NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU
|
|
- Kamil Rosiński
- 7 lat temu
- Przeglądów:
Transkrypt
1 II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" czerwca 2005, Z otniki Luba skie NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU Wojciech Zając Instytut Informatyki i Elektroniki, Uniwersytet Zielonogórski Zielona Góra, ul Podgórna 50 WZajac@iieuzzgorapl STRESZCZENIE Dekorelacja danych jest jednym z krytycznych etapów przetwarzania danych cyfrowych W ród wielu technik mo na wyró ni optymalne, wnosz ce najmniejsze mo liwe bł dy przetwarzania, oraz nieoptymalne, które z kolei charakteryzuje korzystny stosunek kosztu numerycznego do poziomu wprowadzanych bł dów Artykuł ma na celu przybli enie zasad realizacji operacji nieoptymalnej dekorelacji, ukazano na przykładzie jej zalety, wady oraz perspektywy rozwoju 1 WPROWADZENIE W technikach cyfrowego przetwarzania danych wizyjnych jednym z istotniejszych jest zagadnienie dekorelacji danych Techniki dekorelacji wymagają znacznych nakładów numerycznych, mogą też wnosić istotne zakłócenia do sygnału Dyskretna Transformata Kosinusowa DCT jako narzędzie dekorelacji należy do rodziny transformat nieoptymalnych z punktu widzenia minimalizacji błędu średniokwadratowego Ich stosowanie uzasadnione jest korzystnym stosunkiem kosztu numerycznego względem poziomu wprowadzanych błędów, przy stosowaniu do założonej klasy sygnałów 2 TRANSFORMATY DEKORELUJ CE Kodowanie z wykorzystaniem transformaty [1, 2] jest alternatywą do kodowania z przewidywaniem [6] Stanowi ono szczególny przypadek kwantyzacji blokowej, operującej na ach o rozmiarze N próbek W technice kodowania z przewidywaniem kolejne dane wejściowe poddawane są dekorelacji za pomocą nieliniowego filtru rekurencyjnego Technika kodowania za pomocą transformaty jednowymiarowej kwantyzuje i dekoreluje wszystkie próbki a danych jednocześnie (rys 1) Transformacja dwuwymiarowa składa się z dwóch operacji transformacji jednowymiarowej, przeprowadzonych w kierunkach prostopadłych 141
2 NADAJNIK ODBIORNIK u(1) u(2) u(n) transformata liniowa A v(1) v(2) v(n) N kwantyzatorów v (1) v (2) v (N) transformata liniowa B u (1) u (2) u (N) danych wej ciowych u wyj ciowy transformaty v wyj ciowy kwantyzatora v danych wyj ciowych u Rys 1 Schemat jednowymiarowego kodowania za pomoc transformaty W cyfrowym przetwarzaniu obrazu używany jest cały szereg transformat: Karhunen a- Loeve go (ang KLT - Karhunen-Loeve Transform), dyskretna transformata kosinusowa (ang DCT - Discrete Cosine Transform), transformata Walsh a - Hadamard a (ang WHT - Walsh- Hadamard Transform), transformata Haar a (ang HT - Haar Transform), dyskretna transformata Fourier a (ang DFT - Discrete Fourier Transform), dyskretna transformata sinusowa (ang DST - Discrete Sine Transform) Optymalna transformatą dekorelującą, która minimalizuje zakłócenia średniokwadratowe w sygnale odtworzonym jest transformata KLT [3] W praktyce zamiast niej stosuje się nieoptymalne, lecz szybkie transformaty unitarne Wykazano [4], że dla losowych sekwencji danych istnieje wiele transformat jednostkowych o zdolnościach upakowywania energii zbliżonych do transformaty KLT, np transformata kosinusowa, Fouriera i sinusowa Ich sprawność jest równa sprawności transformaty KLT przy rozmiarze bloku N dążącym do nieskończoności Dla stacjonarnego procesu Markowa pierwszego rzędu macierz transformaty DCT, o elementach DCTi,j zdefiniowanych jak w równaniu (1), osiąga sprawność (wydajność dekorelacji w stosunku do kosztu numerycznego) zbliżoną do sprawności transformaty KLT, nawet gdy rozmiar bloku N jest niewielki [4] DCT i, j = 1 N 2 cos N ( 2 j 1)( i 1) π 2N dla dla i = 1, 1 j N 1 < i N, 1 j N (1) Jak wspomniano, największą sprawność ma transformata KLT, jednak jej koszt numeryczny 3 3 jest największy ( 2N operacji mnożenia i 2N operacji dodawania) [5] Dodatkowymi jej mankamentami są: fakt, że nie istnieje szybki algorytm KLT oraz fakt, że do operacji potrzebna jest znajomość modelu kowariancji sygnału źródłowego, co stanowi złożone zadanie numeryczne 142
3 Transformata kosinusowa należy do grupy transformat deterministycznych (opiera się na założeniach co do kowariancji sygnału) i w tej grupie jest najbardziej wydajną [4] Jej koszt numeryczny to 2N 2 log 2 N operacji mnożenia i 2N 2 log 2 N operacji dodawania Dla sygnałów o dużej korelacji danych sprawność DCT jest zbliżona do sprawności KLT Z tego powodu transformata DCT jest powszechnie stosowana jako metoda dekorelacji danych w standardowych systemach przetwarzania obrazu stałego i ruchomego (JPEG, MPEG1, MPEG2, H261, H263) 3 OBLICZENIA Z WYKORZYSTANIEM TRANSFORMATY DCT Przetwarzanie za pomocą transformat wykorzystuje fakt, że dowolny sygnał s może być przedstawiony za pomocą liniowej kombinacji pewnych funkcji elementarnych, zwanych funkcjami bazowymi f i - równanie (2) [3] s = C i f i gdzie C i jest stałą (2) i Dokonanie operacji transformacji danych wymaga podzielenia ich na macierze o rozmiarze zgodnym z wielkością macierzy bazowej transformaty, przy czym jej wielkość równa np 8 8 implikuje podział danych na y 1 8 punktów (w przypadku transformacji jednowymiarowej) lub 8 8 (w przypadku transformacji dwuwymiarowej) Przeprowadzenie transformaty DCT na macierzy danych oznacza dokonanie splotu bloków macierzy z funkcjami podstawowymi transformaty Innymi słowy, ważony jest udział składowych sygnału, analizowanych przez zespół filtrów czułych na częstotliwość odpowiadającą częstotliwości danej funkcji składowej Ponieważ analiza częstotliwościowa, realizowana przez transformatę operuje na ze danych wejściowych, dając danych wyjściowych, w celu dokonania dwuwymiarowego splotu macierzy m m operację realizuje się dwukrotnie, w kierunku pionowym i poziomym Dla wygody obliczeń, zmianę kierunku transformacji osiąga się najczęściej na drodze transpozycji macierzy bazowej DCT Większość współczesnych standardów, wykorzystujących transformatę kosinusową jako stopień dekorelacji danych (JPEG, MPEG1, MPEG2, H261, H263), stosuje transformatę o rozmiarze macierzy bazowej równym 8 8 punktów Powodem jest relatywnie duża wydajność dekorelacji połączona z akceptowalnym kosztem numerycznym operacji Prawdopodobnie w przyszłości wzrost dostępności procesorów o dużej mocy obliczeniowej przyczyni się do wprowadzenia nowych standardów i zastosowania większych rozmiarów bloku, np punktów Obraz, który ma zostać poddany dekorelacji przez transformatę, dzielony jest na kwadratowe bloki o rozmiarze 8 8 punktów Bloki te są przetwarzane odrębnie Dwuwymiarowa transformacja pojedynczego bloku X polega na dokonaniu operacji opisanej równaniem (3), gdzie DCT jest macierzą bazową transformaty (5), a jej elementy DCT i,j opisane są równaniem (1) Odwrotną operację transformacji przedstawia równanie (4) 143
4 Y = DCT X DCT T (3) T X ' = DCT Y DCT (4) gdzie: X - macierz danych sygnału wej ciowego (sygnał przestrzenny), Y DCT DCT T - macierz danych sygnału po transformacie (sygnał cz stotliwo ciowy), - macierz bazowa transformaty, - transponowana macierz bazowa transformaty, X - macierz odtworzonych danych wyj ciowych (sygnał przestrzenny) Macierz bazowa transformaty kosinusowej DCT, wyznaczona z (1) przy N=8 jest równa DCT 8 8 = 0,4517 0,1913 0,4157 0,1913 0,4157 0,4157 0,4157 0,4157 0,4157 0,1913 0,4157 0,2775 0,1913 (5) Po operacji dwuwymiarowej transformacji obrazu otrzymuje się zbiór współczynników DCT, równoliczny ze zbiorem punktów obrazu Ponieważ obrazy naturalne tj otrzymane przez sfotografowanie rzeczywistych obiektów charakteryzuje względnie niewielka dynamika jasności, analiza częstotliwościowa przez transformatę daje znaczące współczynniki w zakresie niskich częstotliwości, zaś pozostałe są zbliżone lub równe zeru Odpowiada to grupowaniu niezerowych współczynników w porządku malejącym w lewym górnym rogu macierzy Przykładowo fragmentowi obrazu z rys 2 odpowiada macierz Y zakodowanego bloku 8 8, przedstawiona równaniem (6) 144
5 Rys 2 Przykładowy fragment obrazu, b d cy ródłem danych X do macierzy Y z równania (6) Y 8 8= (6) 4 ARTEFAKTY TRANSFORMATY DCT Zniekształcenia, do jakich prowadzi zgrubne próbkowanie sprawiają, że na etapie odtwarzania sygnału do postaci analogowej wprowadzane są zakłócenia harmoniczne wyższej częstotliwości, czasem o dość istotnym znaczeniu W sygnałach wizyjnych przyjmują one postać artefaktów w postaci zakłócenia treści bloków sąsiednich względem silnie kontrastowych elementów obrazu - ostrych krawędzi i drobnych detali o większej dynamice Zakłócenia te mają formę tzw wzorców błędów transformaty, charakterystycznych dla równań funkcji bazowych transformaty Rys 3 przedstawia fragment obrazu testowego CAMERAMAN, z widocznymi artefaktami pochodzącymi od próbkowania z małą rozdzielczością częstotliwościową 145
6 Rys 3 Fragment obrazu testowego CAMERAMAN; widoczne artefakty pochodzące od harmonicznych, powstałe na skutek niedokładnej analizy częstotliwościowej 5 PODSUMOWANIE Kodowanie z wykorzystaniem transformat nie znajduje alternatywy Prowadzi się badania nad wykorzystaniem innych technik transformacji, na szczególną uwagę zasługuje wykorzystanie transformacji DWT (ang Discrete Wavelet Transform, Dyskretna Transformata Falkowa) Daje ona obiecujące efekty (min zwiększenie odporności sygnału na zakłócenia transmisyjne), jednak posiada też wady główna to znaczny koszt numeryczny Istniejące standardy wciąż znajdują na tyle szerokie zastosowanie, że efektywne i powszechne wykorzystanie DWT należy jeszcze do przyszłości LITERATURA [1] N Ahmed: Discrete Cosine Transform IEEE Transactions on Computers, 1974 [2] R Clarke: Transform Image Coding Academic Press, London 1985 [3] A K Jain, et al: Image data compression In: M P Ekstrom (ed) Digital Image Processing Techniques Academic Press, London 1981 [4] A K Jain: A Sinusoidal Family of Unitary Transforms In IEEE Transactions on Pattern Analysis and Machine Intelligence no 1, 1979 [5] W D Ray, R M Driver: Further Decomposition of the Karhunen-Loeve Series Representation of a Stationary Random Process IEEE Transactions on Information Theory, vol 16, no 11, 1970 [6] W Zając: Cyfrowe przetwarzane i transmisji obrazów z wysokim współczynnikiem kompresji, Zeszyty Naukowe WST w Legnicy, Legnica
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Cyfrowe przetwarzanie i kompresja danych
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład
Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości
W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn (
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów
Technika audio część 2
Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji
Kodowanie transformujace. Kompresja danych. Tomasz Jurdziński. Wykład 11: Transformaty i JPEG
Tomasz Wykład 11: Transformaty i JPEG Idea kodowania transformujacego Etapy kodowania 1 Wektor danych x 0,...,x N 1 przekształcamy (odwracalnie!) na wektor c 0,...,c N 1, tak aby: energia była skoncentrowana
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Wybrane metody kompresji obrazów
Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.
Szybka transformacja Fouriera (FFT Fast Fourier Transform)
Szybka transformacja Fouriera (FFT Fast Fourier Transform) Plan wykładu: 1. Transformacja Fouriera, iloczyn skalarny 2. DFT - dyskretna transformacja Fouriera 3. FFT szybka transformacja Fouriera a) algorytm
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
dr inż. Piotr Odya Wprowadzenie
dr inż. Piotr Odya Wprowadzenie Dane multimedialne to przede wszystkim duże strumienie danych liczone w MB a coraz częściej w GB; Mimo dynamicznego rozwoju technologii pamięci i coraz szybszych transferów
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Transformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Cyfrowe przetwarzanie i kompresja danych. dr inż.. Wojciech Zając
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 7. Standardy kompresji obrazów nieruchomych Obraz cyfrowy co to takiego? OBRAZ ANALOGOWY OBRAZ CYFROWY PRÓBKOWANY 8x8 Kompresja danych
Wstęp do metod numerycznych Dyskretna transformacja Fouriera. P. F. Góra
Wstęp do metod numerycznych Dyskretna transformacja Fouriera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 01 Problem Majac dany szereg czasowy {x i } N i=1 = {x 1, x,..., x N } (zazwyczaj nieciekawy),
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Joint Photographic Experts Group
Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH
1. WSTĘP Radiofonię cyfrową cechują strumienie danych o dużych przepływnościach danych. Do przesyłania strumienia danych o dużych przepływnościach stosuje się transmisję z wykorzystaniem wielu sygnałów
Klasyfikacja metod kompresji
dr inż. Piotr Odya Klasyfikacja metod kompresji Metody bezstratne Zakodowany strumień danych po dekompresji jest identyczny z oryginalnymi danymi przed kompresją, Metody stratne W wyniku kompresji część
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Kodowanie i kompresja Streszczenie Studia Wieczorowe Wykład 10, 2007
1 Kompresja wideo Kodowanie i kompresja Streszczenie Studia Wieczorowe Wykład 10, 2007 Dane wideo jako sekwencja skorelowanych obrazów (ramek). Specyfika danych wideo: drobne zmiany kolorów w kolejnych
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Adam Korzeniewski - p. 732 dr inż. Grzegorz Szwoch - p. 732 dr inż.
Adam Korzeniewski - adamkorz@sound.eti.pg.gda.pl, p. 732 dr inż. Grzegorz Szwoch - greg@sound.eti.pg.gda.pl, p. 732 dr inż. Piotr Odya - piotrod@sound.eti.pg.gda.pl, p. 730 Plan przedmiotu ZPS Cele nauczania
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim Analiza sygnałów Nazwa w języku angielskim Signal analysis Kierunek studiów (jeśli dotyczy): Matematyka stosowana
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Kwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów
31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.
XI Konferencja Sieci i Systemy Informatyczne Łódź, październik 2003 APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW
Łódź, październik 003 Marcin Cegielski Instytut Informatyki Politechniki Łódzkiej APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW Streszczenie Celem pracy jest prezentacja aplikacji służącej
PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Fundamentals of Data Compression
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
PL B BUP 16/04. Kleczkowski Piotr,Kraków,PL WUP 04/09
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 201536 (13) B1 (21) Numer zgłoszenia: 358531 (51) Int.Cl. G10L 21/02 (2006.01) H03G 3/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu
Zastosowanie kompresji w kryptografii Piotr Piotrowski
Zastosowanie kompresji w kryptografii Piotr Piotrowski 1 Plan prezentacji I. Wstęp II. Kryteria oceny algorytmów III. Główne klasy algorytmów IV. Przykłady algorytmów selektywnego szyfrowania V. Podsumowanie
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne
Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 007/08 Transformata Fouriera G(f) = g(t)e πift dt (1)
Kompresja obrazów w statycznych - algorytm JPEG
Kompresja obrazów w statycznych - algorytm JPEG Joint Photographic Expert Group - 986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Splot i korelacja są podstawowymi pojęciami przetwarzania sygnałów.
Splot i korelacja są podstawowymi pojęciami przetwarzania synałów. Splot jest bazową operacją dla filtracji cyfrowej, pozwołającej na zwiększenie stosunku mocy synału do mocy zakłóceń. Korelacja pozwala
Teoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
Podstawowe funkcje przetwornika C/A
ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:
TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017
TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Krótki przegląd pierwszych standardów kompresji obrazów
Krótki przegląd pierwszych standardów kompresji obrazów Najstarszymi (980 rok) i szeroko stosowanymi obecnie standardami kompresji obrazów cyfrowych są międzynarodowe standardy kodowania cyfrowych faksów,
Przetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 6 Metody predykcyjne Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Rewolucja cyfrowa i jej skutki Rewolucja cyfrowa - dane cyfrowe: podstawowy rodzaj informacji multimedialnych,
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
ANALIZA WPŁYWU WYBRANYCH PARAMETRÓW SYGNAŁU WYMUSZAJĄCEGO NA CZAS ODPOWIEDZI OBIEKTU
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie ANALIZA WPŁYWU WYBRANYCH PARAMETRÓW SYGNAŁU WYMUSZAJĄCEGO NA CZAS ODPOWIEDZI OBIEKTU Piotr Mróz
Kompresja sekwencji obrazów - algorytm MPEG-2
Kompresja sekwencji obrazów - algorytm MPEG- Moving Pictures Experts Group (MPEG) - 988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et TélégraphieT
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Zastosowanie falek w przetwarzaniu obrazów
Informatyka, S2 sem. Letni, 2013/2014, wykład#1 Zastosowanie falek w przetwarzaniu obrazów dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Alfréd Haar Alfréd
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Sieci neuronowe - projekt
Sieci neuronowe - projekt Maciej Barański, Kamil Dadel 15 stycznia 2015 Streszczenie W ramach projektu został zrealizowany algorytm kompresji stratnej bazujący na działaniu samoorganizującej się sieci
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Transformacja Fouriera i biblioteka CUFFT 3.0
Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny
Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania
Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania
Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne
Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 006/07 Plan wykładu Dyskretna transformata Fouriera,
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) (96) Data i numer zgłoszenia patentu europejskiego:
RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 1723638 Urząd Patentowy Rzeczypospolitej Polskiej (96) Data i numer zgłoszenia patentu europejskiego: 21.01.2005 05705987.5
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
SYNTEZA AUTOMATÓW SKOŃCZONYCH Z WYKORZYSTANIEM METOD KODOWANIA WIELOKROTNEGO
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie SNTEZA AUTOMATÓW SKOŃCZONCH Z WKORZSTANIEM METOD KODOWANIA WIELOKROTNEGO Arkadiusz Bukowiec Instytut
Adaptive wavelet synthesis for improving digital image processing
for improving digital image processing Politechnika Łódzka Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej 4 listopada 2010 Plan prezentacji 1 Wstęp 2 Dyskretne przekształcenie falkowe
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
KARTA MODUŁU / KARTA PRZEDMIOTU
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej
Kompresja sekwencji obrazów
Kompresja sekwencji obrazów - algorytm MPEG-2 Moving Pictures Experts Group (MPEG) - 1988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie T et TélégraphieT
Przedstawiamy Państwu tekst będący
Zaawansowana kompresja cyfrowych sygnałów wizyjnych standard AVC/H.264 MAREK DOMAŃSKI, TOMASZ GRAJEK, JAROSŁAW MAREK Politechnika Poznańska, Zakład Telekomunikacji Multimedialnej i Radioelektroniki Przedstawiamy
IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7
Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
Transformata Fouriera. Sylwia Kołoda Magdalena Pacek Krzysztof Kolago
Transformata Fouriera Sylwia Kołoda Magdalena Pacek Krzysztof Kolago Transformacja Fouriera rozkłada funkcję okresową na szereg funkcji okresowych tak, że uzyskana transformata podaje w jaki sposób poszczególne
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Cyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała
Cyfrowe przetwarzanie sygnałów Wykład 10 Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała 1 Transformata cosinusowa Dyskretna transformacja kosinusowa, (DCT ang. discrete cosine
PROCESORY SYGNAŁOWE - LABORATORIUM. Ćwiczenie nr 04
PROCESORY SYGNAŁOWE - LABORATORIUM Ćwiczenie nr 04 Obsługa buforów kołowych i implementacja filtrów o skończonej i nieskończonej odpowiedzi impulsowej 1. Bufor kołowy w przetwarzaniu sygnałów Struktura
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Omówienie różnych metod rozpoznawania mowy
Omówienie różnych metod rozpoznawania mowy Na podstawie artykułu: Comparative study of automatic speech recognition techniques Beniamin Sawicki Wydział Inżynierii Mechanicznej i Robotyki Inżynieria Akustyczna