Springer-Verlag [BI] P. Blanchard, Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 11, (1984), [Ca] C. Camacho, On the local structure of conformal mappings and holomorphic vector fields. Asterisąue (1978), [C] L. Carleson, preprint [L] M. Lyubich, The dynamics of rational transformatios: the topological picture. Russian Math. Surveys 41.4 (1986), Uspehi Mat Nauk 41.4 (1986), [M] J. Milnor, Dynamics in one complex variable, Preprint 1990/#5, Institute for Mathematical Sciences, SUNY at Stony Brook 117

124

125

126

127

128

Grupa izometrii płaszczyzny hiperbolicznej

Grupa izometrii płaszczyzny hiperbolicznej Grupa izometrii płaszczyzny hiperbolicznej Arkadiusz Męcel O różnych geometriach 21 października 2008r. UWAGA: Notatki te były pisane szybko i niechlujnie(choć starałem się). Czytelników przepraszam. InwersjewC

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s. Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 4: Benoit Mandelbrot i inni

Rzut oka na współczesną matematykę spotkanie 4: Benoit Mandelbrot i inni Rzut oka na współczesną matematykę spotkanie 4: Benoit Mandelbrot i inni P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P. Strzelecki pawelst@mimuw.edu.pl

Bardziej szczegółowo

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15 Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH

ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH Punkty okresowe, zbiory graniczne, sprzężenia Zadanie 1. Pokazać, że trajektoria (w przód) punktu x w przestrzeni metrycznej X pod działaniem ciągłego

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

samopodobnym nieskończenie subtelny

samopodobnym nieskończenie subtelny Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

Teoria ergodyczna. seminarium monograficzne dla studentów matematyki. dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik. rok akad.

Teoria ergodyczna. seminarium monograficzne dla studentów matematyki. dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik. rok akad. Teoria ergodyczna seminarium monograficzne dla studentów matematyki dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik rok akad. 2013/14 Teoria ergodyczna Teoria ergodyczna Teoria ergodyczna zajmuje

Bardziej szczegółowo

Algebraiczne własności grup klas odwzorowań

Algebraiczne własności grup klas odwzorowań Algebraiczne własności grup klas odwzorowań Michał Stukow Uniwersytet Gdański Forum Matematyków Polskich 7 września 2006 1 Definicje i przykłady 2 Zastosowania 3 Skręcenia Dehna 1 Definicje i przykłady

Bardziej szczegółowo

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych) (niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Wstęp do układów statycznych

Wstęp do układów statycznych Uniwersystet Warszawski 1 maja 2010 Wprowadzenie Standardowe układy dynamiczne - przestrzeń X wraz z przekształceniem f : X X zachowującym strukturę. Typowe przykłady: X - przestrzeń metryczna, f - przekształcenie

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 06 Geometria fraktalna Jarosław Miszczak IITiS PAN Gliwice 20/10/2016 1 / 43 1 Określenie nieformalne 2 Zbiór Mandelbrota 3 Określenie nieformalne pudełkowy Inne definicje

Bardziej szczegółowo

Zbiór zadań z matematyki dla studentów chemii

Zbiór zadań z matematyki dla studentów chemii Zbiór zadań z matematyki dla studentów chemii NR 142 Justyna Sikorska Zbiór zadań z matematyki dla studentów chemii Wydanie piąte Wydawnictwo Uniwersytetu Śląskiego Katowice 2013 Redaktor serii: Matematyka

Bardziej szczegółowo

TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska

TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA

Bardziej szczegółowo

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Teoria miary i całki Measure and Integration Theory Kod przedmiotu: Poziom

Bardziej szczegółowo

TwierdzeniePoincaré 1 Bendixsona 2

TwierdzeniePoincaré 1 Bendixsona 2 Twierdzenie Poincaré Bendixsona 1 TwierdzeniePoincaré 1 Bendixsona 2 1 TwierdzeniePoincaré Bendixsona W bieżącym podrozdziale zakładamy, że U jest otwartym podzbiorem płaszczyzny R 2 if:u R 2 jestpolemwektorowymklasyc

Bardziej szczegółowo

Afiniczne krzywe algebraiczne

Afiniczne krzywe algebraiczne Afiniczne krzywe algebraiczne Obrona pracy doktorskiej Maciej Borodzik Instytut Matematyki, Uniwersytet Warszawski Zagadnienie Badanie krzywych algebraicznych na płaszczyźnie zespolonej C 2. Zagadnienie

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS)

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS) Fraktale Plan prezentacji Wprowadzenie Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D Klasyczne fraktale Iteracyjny system funkcji (IFS) L-system Zbiory Julii i Mandelbrota Ruchy

Bardziej szczegółowo

Układy dynamiczne na miarach. Wykłady

Układy dynamiczne na miarach. Wykłady Układy dynamiczne na miarach Wykłady nr 95 Andrzej Lasota Układy dynamiczne na miarach Wykłady Wydawnictwo Uniwersytetu Śląskiego Katowice 2008 Redaktor serii: Matematyka Roman Ger Recenzent Józef Myjak

Bardziej szczegółowo

Projekt matematyczny

Projekt matematyczny Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32 Wielkie twierdzenie

Bardziej szczegółowo

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2 Teoria węzłów matematycznych - warkocze Karolina Krzysztoń 10B2 Pojęcie węzła W matematyce węzły to zamknięte pętle umieszczone w przestrzeni trójwymiarowej, czyli zaplątane sznurki z połączonymi końcami.

Bardziej szczegółowo

Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika

Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika Instytut Matematyczny PAN Konwersatorium dla doktorantów Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika Joanna Jaszuńska IM PAN Warszawa, 10 listopada 2006 Twierdzenie Banacha-Tarskiego z punktu

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Geometria Różniczkowa I

Geometria Różniczkowa I Geometria Różniczkowa I wykład drugi Powierzchnie zanurzone, o których rozmawialiśmy na poprzednim wykładzie są bardzo istotną klasą przykładów rozmaitości różniczkowych. Pod koniec dzisiejszego wykładu

Bardziej szczegółowo

Fale biegnące w równaniach reakcji-dyfuzji

Fale biegnące w równaniach reakcji-dyfuzji Fale biegnące w równaniach reakcji-dyfuzji Piotr Bartłomiejczyk Politechnika Gdańska Między teorią a zastosowaniami: Matematyka w działaniu Będlewo, 25 30 maja 2015 P. Bartłomiejczyk Fale biegnące 1 /

Bardziej szczegółowo

spis treści 1 Zbiory i zdania... 5

spis treści 1 Zbiory i zdania... 5 wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów

Bardziej szczegółowo

czyli o szukaniu miejsc zerowych, których nie ma

czyli o szukaniu miejsc zerowych, których nie ma zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona

Bardziej szczegółowo

ϕ(t k ; p) dla pewnego cigu t k }.

ϕ(t k ; p) dla pewnego cigu t k }. VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,

Bardziej szczegółowo

Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15

Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15 Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste

Bardziej szczegółowo

Równania Pitagorasa i Fermata

Równania Pitagorasa i Fermata Równania Pitagorasa i Fermata Oliwia Jarzęcka, Kajetan Grzybacz, Paweł Jarosz 7 lutego 18 1 Wstęp Punktem wyjścia dla naszych rozważań jest klasyczne równanie Pitagorasa związane z trójkątem prostokątnym

Bardziej szczegółowo

Krzywe Freya i Wielkie Twierdzenie Fermata

Krzywe Freya i Wielkie Twierdzenie Fermata Krzywe Freya i Wielkie Twierdzenie Fermata Michał Krzemiński 29 listopad 2006 Naukowe Koło Matematyki Politechnika Gdańska 1 1 Krzywe algebraiczne Definicja 1.1 Krzywą algebraiczną C nad ciałem K nazywamy

Bardziej szczegółowo

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu.

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. II Interdyscyplinarne Warsztaty Matematyczne p. 1/1 Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. Justyna Signerska jussig@wp.pl Wydział Fizyki Technicznej i Matematyki

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Analiza zespolona Complex Analysis Matematyka Poziom kwalifikacji: II stopnia

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza zespolona. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza zespolona. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza zespolona 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA GODZIN: 15 wykład + 15 ćwiczenia

Bardziej szczegółowo

Zbiór zadań z matematyki dla studentów chemii

Zbiór zadań z matematyki dla studentów chemii Zbiór zadań z matematyki dla studentów chemii NR 114 Justyna Sikorska Zbiór zadań z matematyki dla studentów chemii Wydanie czwarte Wydawnictwo Uniwersytetu Śląskiego Katowice 2010 Redaktor serii: Matematyka

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH

PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Studia i Materiały Nr 24 2004 Krzysztof PODLEJSKI *, Sławomir KUPRAS wymiar fraktalny, jakość energii

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca. Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której

Bardziej szczegółowo

Spis treści: 3. Geometrii innych niż euklidesowa.

Spis treści: 3. Geometrii innych niż euklidesowa. Matematyka Geometria Spis treści: 1. Co to jest geometria? 2. Kiedy powstała geometria? 3. Geometrii innych niż euklidesowa. 4. Geometrii różniczkowej. 5. Geometria. 6. Matematyka-konieckoniec Co to jest

Bardziej szczegółowo

AUTOREFERAT. 3. Informacje o dotychczasowym zatrudnieniu w jednostkach naukowych:

AUTOREFERAT. 3. Informacje o dotychczasowym zatrudnieniu w jednostkach naukowych: AUTOREFERAT 1. Imię i nazwisko: Bogusława Karpińska 2. Posiadane dyplomy, stopnie naukowe: dyplom doktora nauk matematycznych w zakresie matematyki (z wyróżnieniem), Wydział Matematyki i Nauk Informacyjnych

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Wstęp do algebry liniowej i geometrii analitycznej A (03-M01S-12-WALGA)

Bardziej szczegółowo

Algebra WYKŁAD 3 ALGEBRA 1

Algebra WYKŁAD 3 ALGEBRA 1 Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA... 13

SPIS TREŚCI PRZEDMOWA... 13 SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...

Bardziej szczegółowo

Witaj Biologio! Matematyka dla Wydziału Biologii 2015/2016

Witaj Biologio! Matematyka dla Wydziału Biologii 2015/2016 Matematyka dla Wydziału Biologii 2015/2016 Witaj Biologio! Mirosław Lachowicz Wydział Matematyki, Informatyki i Mechaniki p. 4650, lachowic@mimuw.edu.pl Konsultacje: wtorki, 10-12 Motto: Na Biologię wchodzimy

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Andrzej Ganczar - Analiza zespolona w zadaniach. Wstęp... Oznaczenia... Zadania. 1. Liczby zespolone...

Spis treści. Księgarnia PWN: Andrzej Ganczar - Analiza zespolona w zadaniach. Wstęp... Oznaczenia... Zadania. 1. Liczby zespolone... Księgarnia PWN: Andrzej Ganczar - Analiza zespolona w zadaniach Wstęp... Oznaczenia... XI XIII Zadania 1. Liczby zespolone... 3 1.1. Własności liczb zespolonych... 3 1.1.A. Zadania łatwe... 4 1.1.B. Zadania

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura

Bardziej szczegółowo

Z czterech wierzchołków w głąb geometrii

Z czterech wierzchołków w głąb geometrii Paweł Walczak Uniwersytet Łódzki 7 października 2009 Ogólny problem Problem Dla danej wielkości (funkcji, pola wektorowego, pola tensorowego) i danego niezmiennika geometrycznego (krzywizny pewnego typu,

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Paradoksalny rozkład kuli

Paradoksalny rozkład kuli Wydział Fizyki UW Katedra Metod Matematycznych Fizyki Paradoksalny rozkład kuli Joanna Jaszuńska Centrum Studiów Zaawansowanych Politechniki Warszawskiej Warszawa, 9 grudnia 2010 Paradoksalny rozkład kuli

Bardziej szczegółowo

Witaj Biologio! Matematyka dla Wydziału Biologii 2015/2016

Witaj Biologio! Matematyka dla Wydziału Biologii 2015/2016 Matematyka dla Wydziału Biologii 2015/2016 Witaj Biologio! Mirosław Lachowicz Wydział Matematyki, Informatyki i Mechaniki p. 4650, lachowic@mimuw.edu.pl Konsultacje: wtorki, 10-12 Motto: Na Biologię wchodzimy

Bardziej szczegółowo

Twierdzenie o liczbach pierwszych i hipoteza Riemanna

Twierdzenie o liczbach pierwszych i hipoteza Riemanna o liczbach pierwszych i hipoteza Riemanna Artur Ulikowski Politechnika Gdańska 10 marca 2009 o liczbach pierwszych Legendre, badając rozkład liczb pierwszych, postawił następującą hipotezę: Niech π(x)

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy Rozdział 1 Ciągłość i topologia Nadanie precyzyjnego sensu intiucyjnemu pojęciu ciągłości jest jednym z głównych tematów dziedziny matematyki, zwanej topologią. Definicja funkcji ciągłej znana z podstawowego

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Topologia I Wykład 4.

Topologia I Wykład 4. Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Rozkład figury symetrycznej na dwie przystające

Rozkład figury symetrycznej na dwie przystające Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule

Bardziej szczegółowo

Endomorfizmy liniowe

Endomorfizmy liniowe Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie

Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie 1. Cele lekcji a) Wiadomości 1. Utrwalenie wiadomości o przekształceniach izometrycznych. b) Umiejętności 1. Uczeń potrafi zastąpić

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza zespolona (03-MO2S-12-AZes) 1. Informacje ogólne koordynator modułu rok akademicki

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale

Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale Czy koªa s pi kne? Mo»na udowodni wiele teorii na ich temat, wiele ich cech jest interesuj cych, ale»eby koªo miaªo by pi kne? Jest nudne, wsz dzie

Bardziej szczegółowo

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim FUNKCJE ANALITYCZNE Nazwa w języku angielskim Analytic Functions Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

DENJOY DAWNIEJ I DZIŚ P. Walczak, Będlewo 2007

DENJOY DAWNIEJ I DZIŚ P. Walczak, Będlewo 2007 DENJOY DAWNIEJ I DZIŚ P. Walczak, Będlewo 2007 1. Klasycznie: przykład i twierdzenie Denjoy on S 1. 2. Ogólnie: pewne działania grupy Z d na S 1. 3. Szkic dowodu: wędrówki losowe po grupach. 4. Wymiar

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIE STWA

RACHUNEK PRAWDOPODOBIE STWA Jerzy Ombach RACHUNEK PRAWDOPODOBIE STWA WSPOMAGANY KOMPUTEROWO DLA STUDENTÓW MATEMATYKI STOSOWANEJ Wydawnictwo Uniwersytetu Jagielloƒskiego Seria Matematyka Książka finansowana przez Wydział Matematyki

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Centralne twierdzenie graniczne

Centralne twierdzenie graniczne Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Funkcjonalna II Functional Analysis II Kierunek: Rodzaj przedmiotu: Obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: II

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo