Laboratorium podstaw elektroniki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium podstaw elektroniki"

Transkrypt

1 Grzegorz Graczyk numer indeksu imie i nazwisko Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki Ćwiczenie EL2 Realizacja logicznych układów kombinacyjnych tytul doswiadczenia z bramek NAND Ocena

2 Cel ćwiczenia Celem ćwiczenia było: 1. Zapoznanie się z funktorami realizującymi funkcje logiczne. 2. Zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego postawione zadanie w możliwie najprostszy sposób. Prawo de Morgana A + B +... = A B... Prawo de Morgana zostanie sprawdzone poprzez zbudowanie układu odpowiadającego wartości A B i porównanie jego wartości z A + B. Schemat układu oraz wyniki pomiarów zamieszczono poniżej: Schemat 1. Układ badający prawo de Morgana. B A Tabela 1. Tabela wartości uzyskanych przez układ ze schematu 1. Jak wynika z przeprowadzonych pomiarów wartość x jest równa wartości A + B, zaś schemat 1. faktycznie realizuje funkcję bramki OR. 1. Podzielność przez 3 Doświadczenia 1. (*) Zaprojektować i połączyć układ sygnalizujący podzielność przez 3 liczby binarnej trzybitowej. W rozwiązaniu zaznaczyć czy liczbę zero uznano za podzielną. Zgodnie z zasadami matematyki oraz informatyki liczbę zero uznajemy za podzielną przez 3. Wówczas oczekiwana tablica wyników przybiera postać: EL2: Grzegorz Graczyk i Anna Janicka 2 / 6

3 ABC Wartość (ABC) Podzielność Tabela 2. Podzielność przez 3 liczb mieszczących się na 3 bitowej liczbie. C AB Tabela 3. Podzielność przez 3 zapisana za pomocą tablicy Karnaugha. Jak wynika z tabeli 2. metoda Karnaugha pozwala zapisać podzielność jako warunek logiczny: (A B C) + (A B C) + (A B C) czyli: Schemat realizujący powyższe równanie: W = (A B C) (A B C) (A B C) Schemat 2. Układ badający podzielność liczby 3 bitowej przez 3. ABC Wynik Tabela 4. Wynik działania schematu 2. Pomiary uzyskane za pomocą schematu 2. są identyczne jak przewidziane w tabeli 2. i 3.. Dowodzi to poprawności minimalizacji funkcji oraz poprawnego zrealizowania jej za pomocą układu. 2. Czterowejściowa bramka NOR 2. (*) Zaprojektować i połączyć układ realizujący funkcję czterowejściowej bramki NOR przy użyciu bramek NOT i NAND posiadających co najwyżej trzy wejścia. Wynik bramki NOR jest prawdziwy wtedy i tylko wtedy, gdy wszystkie dane wejściowe są równe 0. Funkcję taką można przedstawić w postaci minimalnej bez użycia metody Karnaugha i jej wartość wynosi A B C D. Realizacja tej instrukcji wykonana jedynie za pomocą dostępnych bramek to: W = (A B) (C D) Schemat realizujący taki warunek logiczny wygląda następująco: EL2: Grzegorz Graczyk i Anna Janicka 3 / 6

4 Schemat 3. Układ o działaniu 4 wejściowej bramki NOR Tabela 5. Wynik działania schematu 3. Pomiary uzyskane za pomocą schematu 3. są identyczne z przewidywaniami. Dowodzi to poprawnego zrealizowania szukanej funkcji za pomocą układu. 3. Zapalające się lampki 8. (***) Zaprojektować i połączyć układ, który na podstawie czterobitowej liczby binarnej steruje linijką złożoną z czterech diod świecących. Dla wartości binarnych od 0000 do 0100 (dziesiętnie od 0 do 4) układ powinien załączać kolejne diody w liczbie odpowiadającej wartości na wejściu układu, oraz utrzymywać świecenie wszystkich diod dla wszystkich wartości większych od Operacja przedstawiona w tabeli wygląda następująco: ABCD Wartość (ABCD) Wynik ABCD Wartość (ABCD) Wynik Tabela 6. Oczekiwane wartości układu. Dla każdej z wartości wynikowych przygotujemy tablicę Karnaugha. EL2: Grzegorz Graczyk i Anna Janicka 4 / 6

5 Tabela 7. Tablica Karnaugha dla pierwszej lampki Tabela 9. Tablica Karnaugha dla trzeciej lampki Tabela 8. Tablica Karnaugha dla drugiej lampki Tabela 10. Tablica Karnaugha dla czwartej lampki. Z przygotowanych tablic odczytujemy następujące warunki: W 1 = A + B + C + D = A B C D W 2 = A + B + C = A B C W 3 = A + B + (CD) = A B (CD) W 4 = A + B = A B Tak przygotowane równości możemy uprościć do minimalnych postaci na kilka sposobów. Zastosowany z nich nie wymaga użycia żadnej bramki o 3 wejściach. Użyta zostanie natomiast zmienna pomocnicza T - będąca po prostu wybranym punktem w układzie użytym wielokrotnie różnym od wartości wejściowych i wyjściowych. W 4 = A B T = W 4 W 3 = T CD W 2 = T C W 1 = W 2 D Prezentowany schemat wykorzystuje więcej bramek NOT niż posiadamy. Nadmiarowe bramki NOT zastępujemy bramkami NAND ze zwartymi wejściami. ABCD Wynik ABCD Wynik Tabela 11. Wynik działania układu reprezentowanego przez schemat 4. EL2: Grzegorz Graczyk i Anna Janicka 5 / 6

6 Schemat 4. Układ realizujący wcześniej wymienione wzory. Pomiary uzyskane za pomocą schematu 4. są identyczne z przewidywaniami. Dowodzi to poprawnego zrealizowania szukanej funkcji za pomocą układu. Wnioski W czasie wykonywania ćwiczenia nie wystąpiły żadne błędy. Odpowiadają za to dwa czynniki: brak błędów pomiarowych oraz możliwość całkowitego przewidzenia wyniku (przy założeniu, że sprzęt działa poprawnie). Za pomocą bramki NAND można uzyskać wszystkie rodzaje bramek. Jest to właściwość kluczowa w tym ćwiczeniu, gdyż posługujemy się jedynie bramką NAND oraz NOT - tą drugą konstruujemy dostarczając ten sam sygnał na oba wejścia bramki NAND. Metoda Karnaugha jest skuteczną metodą minimalizacji funkcji, jednak w wypadku budowy układów logicznych kluczowe staje się wielokrotne używanie wyników pośrednich. Metoda zastosowana do minimalizacji wykorzysując wyniki pośrednie polegała na zgadywaniu rozwiązań, co oznacza, że mogą istnieć optymalniejsze rozwiązania przedstawionych problemów. EL2: Grzegorz Graczyk i Anna Janicka 6 / 6

Laboratorium podstaw elektroniki

Laboratorium podstaw elektroniki 150875 Grzegorz Graczyk numer indeksu imie i nazwisko 150889 Anna Janicka numer indeksu imie i nazwisko Grupa: 2 Grupa: 5 kierunek Informatyka semestr 2 rok akademicki 2008/09 Laboratorium podstaw elektroniki

Bardziej szczegółowo

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów.

Rys. 2. Symbole dodatkowych bramek logicznych i ich tablice stanów. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z funktorami realizującymi podstawowe funkcje logiczne poprzez zaprojektowanie, wykonanie i przetestowanie kombinacyjnego układu logicznego realizującego

Bardziej szczegółowo

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia

Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Ćwiczenie 25 Temat: Interfejs między bramkami logicznymi i kombinacyjne układy logiczne. Układ z bramkami NOR. Cel ćwiczenia Zapoznanie się z techniką połączenia za pośrednictwem interfejsu. Zbudowanie

Bardziej szczegółowo

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI..

Ćwiczenie 26. Temat: Układ z bramkami NAND i bramki AOI.. Temat: Układ z bramkami NAND i bramki AOI.. Ćwiczenie 26 Cel ćwiczenia Zapoznanie się ze sposobami konstruowania z bramek NAND różnych bramek logicznych. Konstruowanie bramek NOT, AND i OR z bramek NAND.

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 4 BADANIE BRAMEK LOGICZNYCH A. Cel ćwiczenia. - Poznanie zasad logiki binarnej. Prawa algebry Boole

Bardziej szczegółowo

Ćwiczenie 28. Przy odejmowaniu z uzupełnieniem do 2 jest wytwarzane przeniesienie w postaci liczby 1 Połówkowy układ

Ćwiczenie 28. Przy odejmowaniu z uzupełnieniem do 2 jest wytwarzane przeniesienie w postaci liczby 1 Połówkowy układ Temat: Układy odejmujące połówkowe i pełne. Cel ćwiczenia Ćwiczenie 28 Poznanie teorii uzupełniania. Budowanie układów odejmujących połówkowych pełnych. Czytanie schematów elektronicznych, przestrzeganie

Bardziej szczegółowo

Laboratorium elektroniki. Ćwiczenie E51IS. Realizacja logicznych układów kombinacyjnych z bramek NAND. Wersja 1.0 (24 marca 2016)

Laboratorium elektroniki. Ćwiczenie E51IS. Realizacja logicznych układów kombinacyjnych z bramek NAND. Wersja 1.0 (24 marca 2016) Laboratorium elektroniki Ćwiczenie E51IS Realizacja logicznych układów kombinacyjnych z bramek NAND Wersja 1.0 (24 marca 2016) Spis treści: 1. Cel ćwiczenia... 3 2. Zagrożenia... 3 3. Wprowadzenie teoretyczne...

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Układy kombinacyjne 1

Układy kombinacyjne 1 Układy kombinacyjne 1 Układy kombinacyjne są to układy cyfrowe, których stany wyjść są zawsze jednoznacznie określone przez stany wejść. Oznacza to, że doprowadzając na wejścia tych układów określoną kombinację

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera

Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Lekcja na Pracowni Podstaw Techniki Komputerowej z wykorzystaniem komputera Temat lekcji: Minimalizacja funkcji logicznych Etapy lekcji: 1. Podanie tematu i określenie celu lekcji SOSOBY MINIMALIZACJI

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych (I)

Technika cyfrowa Synteza układów kombinacyjnych (I) Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Ćwiczenie 23. Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia

Ćwiczenie 23. Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia Temat: Własności podstawowych bramek logicznych. Cel ćwiczenia Ćwiczenie 23 Poznanie symboli własności. Zmierzenie parametrów podstawowych bramek logicznych TTL i CMOS. Czytanie schematów elektronicznych,

Bardziej szczegółowo

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 1 Techniki Mikroprocesorowe dr inż. Artur Cichowski ix jy i j {0,1} {0,1} Dla układów kombinacyjnych stan dowolnego wyjścia y i w danej chwili czasu zależy wyłącznie od aktualnej kombinacji stanów

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Laboratorium elektroniki i miernictwa

Laboratorium elektroniki i miernictwa Numer indeksu 0 Michał Moroz Imię i nazwisko Numer indeksu 0 Paweł Tarasiuk Imię i nazwisko kierunek: Informatyka semestr grupa II rok akademicki: 00/00 Laboratorium elektroniki i miernictwa Ćwiczenie

Bardziej szczegółowo

Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia

Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia Ćwiczenie 27 Temat: Układy komparatorów oraz układy sumujące i odejmujące i układy sumatorów połówkowych i pełnych. Cel ćwiczenia Poznanie zasad budowy działania komparatorów cyfrowych. Konstruowanie komparatorów

Bardziej szczegółowo

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę

Technika cyfrowa i mikroprocesorowa. Zaliczenie na ocenę. Zaliczenie na ocenę I. KARTA PRZEDMIOTU Nazwa przedmiotu/modułu: Nazwa angielska: Kierunek studiów: Poziom studiów: Profil studiów: Jednostka prowadząca: Technika cyfrowa i mikroprocesorowa Edukacja techniczno-informatyczna

Bardziej szczegółowo

x x

x x DODTEK II - Inne sposoby realizacji funkcji logicznych W kolejnych podpunktach zaprezentowano sposoby realizacji przykładowej funkcji (tej samej co w instrukcji do ćwiczenia "Synteza układów kombinacyjnych")

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Poznanie zasad działania układów koderów. Budowanie koderów z podstawowych bramek logicznych i układu scalonego Czytanie schematów elektronicznych,

Bardziej szczegółowo

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna.

Układy kombinacyjne Y X 4 X 5. Rys. 1 Kombinacyjna funkcja logiczna. Układy kombinacyjne. Czas trwania: 6h. Cele ćwiczenia Przypomnienie podstawowych praw Algebry Boole a. Zaprojektowanie, montaż i sprawdzenie działania zadanych układów kombinacyjnych.. Wymagana znajomość

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ KDEMI MORSK KTEDR NWIGCJI TECHNICZEJ ELEMETY ELEKTRONIKI LORTORIUM Kierunek NWIGCJ Specjalność Transport morski Semestr II Ćw. 4 Podstawy techniki cyfrowej Wersja opracowania Marzec 5 Opracowanie: mgr

Bardziej szczegółowo

Laboratorium elektroniki. Ćwiczenie E52IS. Realizacja logicznych układów kombinacyjnych z bramek NOR. Wersja 1.0 (24 marca 2016)

Laboratorium elektroniki. Ćwiczenie E52IS. Realizacja logicznych układów kombinacyjnych z bramek NOR. Wersja 1.0 (24 marca 2016) Laboratorium elektroniki Ćwiczenie E52IS Realizacja logicznych układów kombinacyjnych z bramek NOR Wersja 1.0 (24 marca 2016) Spis treści: 1. Cel ćwiczenia... 3 2. Zagrożenia... 3 3. Wprowadzenie teoretyczne...

Bardziej szczegółowo

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW INSTYTUT YERNETYKI TEHNIZNEJ POLITEHNIKI WROŁWSKIEJ ZKŁD SZTUZNEJ INTELIGENJI I UTOMTÓW Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 22 temat: UKŁDY KOMINYJNE. EL ĆWIZENI Ćwiczenie ma na

Bardziej szczegółowo

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna.

Architektura komputerów ćwiczenia Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Architektura komputerów ćwiczenia Zbiór zadań IV Bramki logiczne. Układy kombinacyjne. Kanoniczna postać dysjunkcyjna i koniunkcyjna. Wprowadzenie 1 1 fragmenty książki "Organizacja i architektura systemu

Bardziej szczegółowo

Wydział Fizyki UW CC=5V 4A 4B 4Y 3A 3B 3Y

Wydział Fizyki UW CC=5V 4A 4B 4Y 3A 3B 3Y Wydział Fizyki UW Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (00-INZ7) oraz Energetyki i hemii Jądrowej (00-ENPRFIZELEK) Ćwiczenie D Projekt układu cyfrowego Streszczenie

Bardziej szczegółowo

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1)

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1) ybrane funkcje logiczne prowadzenie L L2 Y Nazwa Oznaczenia Y Sterowniki PLC - prowadzenie do programowania () Proste przykłady Załączenie jednego z dwóch (lub obu) przełączników lub powoduje zapalenie

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10

Zadania do wykładu 1, Zapisz liczby binarne w kodzie dziesiętnym: ( ) 2 =( ) 10, ( ) 2 =( ) 10, (101001, 10110) 2 =( ) 10 Zadania do wykładu 1,. 1. Zapisz liczby binarne w kodzie dziesiętnym: (1011011) =( ) 10, (11001100) =( ) 10, (101001, 10110) =( ) 10. Zapisz liczby dziesiętne w naturalnym kodzie binarnym: (5) 10 =( ),

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ĆWICZENIE 1) UKŁADY PRZEŁĄCZAJĄCE OPARTE NA ELEMENTACH STYKOWYCH PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA: Celem ćwiczenia jest poznanie:

Bardziej szczegółowo

Bramki logiczne V MAX V MIN

Bramki logiczne V MAX V MIN Bramki logiczne W układach fizycznych napięcie elektryczne może reprezentować stany logiczne. Bramką nazywamy prosty obwód elektroniczny realizujący funkcję logiczną. Pewien zakres napięcia odpowiada stanowi

Bardziej szczegółowo

Elektronika cyfrowa i optoelektronika - laboratorium

Elektronika cyfrowa i optoelektronika - laboratorium Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Elektronika cyfrowa i optoelektronika - laboratorium Temat: Minimalizacja funkcji logicznych multiplekser demultiplekser. Koder i dekodedr.

Bardziej szczegółowo

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek

Bardziej szczegółowo

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium.

Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Ćwiczenie nr 1 Temat: Ćwiczenie wprowadzające w problematykę laboratorium. Zagadnienia do samodzielnego opracowania: rola sygnału taktującego (zegara) w układach synchronicznych; co robi sygnał CLEAR (w

Bardziej szczegółowo

Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch)

Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch) DSCH2 to program do edycji i symulacji układów logicznych. DSCH2 jest wykorzystywany do sprawdzenia architektury układu logicznego przed rozpoczęciem projektowania fizycznego. DSCH2 zapewnia ergonomiczne

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

A B. 12. Uprość funkcję F(abc) = (a + a'b + c + c')a

A B. 12. Uprość funkcję F(abc) = (a + a'b + c + c')a Lp. Pytania 1. Jaką liczbę otrzymamy w wyniku konwersji z systemu szesnastkowego liczby 81AF (16) na system binarny? 2. Zapisz tabelę działania opisującą bramkę logiczną, której symbol graficzny przedstawia

Bardziej szczegółowo

Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych

Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych. WSTĘP Celem ćwiczenia jest zapoznanie się z podstawowymi sposobami projektowania układów cyfrowych o zadanej funkcji logicznej, na przykładzie budowy

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład 5 Legenda Procedura projektowania Podział układów VLSI 2 1 Procedura projektowania Specyfikacja Napisz, jeśli jeszcze nie istnieje, specyfikację układu. Opracowanie

Bardziej szczegółowo

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania). Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów

Bardziej szczegółowo

1.2 Funktory z otwartym kolektorem (O.C)

1.2 Funktory z otwartym kolektorem (O.C) Wydział EAIiIB Laboratorium Katedra Metrologii i Elektroniki Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw. 4. Funktory TTL cz.2 Data wykonania: Grupa (godz.): Dzień tygodnia:

Bardziej szczegółowo

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ĆWICZENIE 1) UKŁADY PRZEŁĄCZAJĄCE OPARTE NA ELEMENTACH STYKOWYCH PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA: Celem ćwiczenia jest poznanie:

Bardziej szczegółowo

Rys Schemat montażowy (moduł KL blok e) Tablica C B A F

Rys Schemat montażowy (moduł KL blok e) Tablica C B A F Ćwiczenie 30 Temat: Układy multiplekserów i demultiplekserów. Cel ćwiczenia Poznanie zasad działania multiplekserów. Budowanie multiplekserów z podstawowych bramek logicznych i układu scalonego TTL. Czytanie

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

Ćw. 8 Bramki logiczne

Ćw. 8 Bramki logiczne Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.

Bardziej szczegółowo

Algebra Boole a i jej zastosowania

Algebra Boole a i jej zastosowania lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

UKŁADY KOMBINACYJNE (BRAMKI: AND, OR, NAND, NOR, NOT)

UKŁADY KOMBINACYJNE (BRAMKI: AND, OR, NAND, NOR, NOT) LORTORIUM PODSTWY ELEKTRONIKI UKŁDY KOMINCYJNE (RMKI: ND, OR, NND, NOR, NOT) Cel ćwiczenia Zapoznanie się z budową i zasadą działania podstawowych funktorów (bramek) układów kombinacyjnych, jak równieŝ

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0

Tab. 1 Tab. 2 t t+1 Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 Synteza liczników synchronicznych Załóżmy, że chcemy zaprojektować licznik synchroniczny o następującej sekwencji: 0 1 2 3 6 5 4 [0 sekwencja jest powtarzana] Ponieważ licznik ma 7 stanów, więc do ich

Bardziej szczegółowo

Część 2. Funkcje logiczne układy kombinacyjne

Część 2. Funkcje logiczne układy kombinacyjne Część 2 Funkcje logiczne układy kombinacyjne Zapis funkcji logicznych układ funkcjonalnie pełny Arytmetyka Bool a najważniejsze aksjomaty i tożsamości Minimalizacja funkcji logicznych Układy kombinacyjne

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Optymalizacja układów wielopoziomowych Układy wielopoziomowe układy

Bardziej szczegółowo

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Podstawy Automatyki Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Politechnika Warszawska Instytut Automatyki i Robotyki Dr inż.

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo

Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita

Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie

Bardziej szczegółowo

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze.

Ćw. 1: Systemy zapisu liczb, minimalizacja funkcji logicznych, konwertery kodów, wyświetlacze. Lista zadań do poszczególnych tematów ćwiczeń. MIERNICTWO ELEKTRYCZNE I ELEKTRONICZNE Studia stacjonarne I stopnia, rok II, 2010/2011 Prowadzący wykład: Prof. dr hab. inż. Edward Layer ćw. 15h Tematyka

Bardziej szczegółowo

Ćwiczenie 31 Temat: Analogowe układy multiplekserów i demultiplekserów. Układ jednostki arytmetyczno-logicznej (ALU).

Ćwiczenie 31 Temat: Analogowe układy multiplekserów i demultiplekserów. Układ jednostki arytmetyczno-logicznej (ALU). Ćwiczenie 31 Temat: Analogowe układy multiplekserów i demultiplekserów. Układ jednostki arytmetyczno-logicznej (ALU). Cel ćwiczenia Poznanie własności analogowych multiplekserów demultiplekserów. Zmierzenie

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego.

Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego. SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Funkcja Boolowska Funkcja boolowskanargumentową nazywamy odwzorowanie f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest

Bardziej szczegółowo

dr inż. Małgorzata Langer Architektura komputerów

dr inż. Małgorzata Langer Architektura komputerów Instrukcja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna dydaktyka bez ograniczeń zintegrowany rozwój Politechniki Łódzkiej zarządzanie Uczelnią,

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE UKŁADÓW FUNKCJI LOGICZNYCH (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE UKŁADÓW FUNKCJI LOGICZNYCH (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PRCOWNI ELEKTRCZN I ELEKTRONICZN imię i nazwisko z ćwiczenia nr Temat ćwiczenia: DNIE UKŁDÓW FUNKCJI LOGICZNCH (SMULCJ) rok szkolny klasa grupa

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

Cyfrowe bramki logiczne 2012

Cyfrowe bramki logiczne 2012 LORTORIUM ELEKTRONIKI yfrowe bramki logiczne 2012 ndrzej Malinowski 1. yfrowe bramki logiczne 3 1.1 el ćwiczenia 3 1.2 Elementy algebry oole`a 3 1.3 Sposoby zapisu funkcji logicznych 4 1.4 Minimalizacja

Bardziej szczegółowo

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01 ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu

Bardziej szczegółowo

I. Podstawowe zagadnienia z teorii układów cyfrowych

I. Podstawowe zagadnienia z teorii układów cyfrowych I. Podstawowe zagadnienia z teorii układów cyfrowych. Wstęp Muzyka na płytach fonograficznych jest zapisana w formie kanaliku o zmiennym urzeźbieniu. Ruch igły prowadzonej przez kanalik odbywa się w sposób

Bardziej szczegółowo

2019/09/16 07:46 1/2 Laboratorium AITUC

2019/09/16 07:46 1/2 Laboratorium AITUC 2019/09/16 07:46 1/2 Laboratorium AITUC Table of Contents Laboratorium AITUC... 1 Uwagi praktyczne przed rozpoczęciem zajęć... 1 Lab 1: Układy kombinacyjne małej i średniej skali integracji... 1 Lab 2:

Bardziej szczegółowo

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych

LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Technika Cyfrowa Badanie Bramek Logicznych Opracował: mgr inż. Andrzej Biedka 1 BADANIE FUNKCJI LOGICZNYCH 1.1 Korzystając

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Synteza układów kombinacyjnych

Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 4.0, 23/10/2014 Bramki logiczne Bramki logiczne to podstawowe elementy logiczne realizujące

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki

Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 3 (4h) Konwersja i wyświetlania informacji binarnej w VHDL Instrukcja do zajęć laboratoryjnych z przedmiotu Synteza

Bardziej szczegółowo

Czterowejściowa komórka PAL

Czterowejściowa komórka PAL Czterowejściowa komórka PAL - technologia CMOS Opracowali: Krzysztof Boroń Grzegorz Bywalec Kraków 2.I.23 Naszym zadaniem było stworzenie projektu komórki PAL6V8. Komórka w odróżnieniu od pierwowzoru miała

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

S P R A W O Z D A N I E T e m a t: Projektowanie układów realizujących złożone funkcje logiczne.

S P R A W O Z D A N I E T e m a t: Projektowanie układów realizujących złożone funkcje logiczne. LABORATORIUM UKŁADÓW PROGRAMOWALNYCH I SPECJALIZOWANYCH G r u p a: E3DO O c e n a Data wykonania Prowadzący ćwiczenie: ćwiczenia: dr inż. Zbigniew JACHNA 27.04.2006 Przemysław Data oddania Podpis:: PANKOWSKI

Bardziej szczegółowo

Krótkie przypomnienie

Krótkie przypomnienie Krótkie przypomnienie Prawa de Morgana: Kod Gray'a A+ B= Ā B AB= Ā + B Układ kombinacyjne: Tablicy prawdy Symbolu graficznego Równania Boole a NOR Negative-AND w.11, p.1 XOR Układy arytmetyczne Cyfrowe

Bardziej szczegółowo

Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne

Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Ćwiczenie nr 4: Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Projekt Układów Logicznych

Projekt Układów Logicznych Opole, dn. 1 maja 005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Projekt Układów Logicznych Temat: Sterownik suszarki Autor: Prowadzący: Dawid Najgiebauer Piotr Nitner

Bardziej szczegółowo

W ujęciu abstrakcyjnym automat parametryczny <A> można wyrazić następującą "ósemką":

W ujęciu abstrakcyjnym automat parametryczny <A> można wyrazić następującą ósemką: KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 206 Temat: Automat parametryczny. Wiadomości podstawowe Automat parametryczny jest automatem skończonym

Bardziej szczegółowo

Synteza strukturalna automatów Moore'a i Mealy

Synteza strukturalna automatów Moore'a i Mealy Synteza strukturalna automatów Moore'a i Mealy Formalna definicja automatu: A = < Z, Q, Y, Φ, Ψ, q 0 > Z alfabet wejściowy Q zbiór stanów wewnętrznych Y alfabet wyjściowy Φ funkcja przejść q(t+1) = Φ (q(t),

Bardziej szczegółowo

ĆWICZENIE 4 Zapoznanie ze środowiskiem CUPL Realizacja układów kombinacyjnych na układach PLD

ĆWICZENIE 4 Zapoznanie ze środowiskiem CUPL Realizacja układów kombinacyjnych na układach PLD ĆWICZENIE 4 Zapoznanie ze środowiskiem CUPL Realizacja układów kombinacyjnych na układach PLD ZAGADNIENIA algebra Boola, bramki logiczne, Przygotowanie plików źródłowych w języku CUPL, Zasady kompilacji

Bardziej szczegółowo

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji. Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;

Bardziej szczegółowo

Programowalne Układy Cyfrowe Laboratorium

Programowalne Układy Cyfrowe Laboratorium Zdjęcie opracowanej na potrzeby prowadzenia laboratorium płytki przedstawiono na Rys.1. i oznaczono na nim najważniejsze elementy: 1) Zasilacz i programator. 2) Układ logiki programowalnej firmy XILINX

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasad działania, budowy i właściwości podstawowych funktorów logicznych wykonywanych w jednej z najbardziej rozpowszechnionych

Bardziej szczegółowo

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2 tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz

Bardziej szczegółowo