Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10"

Transkrypt

1 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: ( ) =( ) 10, ( ) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ), (011) 10 =( ), (6,5) 10 =( ), (6,65) 10 =( ), (1,75) 10 =( ). Zapisz poniŝsze liczby w naturalnym kodzie binarnym, w kodzie czwórkowym, ósemkowym i szesnastkowym: (15) 10, (61) 10, (1011) 10, () 10. Wykonaj działania: (1011) + (1111), (1111) - (1011), (1010) (1111), (1110) : (0100), (1111) : (0111) Zadania do wykładu,, Zapisz liczby dziesiętne w podanych kodach (ośmiobitowo): W kodzie znak moduł (z-m): (110) 10 = ( ) z-m (-110) 10 = ( ) z-m (-6) 10 = ( ) z-m (-19) 10 = ( ) z-m (17) 10 = ( ) z-m (-17) 10 = ( ) z-m W kodzie uzupełnienia do 1: (111) 10 = ( ) U1 (-10) 10 = ( ) U1 (-) 10 = ( ) U1 (-19) 10 = ( ) U1 (17) 10 = ( ) U1 (-17) 10 = ( ) U1 W kodzie uzupełnienia do : (101) 10 = ( ) U (-19) 10 = ( ) U (-8) 10 = ( ) U (-19) 10 = ( ) U (17) 10 = ( ) U (-18) 10 = ( ) U

2 . Oblicz wartość przeciwną do danej w kodzie U: ( ) (U) ( ) (U) ( ) (U). Wykonaj poniŝsze działania w kodzie U: (0111) (U) + (0110) (U) (1110) (U) + (0110) (U) (1010) (U) + (1110) (U) (0111) (U) + (0101) (U) (0111) (U) - (1110) (U) (1010) (U) - (0100) (U) (1010) (U) - (1111) (U) (0101) (U) - (0111) (U) (0111) (U) (1110) (U) (1010) (U) (0100) (U) (1010) (U) (1111) (U) (0101) (U) (0111) (U) (0110) (U) (1110) (U) (1010) (U) (0100) (U) (1010) (U) (1111) (U) (0101) (U) (0111) (U). Zapisz podane liczby w kodzie U: (1) 10 (-1) 10 (01) (17) 8 (1010) (1A) h 5. Zapisz podane liczby w naturalnym kodzie dwójkowym, w systemie czwórkowym, ósemkowym i w systemie dziesiętnym. (ABC) h (101) h (1AF) h (0C) h (17) h (1F) h

3 Zadania do wykładu 6, Oblicz wartość logiczną wyraŝeń: (1+1+1)( )+(0 (1+1)+1 (0+0)), ((1+0+0)(0+1))(0 (1 1)). Oblicz wartość logiczną wyraŝeń: (a+b)(b+c)+(ac+abd)(bd+a(b+c)) dla a=0, b=1oraz a=1, b=0; c ( a + b) + a b c + f dla c = 0; a ( b c) + a b c + dla c= 0;. Przedstaw wyraŝenie ( ac bd) (( a + c) d + ( b + d) c) + w postaci sumy iloczynów.. Stosując odpowiednie toŝsamości logiczne przedstaw wyraŝenia: a + b + cd oraz bc + de w postaci iloczynu sum. 5. Dla jakich wartości a i b wyraŝenie a + a b + b = 1? 6. Stosując prawa de Morgana i prawo podwójnej negacji usunąć negacje z wyraŝenia: ( a + b)( b + c)( c + d)( d + a) 7. Wyprowadź prawa pochłaniania wykorzystując inne toŝsamości logiczne. Zadania w wykorzystaniem symulatora CEDAR logic: 8. Uzupełnij tabele prawdy dla poszczególnych funkcji logicznych: A B AND OR XOR NAND NOR XNOR

4 9. Dokonaj analizy poniŝszych układów: 10. Dokonaj analizy poniŝszych układów: 11. Jakie funkcje logiczne realizują poniŝsze układy:

5 1. Zrealizuj poniŝsze funkcje logiczne przy pomocy dowolnych bramek: f = A B + A B, f = A B + A B f = (A + B + C) D f = A B C + D f = A B + B C + C D 1. Funkcje z zadania 1 zrealizuj przy pomocy bramek NAND. 1. Funkcje z zadania 1 zrealizuj przy pomocy bramek NOR. Zadania do wykładu 8, Dla jakich wartości zmiennych wyraŝenie x 1x x 1x x 1x x jest równe 1,. Czy moŝna zbiór ciągów 1100, 1001, 1101, 1000 przedstawić za pomocą jednego ciągu z kreskami.. Jakiemu alternatywnemu wyraŝeniu normalnemu (n=) odpowiada zbiór ciągów: 0 1, 0 1 1, , 0. Przyjmując liczbę zmiennych n= przedstawić w postaci sumy iloczynów pełnych wyraŝenie: x + +, 1x x1x x x x1x xx 5. Dla jakich wartości zmiennych wyraŝenie ( x1 ) (x1 ) (x ) jest równe 0, 6. Jakiemu koniunkcyjnemu wyraŝeniu normalnemu (n=) odpowiada zbiór ciągów: 0 0, 1 1 1, , 1 7. Przyjmując liczbę zmiennych n= przedstawić w postaci iloczynu sum pełnych wyraŝenie: ( x1 ) (x1 ) (x )

6 8. Korzystając z toŝsamości logicznych przekształć podane wyraŝenia koniunkcyjne w wyraŝenia alternatywne: x1 + (x ) (x x ), ( x1 ) (x ) x1 9. Korzystając z toŝsamości logicznych przekształć podane wyraŝenia alternatywne w wyraŝenia koniunkcyjne: x 1 x x, x 1x x 10. Zapisz podane wyraŝenia alternatywne w tablicach Karnaugh a: x 1x, x 1x, x 1x 1x x x 1x, x + +, 1x x1x x x x1x x x x Zapisz podane wyraŝenia koniunkcyjne w tablicach Karnaugh a: x 1, ( x1 x ) (x1 ) x1 +, ( x1 ) (x1 ) (x ), ( x1 ) x (x ) (x1 5 ) Zadania do wykładu Znajdź minimalne postaci alternatywne funkcji z tablic Karnaugha:

7 . Znajdź minimalne postaci alternatywne funkcji z tablic Karnaugh a. Sprawdź działanie układów w symulatorze CEDAR.. Znajdź minimalne postaci koniunkcyjne funkcji z tablic Karnaugha:

8 . Znajdź minimalne postaci alternatywne funkcji z tablic Karnaugh a. Sprawdź działanie układów w symulatorze CEDAR.

9 5. Zrealizuj dane funkcje w postaci minimalnej alternatywnej i koniunkcyjnej. 6. Zaprojektuj układ wysyłający 1 logiczną na wyjście układu kontrolnego jeśli którekolwiek drzwi samochodu są otwarte i kierowca siedzi w środku. 7. Znajdź postać minimalną alternatywną funkcji f = x + +, 1x x1x x x x1x x x x 5 dokonaj realizacji na funktorach NAND, sprawdź działanie układu w symulatorze CEDAR. 8. Zrealizuj funkcję opisaną tabelą Karnaugha: a) w postaci minimalnej alternatywnej b) w układzie bez hazardu statycznego.

10 Zadania do wykładu 11, Dokonaj syntezy bitowego dekodera naturalnego kodu binarnego na kod "1 z N", narysuj schemat i sprawdź działanie układu w symulatorze CEDAR.. Dokonać syntezy sumatora dwuargumentowego jednobitowego pełnego i narysować schemat układu.. Narysować przebiegi czasowe w zaznaczonych punktach układu (A, B, C, D) opóźnienie wprowadzane przez bramki pominąć.. Zapisz równania dekodera z kodu Aikena na kod 1 z 10, narysuj schemat i sprawdź działanie układu w symulatorze CEDAR. 5. Dokonaj syntezy konwertera kodu z kodu naturalnego na Exces dla dziesięciu kombinacji wejściowych, narysuj schemat i sprawdź działanie układu w symulatorze CEDAR. 6. Zapisz równania kodera z kodu 1 z 10 na kod Graya. 7. Zrealizuj multiplekser grupowy i kaskadowy w symulatorze CEDAR logic. 8. Dokonaj syntezy dekodera kodu Graya na 1 z 10 nie odrzucającego fałszywych kombinacji wejściowych. 9. Narysuj przebiegi czasowe w zaznaczonych punktach układuu (A, B, C, D). Sprawdź działanie układu w symulatorze CEDAR.

11 10. Sprawdź działanie poniŝszych układów w symulatorze CEDAR. a) b)

12 Zadania do wykładu Zapisz tabele przejśćć dla poniŝszych przerzutników.. Przeanalizuj działanie poniŝszego układu, zbadaj przebiegi czasowe przy pomocy modułu oscope.. Porównaj działanie poniŝszego układu z układem z zad. 1.. Sprawdź działanie przerzutników w symulatorze CEDAR, zapisz odpowiednie tabele przejść.

13 5. Zbadaj działanie poniŝszego przerzutnika w symulatorze CEDAR. 6. Przeanalizuj działanie poniŝszego układu w symulatorze CEDAR.

14 Zadania do wykładu Ilu przerzutników naleŝy uŝyć do budowy licznika szeregowego modulo 60.. Zbadaj przebiegi czasowe licznika szeregowego przedstawionego na poniŝszym schemacie.. Sprawdź działanie licznika rewersyjnego w symulatorze CEDAR.. Narysuj schematy liczników szeregowych modulo 10 z wykorzystaniem: a) wejść ustawiających (set) b) wejść resetujących (reset) Sprawdź działanie układów w symulatorze CEDAR.

15 5. Zbadaj działanie poniŝszego układu w symulatorze CEDAR. 6. Dokonaj syntezy licznika równoległego modulo 8 w kodzie naturalnym na przerzutnikach typu D, sprawdź działanie układu w symulatorze CEDAR. 7. Dokonaj syntezy licznika równoległego o dwóch programach liczenia, z wejściem statycznym, na przerzutnikach JK; program pierwszy: 000, 011, 110, 111, program drugi: 101, 010, 110, 011, 111 Narysuj schemat układu i przeprowadź symulację w programie CEDAR. Zadania do wykładu Narysuj schemat rejestru bitowego szeregowo-szeregowego. Zbadaj przebiegi czasowe w programie CEDAR.. Zbadaj działanie układu dzielnika częstotliwości. W jakim kodzie pracuje dzielnik? Jaki jest współczynnik podziału?

16 . Zbadaj przebiegi czasowe poniŝszego układu przy pomocy symulatora CEDAR. Jaką nazwęę nosi poniŝszy układ.. Zbadaj działanie układu podzielnika częstotliwości przy pomocy symulatora CEDAR. Zarejestruj przebiegi czasowe. 5. Zbadaj działanie układu dzielnika programowalnego przy pomocy symulatora CEDAR. Zarejestruj przebiegi czasowe. 6. Przeanalizuj działanie modeli pamięci RAM i ROM w programie CEDAR logic.

17 Literatura. 1. S. Waligórski, Układy przełączające elementy teorii i projektowanie (WNT, Warszawa 197),. J. Piecha, Elementy i podzespoły cyfrowe Laboratorium elektroniki (Katowice 1978),. J. Piecha, Elementy i układy cyfrowe (PWN, Warszawa 1990),. P. Gajewski, J. Turczyński, Cyfrowe układy scalone CMOS (WKiŁ, Warszawa 1990), 5. J. Kalisz, Podstawy elektroniki cyfrowej (WKiŁ, Warszawa 1991), 6. K. Noga, Laboratorium podstaw techniki cyfrowej, skrypt (WSM, Gdynia 001). Wydanie drugie, poprawione, 7. G. De Micheli, Synteza i optymalizacja układów cyfrowych (WNT, Warszawa 1998), 8. A. Skorupski, Podstawy techniki cyfrowej (WKiŁ, Warszawa 001), 9. B. Wilkinson, Układy cyfrowe (WkiŁ), 10. Władysław Majewski; Układy logiczne, WNT 199, J. F. Wakerly, Digital Design Principles and Practises (000 Prentice Hall, New Jersey).

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze. Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Cyfrowe układy scalone c.d. funkcje

Cyfrowe układy scalone c.d. funkcje Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 4 BADANIE BRAMEK LOGICZNYCH A. Cel ćwiczenia. - Poznanie zasad logiki binarnej. Prawa algebry Boole

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Układy Logiczne i Cyfrowe

Układy Logiczne i Cyfrowe Układy Logiczne i Cyfrowe Wykład dla studentów III roku Wydziału Elektrycznego mgr inż. Grzegorz Lisowski Instytut Automatyki Podział układów cyfrowych elementy logiczne bloki funkcjonalne zespoły funkcjonalne

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55

Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55 Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego

Bardziej szczegółowo

INSTYTUT INFORMATYKI POLITECHNIKI BIAŁOSTOCKIEJ

INSTYTUT INFORMATYKI POLITECHNIKI BIAŁOSTOCKIEJ INSTYTUT INFORMATYKI POLITECHNIKI BIAŁOSTOCKIEJ Do uŝytku wewnętrznego INFORMATOR LABORATORYJNY TECHNIKA CYFROWA Opracował: dr hab. inŝ. Tadeusz Maciak UWAGA: ćwiczenie 6 jest obecnie przepracowywane.

Bardziej szczegółowo

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna.

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Architektura komputerów ćwiczenia Zbiór zadań IV Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Wprowadzenie 1 1 fragmenty książki "Organizacja i architektura systemu

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych (I)

Technika cyfrowa Synteza układów kombinacyjnych (I) Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1

Bardziej szczegółowo

INFORMATOR LABORATORYJNY. TECHNIKA CYFROWA (studia niestacjonarne)

INFORMATOR LABORATORYJNY. TECHNIKA CYFROWA (studia niestacjonarne) INFORMATOR LABORATORYJNY TECHNIKA CYFROWA (studia niestacjonarne) A REGULAMIN LABORATORIUM 1. Laboratorium składa się z 3 ćwiczeń (8 terminów zajęć). Udział na każdych zajęciach jest obowiązkowy. Termin

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE

PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE PoniŜej zamieszczone są rysunki przedstawiane na wykładach z przedmiotu Peryferia Komputerowe. ELEKTRONICZNE UKŁADY CYFROWE Podstawowymi bramkami logicznymi są układy stanowiące: - funktor typu AND (funkcja

Bardziej szczegółowo

Układy kombinacyjne 1

Układy kombinacyjne 1 Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację

Bardziej szczegółowo

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 1 Techniki Mikroprocesorowe dr inż. Artur Cichowski ix jy i j {0,1} {0,1} Dla układów kombinacyjnych stan dowolnego wyjścia y i w danej chwili czasu zależy wyłącznie od aktualnej kombinacji stanów

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium.

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Zagadnienia do samodzielnego opracowania: rola sygnału taktującego (zegara) w układach synchronicznych; co robi sygnał CLEAR (w

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Technika Cyfrowa Badanie Bramek Logicznych Opracował: mgr inż. Andrzej Biedka 1 BADANIE FUNKCJI LOGICZNYCH 1.1 Korzystając

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita

Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie

Bardziej szczegółowo

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:

Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć: Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania

Bardziej szczegółowo

Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch)

Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch) DSCH2 to program do edycji i symulacji układów logicznych. DSCH2 jest wykorzystywany do sprawdzenia architektury układu logicznego przed rozpoczęciem projektowania fizycznego. DSCH2 zapewnia ergonomiczne

Bardziej szczegółowo

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia

ćwiczenie 203 Temat: Układy sekwencyjne 1. Cel ćwiczenia Opracował: mgr inż. Antoni terna ATEDA INFOMATYI TEHNIZNE Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 203 Temat: Układy sekwencyjne 1. el ćwiczenia elem ćwiczenia jest zapoznanie się z

Bardziej szczegółowo

ID1UAL1 Układy arytmetyczno-logiczne Arithmetic logic systems. Informatyka I stopień ogólnoakademicki stacjonarne

ID1UAL1 Układy arytmetyczno-logiczne Arithmetic logic systems. Informatyka I stopień ogólnoakademicki stacjonarne Załącznik nr do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki Politechnika Wrocławska, Wydział PP 1. Cel ćwiczenia Zapoznanie z wybranymi cyfrowymi układami sekwencyjnymi. Poznanie właściwości, zasad działania i sposobów realizacji przerzutników oraz liczników. 2.

Bardziej szczegółowo

Krótkie przypomnienie

Krótkie przypomnienie Krótkie przypomnienie Prawa de Morgana: Kod Gray'a A+ B= Ā B AB= Ā + B Układ kombinacyjne: Tablicy prawdy Symbolu graficznego Równania Boole a NOR Negative-AND w.11, p.1 XOR Układy arytmetyczne Cyfrowe

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.

Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje

Bardziej szczegółowo

Część 2. Funkcje logiczne układy kombinacyjne

Część 2. Funkcje logiczne układy kombinacyjne Część 2 Funkcje logiczne układy kombinacyjne Zapis funkcji logicznych układ funkcjonalnie pełny Arytmetyka Bool a najważniejsze aksjomaty i tożsamości Minimalizacja funkcji logicznych Układy kombinacyjne

Bardziej szczegółowo

dr inż. Małgorzata Langer Architektura komputerów

dr inż. Małgorzata Langer Architektura komputerów Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią,

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Badanie rejestrów

TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA. Badanie rejestrów LABORATORIUM TECHNIKA CYFROWA ELEKTRONIKA ANALOGOWA I CYFROWA Badanie rejestrów Opracował: Tomasz Miłosławski Wymagania, znajomość zagadnień: 1. Typy, parametry, zasada działania i tablice stanów przerzutników

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

Podstawy techniki cyfrowej

Podstawy techniki cyfrowej Podstawy techniki cyfrowej Wykład 1: Wstęp Dr hab. inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Informacje o przedmiocie Wprowadzenie Podstawy matematyczne:

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01 ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu

Bardziej szczegółowo

IZ1UAL1 Układy arytmetyczno-logiczne Arithmetic logic systems. Informatyka I stopień ogólnoakademicki niestacjonarne

IZ1UAL1 Układy arytmetyczno-logiczne Arithmetic logic systems. Informatyka I stopień ogólnoakademicki niestacjonarne KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

KARTA PRZEDMIOTU. Podstawy elektroniki cyfrowej B6. Fundamentals of digital electronic

KARTA PRZEDMIOTU. Podstawy elektroniki cyfrowej B6. Fundamentals of digital electronic KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu f wy f P Podzielnik częstotliwości: układ, który na każde p impulsów na wejściu daje

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład 5 Legenda Procedura projektowania Podział układów VLSI 2 1 Procedura projektowania Specyfikacja Napisz, jeśli jeszcze nie istnieje, specyfikację układu. Opracowanie

Bardziej szczegółowo

LICZNIKI Liczniki scalone serii 749x

LICZNIKI Liczniki scalone serii 749x LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających

Bardziej szczegółowo

ANALIZA I SYNTEZA UKŁADÓW KOMBINACYJNYCH

ANALIZA I SYNTEZA UKŁADÓW KOMBINACYJNYCH Maria Stompel Ośrodek Kształcenia Zawodowego i Ustawicznego ŁCDNiKP ANALIZA I SYNTEZA UKŁADÓW KOMBINACYJNYCH IV etap edukacji Cele kształcenia Cel ogólny: ukształtowanie umiejętności analizowania i projektowania

Bardziej szczegółowo

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia. Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr 1(rok)/1(sem) Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Zwykle układ scalony jest zamknięty w hermetycznej obudowie metalowej, ceramicznej lub wykonanej z tworzywa sztucznego.

Zwykle układ scalony jest zamknięty w hermetycznej obudowie metalowej, ceramicznej lub wykonanej z tworzywa sztucznego. Techniki wykonania cyfrowych układów scalonych Cyfrowe układy scalone dzielimy ze względu na liczbę bramek elementarnych tworzących dany układ na: małej skali integracji SSI do 10 bramek, średniej skali

Bardziej szczegółowo

3.2. PODSTAWOWE WIADOMOŚCI TEORETYCZNE

3.2. PODSTAWOWE WIADOMOŚCI TEORETYCZNE 3. BLOKI KOMUTACYJNE 3.. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi układami komutacyjnymi. Ćwiczenie wykonywane jest na modułowym zestawie elementów logicznych UNILOG-2. 3.2. PODSTAWOWE

Bardziej szczegółowo

Przykładowe pytania DSP 1

Przykładowe pytania DSP 1 Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW e-version: dr inż. Tomasz apłon INTYTUT YBENETYI TEHNIZNE PLITEHNII WŁAWIE ZAŁA ZTUZNE INTELIGENI I AUTMATÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 23 temat: UŁAY EWENYNE. EL ĆWIZENIA

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

A B. 12. Uprość funkcję F(abc) = (a + a'b + c + c')a

A B. 12. Uprość funkcję F(abc) = (a + a'b + c + c')a Lp. Pytania 1. Jaką liczbę otrzymamy w wyniku konwersji z systemu szesnastkowego liczby 81AF (16) na system binarny? 2. Zapisz tabelę działania opisującą bramkę logiczną, której symbol graficzny przedstawia

Bardziej szczegółowo

Dodawanie liczb dwójkowych. Sumator.

Dodawanie liczb dwójkowych. Sumator. Ćwiczenie Dodawanie liczb dwójkowych. Sumator. str. 1 Dodawanie liczb dwójkowych. Sumator. Algorytmy dodawania liczb dziesiętnych i dwójkowych są podobne: Dodawanie przebiega w tylu krokach, ile cyfr mają

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem

Bardziej szczegółowo

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji. Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;

Bardziej szczegółowo

Kombinacyjne bloki funkcjonalne

Kombinacyjne bloki funkcjonalne Sławomir Kulesza Technika cyfrowa Kombinacyjne bloki funkcjonalne Wykład dla studentów III roku Informatyki Wersja., 5//2 Bloki cyfrowe Blok funkcjonalny to układ cyfrowy utworzony z pewnej liczby elementów

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 Synteza liczników synchronicznych Załóżmy, że chcemy zaprojektować licznik synchroniczny o następującej sekwencji: 0 1 2 3 6 5 4 [0 sekwencja jest powtarzana] Ponieważ licznik ma 7 stanów, więc do ich

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Architektura systemów komputerowych Sławomir Mamica Wykład 2: Między sprzętem a matematyką http://main5.amu.edu.pl/~zfp/sm/home.html W poprzednim odcinku O przedmiocie: architektura jako organizacja, może

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ KDEMI MORSK KTEDR NWIGCJI TECHNICZEJ ELEMETY ELEKTRONIKI LORTORIUM Kierunek NWIGCJ Specjalność Transport morski Semestr II Ćw. 4 Podstawy techniki cyfrowej Wersja opracowania Marzec 5 Opracowanie: mgr

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne X Selektor ROM ROM AND Specjalizowane układy cyfrowe

Bardziej szczegółowo

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki.

Literatura. adów w cyfrowych. Projektowanie układ. Technika cyfrowa. Technika cyfrowa. Bramki logiczne i przerzutniki. Literatura 1. D. Gajski, Principles of Digital Design, Prentice- Hall, 1997 2. C. Zieliński, Podstawy projektowania układów cyfrowych, PWN, Warszawa 2003 3. G. de Micheli, Synteza i optymalizacja układów

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

Synteza układów kombinacyjnych

Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 4.0, 23/10/2014 Bramki logiczne Bramki logiczne to podstawowe elementy logiczne realizujące

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: EEL s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2030/2031 Kod: EEL s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Podstawy sterowania logicznego Rok akademicki: 2030/2031 Kod: EEL-1-523-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika

Bardziej szczegółowo

Opis. Brak. Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć

Opis. Brak. Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Architektura systemów komputerowych nazwa przedmiotu SYLABUS A. Informacje ogólne Tę część wypełnia koordynator przedmiotu (w porozumieniu

Bardziej szczegółowo

Układy logiczne układy cyfrowe

Układy logiczne układy cyfrowe Układy logiczne układy cyfrowe Jak projektować układy cyfrowe (systemy cyfrowe) Układy arytmetyki rozproszonej filtrów cyfrowych Układy kryptograficzne Evatronix KontrolerEthernet MAC (Media Access Control)

Bardziej szczegółowo

AHDL - Język opisu projektu. Podstawowe struktury języka. Komentarz rozpoczyna znak i kończy znak %. SUBDESIGN

AHDL - Język opisu projektu. Podstawowe struktury języka. Komentarz rozpoczyna znak i kończy znak %. SUBDESIGN AHDL - Język opisu projektu. Podstawowe struktury języka Przykładowy opis rewersyjnego licznika modulo 64. TITLE "Licznik rewersyjny modulo 64 z zerowaniem i zapisem"; %------------------------------------------------------------

Bardziej szczegółowo

Elektronika cyfrowa i optoelektronika - laboratorium

Elektronika cyfrowa i optoelektronika - laboratorium Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Elektronika cyfrowa i optoelektronika - laboratorium Temat: Minimalizacja funkcji logicznych multiplekser demultiplekser. Koder i dekodedr.

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę I. KARTA PRZEDMIOTU Nazwa przedmiotu/modułu: Nazwa angielska: Kierunek studiów: Poziom studiów: Profil studiów: Jednostka prowadząca: Technika cyfrowa i mikroprocesorowa Edukacja techniczno-informatyczna

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI. Komputerowa symulacja układów różniczkujących

LABORATORIUM PODSTAW ELEKTRONIKI. Komputerowa symulacja układów różniczkujących ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 23 Komputerowa symulacja

Bardziej szczegółowo

PODSTAWY TEORII UKŁADÓW CYFROWYCH

PODSTAWY TEORII UKŁADÓW CYFROWYCH PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY KODUJĄCE Kodery Kodery Kodery służą do przedstawienia informacji z tylko jednego aktywnego wejścia na postać binarną. Ponieważ istnieje fizyczna możliwość jednoczesnej

Bardziej szczegółowo

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości.

Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. TECHNOLOGE CYFOWE kłady elektroniczne. Podzespoły analogowe. Podzespoły cyfrowe Wielkość analogowa w danym przedziale swojej zmienności przyjmuje nieskończoną liczbę wartości. Wielkość cyfrowa w danym

Bardziej szczegółowo

KARTA PRZEDMIOTU. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia. Forma prowadzenia zajęć

KARTA PRZEDMIOTU. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia. Forma prowadzenia zajęć Z1-PU7 WYDANIE N1 Strona 1 z 1 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PROJEKTOWANIE URZĄDZEŃ CYFROWYCH I i II 2. Kod przedmiotu: PUC 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013

Bardziej szczegółowo

Krótkie przypomnienie

Krótkie przypomnienie Krótkie przypomnienie x i ={,} y i ={,} w., p. Bramki logiczne czas propagacji Odpowiedź na wyjściu bramki następuje po pewnym, charakterystycznym dla danego układu czasie od momentu zmiany sygnałów wejściowych.

Bardziej szczegółowo