Propagacja wielodrogowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Propagacja wielodrogowa"

Transkrypt

1 Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe 4. Techk dversty

2 . Propagacja welodrogowa Propagacja welodrogowa E. Haas

3 Sygał radowy w dzedze czasu E. Boek Pojęca: odpowedź mpulsowa kaału radowego (chael mpulse respose) profl mocy sygału, profl opóźeń kaału (power delay profle) Propagacja welodrogowa Załóżmy, że fala bezpośreda odbta dochodzą do atey samochodu w tej samej faze: d d = λ A jak będze efekt, gdy samochód przesue sę o λ/4? 3

4 Propagacja welodrogowa v r ampltuda sygału czas trasmsja sygału susodaego ampltuda sygału v r czas Czasowa charakterystyka kaału radowego v r POWER DELAY PROFILE: A [db] średa mea delay: τ A τ = = = A ( τ τ ) odchylee std. t [µs] A A τ τ = = = σ τ = = = A A τ + τ = A = (rms) delay spread: A σ τ = A τ = = A τ 4

5 Przykład oblczeń A POWER DELAY PROFILE: 0 db -3 db -6 db -6 db mea delay: t [µs] 0µ s µ s µ s µ s τ = = µ s delay spread: σ τ = 0 ( µ s) ( µ s) ( µ s) ( µ s) ( µ s) 0.5 σ τ = 4 5 ( µ s) = 6.5 ( µ s) =. µ s 4 ( µ s) Częstotlwoścowa charakterystyka kaału v r DOPPLER SPECTRUM: A [db] średa mea Doppler shft: f D = = A f = A odchylee std. (rms) Doppler spread: v f c v + f c f [Hz] σ f = = A f = A f D 5

6 Propagacja welodrogowa środowsko wewątrz budyków (door): tere mejsk (urba): tere otwarty (rural): T. Fuge Propagacja przyzema propagacja w przestrze swobodej : P d - modele propagacyje : P d -.5 aż do P d -6 propagacja przyzema : P d -4 -> dlaczego? TWO-PATH MODEL: Zysk trasy (G T =G R =) : P P R T = λ π ht h 0log 4 s 4π r λ r R r długość trasy radowej λ długość fal radowej h T, h R wysokośc zaweszea ate 6

7 Two-path model Założea: - G T = G R = - wsp. odbca = - - f = GHz - wysokośc ate: 0 m Two-path model Propagacja w przestrze swobodej P d - P d -4. Zak sygału radowego 7

8 Zak welodrogowe v Trzy zjawska: wpływ odległośc zak wole zak szybke T. Fuge Zak welodrogowe. Wpływ odległośc: P d -.5 P d -6 w zależośc od środowska propagacyjego. Zak wole (slow fadg, large-scale fadg, log-term fadg): zmay w otoczeu ate adawczych odborczych, pojawae sę zkae możlwych dróg propagacj, shadowg fluktuacje joosfery zmee waruk atmosferycze 3. Zak szybke (fast fadg, small-scale fadg, short-term fadg): superpozycja sygałów dochodzących weloma drogam do atey odborczej -> terferecje kostruktywe destruktywe Dodatkowe pojęca: - kaał radowy z zakem płaskm (flat fadg) - kaał radowy z zakam selektywym (selectve fadg) 8

9 Sygał radowy w dzedze częstotlwośc - zak selektywe pozom sygału [db] Pojęca: wybrae pasmo częstotlwośc charakterystyka, fukcja przeoszea lub trasmtacja kaału radowego (chael characterstcs, chael trasfer fucto) Sygał radowy w dzedze częstotlwośc - zak selektywe d = 00 m d = 00 m Przypadek I f = 3 GHz: v r = 0 d d = 00 m = 000 λ => wzmocee odberaego sygału Przypadek II -> zmaa częstotlwośc o 0.05 % f =.9985 GHz: d d = 00 m = λ => stłumee odberaego sygału 9

10 Charakterystyka kaału radowego ( f,( x, y, z) t) H,. Zak selektywe (wpływ częstotlwośc). Wpływ mejsca lokalzacj odborka 3. Nestacjoarość (wpływ czasu) zmay w otoczeu adajka odborka skutkujące zmaam trasmtacj kaału radowego Zmeość charakterystyk kaału radowego. coherece badwdth - pasmo częstotlwośc, w którym charakterystyka kaału jest w przyblżeu stała: B << B coh B >> B coh B coh -> kaał radowy z zakem płaskm -> kaał radowy z zakam selektywym = C σ τ. coherece tme okres czasu, po którym charakterystyka kaału zacząco sę zmea: T coh = C σ f T << T coh T >> T coh -> zak wole -> zak szybke C, C stałe, wg różych źródeł rówe, 4 lub π 3. coherece dstace odległość, po przebycu której charakterystyka kaału radowego zacząco sę zmea. UWAGA: Są to defcje eścsłe! 0

11 Zwązek mędzy coherece badwdth delay spread Przykład : 0 τ czas τ σ τ = Załóżmy, że dla częstotlwośc f fale radowe przychodzą w zgodych fazach : c c f = λ = d d = c τ f = = λ λ τ Jak bardzo musałaby wzrosąć częstotlwość, aby fale radowe przychodzły w fazach przecwych? c λ Power delay profle f = ( ) λ τ Różca tych częstotlwośc : f f 0 db 0 db = d d = c c c = = = = λ λ τ τ τ 4 f σ τ c = = λ τ Zwązek mędzy coherece tme Doppler spread Przykład : Doppler spectrum v f c 0 db 0 db v + f c f σ f = Załóżmy, że dla w chwl t = 0 fale radowe przychodzą w zgodych fazach : d = λ d Po jakm czase t = T długośc tras radowych zmeą sę do tego stopa, że fale radowe będą przychodzć w fazach przecwych? ( d vt ) = ( + 0. ) λ d + vt 5 λ T = = 4v vt = 0. 5 λ c = = f 4v 4 f v / c 4 σ f f v c

12 3. Iterferecje mędzysymbolowe Itersymbol Iterferece (ISI ) Trasmsja w welodrogowym kaale radowym Przykład: Modulacja QPSK 0 00 Profl mocy sygału Okresy zaburzeń Okresy stablego sygału A s( π f + ϕ) + A s(π f + ϕ) + A3 s(π f + ϕ3) = A s(π f + ϕ )

13 Iterferecje mędzysymbolowe ISI Profl mocy sygału Przykład : Modulacja QPSK 0 00 Okres zaburzeń Eerga daego symbolu odberaa jest w czase trwaa astępego symbolu => terferecje mędzysymbolowe ISI (ter-symbol terferece) Metody ukaa terferecj mędzysymbolowych ISI. Wydłużee czasu trwaa pojedyczego symbolu okresy ochroe, podczas których sygał e jest dekodoway trasmsja z ską przepustowoścą Orthogoal Frequecy Dvso Multplexg (OFDM). Zastosowae korekcj adaptacyjej (equalzato) sygału w odborku: częstotlwość EQUALIZER częstotlwość czas czas 3

14 Korektory adaptacyje Zero Forcg : -> fltr FIR -> kryterum: maksymale płaska trasmtacja kaału radowego UWAGA: w mmach trasmtacj astępuje sle wzmocee szumu radowego Mmum Mea Square Error (MMSE) : -> fltr FIR -> kryterum: mmum błędu mędzy sygałem adawaym a sygałem a wyjścu korektora Korektory ze sprzężeem zwrotym DFE (Decso Feedback Equalzers) : -> po zdekodowau fragmetu sygału (jedego symbolu), replk tego sygału (ISI) usuwae są z astępych próbek Maxmum Lkelhood Sequece Estmato (MLSE) : -> testowae różych możlwych sygałów, które mogły zostać adae wybór tego ajbardzej prawdopodobego 4. DIVERSITY 4

15 Dversty Robocza defcja: Techka jedoczesego odboru klku sygałów lub wyboru ajlepszego z ch stosowaa w celu ukęca zaków welodrogowych Przykład : Dversty Waruk stosowaa techk dversty : podobe, porówywale średe wartośc SNR wszystkch sygałów mała korelacja mędzy sygałam : E ( ) ( X Y ) E( X ) E( Y ) ρ X, Y = < 0.5 σ σ X Y Techk dversty : spatal dversty tme dversty frequecy dversty agular (patter) dversty polarsato dversty Komproms : Multplexg Dversty 5

16 Dversty Spatal dversty : d Kaał radowy Raylegha : d > 0.5 λ Waruk propagacj LOS, mała lość obektów odbjających fale radowe : d > 0 λ W ogólym przypadku : d > coherece dstace Wartośc szacukowe! Dversty Tme dversty - powtarzae trasmsj (repetto codg), kody FEC, ARQ t > coherece tme Frequecy dversty : f > coherece badwdth formacja jest trasmtowaa (rozpraszaa) w szerokm paśme częstotlwośc -> techk CDMA, OFDM, frequecy hoppg Polarsato dversty adawae a jedej (a) lub dwóch (b) polaryzacjach, odbór a obu polaryzacjach (a) (b) sygał sle stłumoy 6

17 Dversty Agular dversty : atea odborcza z dwoma ortogoalym dagramam kerukowym Btowa stopa błędów BER Porówae zależośc BER = f (SNR) dla kaału radowego AWGN kaału z zakam Raylegha : BER ~ SNR BER ~ SNR e 7

18 Btowa stopa błędów BER BER ~ SNR BER ~ SNR e odbór dwóch ezależych sygałów > dversty order = BER ~ SNR cztery ezależe sygały -> dversty order = 4 BER ~ SNR 4 Macrodversty Przypadek zaków wolych techk dversty są eskutecze : Rozwązae macrodversty : repeaters smulcast rówoczesa trasmsja z różych stacj bazowych lub adajków radowych 8

19 Jak wykorzystać jedoczesy odbór klku ezależych sygałów? Metody odboru combg techques : selecto dversty combg -> wybór ajlepszego sygału swtched dversty combg -> gdy day sygał spade pożej pewego ustaloego pozomu, astępuje przełączee odborka a y z odberaych sygałów equal ga combg -> kompesacja przesuęć fazowych odberaych sygałów zsumowae ch wszystkch : e jϕ e jϕ + e jϕ 3 Jak wykorzystać jedoczesy odbór klku ezależych sygałów? Metoda optymala maxmal rato combg (MRC) : h h * h + h + h 3 trasmtacje kaałów radowych h h 3 h h * + h h * 3 h + h + h + h

20 Dlaczego MRC jest metodą optymalą? Przykład : Pozom sygału : 4, pozom szumu : h = 4 h = 3 Metoda I wybór lepszego sygału : Pozom sygału : 3, pozom szumu : Moc sygału : 4 = 6, moc szumu : =, SNR = 6 Metoda II maxmal rato combg : Moc sygału : (4 4/ /5) = 5 Moc szumu : ( 4/5) + ( 3/5) = SNR = 5 Dversty po stroe adawczej Schemat adawaa zapropooway przez S. Alamoutego : atea atea czas t x x czas t+t -x * x * rozwązae porówywale z zastosowaem dwóch ate po stroe odborczej (sygał słabszy o 3 db) możlwość stosowaa techk spatal dversty w łączu dowlk w sec komórkowej (dwe atey a stacj bazowej, jeda atea w telefoe użytkowka) 0

21 Dzękuję za uwagę

Propagacja wielodrogowa. Paweł Kułakowski

Propagacja wielodrogowa. Paweł Kułakowski Propagacja welodrogowa Paweł Kułakowsk Pla wykładu. Propagacja welodrogowa ops zjawska w dzedze czasu częstotlwośc przypadek propagacj przyzemej. Zak sygału radowego 3. Iterferecje mędzysymbolowe . Propagacja

Bardziej szczegółowo

Techniki diversity i systemy wieloantenowe. Paweł Kułakowski

Techniki diversity i systemy wieloantenowe. Paweł Kułakowski Tecniki diversity i systemy wieloantenowe Paweł Kułakowski Tecniki diversity Robocza definicja: Tecnika jednoczesnego odbioru kilku sygnałów lub wyboru najlepszego z nic stosowana w celu uniknięcia zaników

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =? Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

Systemy Bezprzewodowe. Paweł Kułakowski

Systemy Bezprzewodowe. Paweł Kułakowski Systemy Bezprzewodowe Paweł Kułakowski Tematyka kursu - lata komunikacji bezprzewodowej Gwałtowny rozwój sieci bezprzewodowych w ostatnich latach: rozwój urządzeń (smartfony, tablety, laptopy) i aplikacji

Bardziej szczegółowo

Planowanie sieci bezprzewodowych - bilans łącza radiowego

Planowanie sieci bezprzewodowych - bilans łącza radiowego Planowanie sieci bezprzewodowych - bilans łącza radiowego Paweł Kułakowski Bilans energetyczny łącza radiowego Zapewnienie wystarczającej wartości SNR (SINR, SIR) : lub wystarczającej wartości E b /N 0

Bardziej szczegółowo

Sygnał vs. szum. Bilans łącza satelitarnego. Bilans energetyczny łącza radiowego. Paweł Kułakowski. Zapewnienie wystarczającej wartości SNR :

Sygnał vs. szum. Bilans łącza satelitarnego. Bilans energetyczny łącza radiowego. Paweł Kułakowski. Zapewnienie wystarczającej wartości SNR : Sygnał vs. szum Bilans łącza satelitarnego Paweł Kułakowski Bilans energetyczny łącza radiowego Zapewnienie wystarczającej wartości SNR : 1 SNR i E b /N 0 moc sygnału (czasem określana jako: moc nośnej

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

Podstawy transmisji sygnałów

Podstawy transmisji sygnałów Podstawy transmisji sygnałów 1 Sygnał elektromagnetyczny Jest funkcją czasu Może być również wyrażony jako funkcja częstotliwości Sygnał składa się ze składowych o róznych częstotliwościach 2 Koncepcja

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona: Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Systemy satelitarne Paweł Kułakowski

Systemy satelitarne Paweł Kułakowski Systemy satelitarne Paweł Kułakowski Kwestie organizacyjne Prowadzący wykłady: Paweł Kułakowski D5 pokój 122, telefon: 617 39 67 e-mail: kulakowski@kt.agh.edu.pl Wykłady: czwartki godz. 12:30 14:00 Laboratorium

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

sieci mobilne 2 sieci mobilne 2

sieci mobilne 2 sieci mobilne 2 sieci mobilne 2 sieci mobilne 2 Poziom trudności: Bardzo trudny 1. 39. Jaka technika wielodostępu jest wykorzystywana w sieci GSM? (dwie odpowiedzi) A - TDMA B - FDMA C - CDMA D - SDMA 2. 40. W jaki sposób

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Systemy Bezprzewodowe. Paweł Kułakowski

Systemy Bezprzewodowe. Paweł Kułakowski Systemy Bezprzewodowe Paweł Kułakowski Tematyka kursu - dekada łączności bezprzewodowej Gwałtowny rozwój sieci bezprzewodowych w ostatniej dekadzie: popyt na usługi łączności radiowej rozwój technologii

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

LABORATORIUM SYMSE Układy liniowe

LABORATORIUM SYMSE Układy liniowe Tomasz Czarck, Warszawa, 2017 LABORATORIUM SYMSE Układy low Dyskrt systmy low, zm względm przsuęca Wśród systmów prztwarzaa sygałów ważą rolę odgrywają systmy low, zm względm przsuęca. Dcyduj o tym ch

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

BER = f(e b. /N o. Transmisja satelitarna. Wskaźniki jakości. Transmisja cyfrowa

BER = f(e b. /N o. Transmisja satelitarna. Wskaźniki jakości. Transmisja cyfrowa Transmisja satelitarna Wskaźniki jakości Transmisja cyfrowa Elementowa stopa błędów (Bit Error Rate) BER = f(e b /N o ) Dostępność łącza Dla żądanej wartości BER. % czasu w roku, w którym założona jakość

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Propagacja wielodrogowa sygnału radiowego

Propagacja wielodrogowa sygnału radiowego Propagacja wielodrogowa sygnału radiowego Paweł Kułakowski Linie radiowe 2006 www.kt.ag.edu.pl/~brus/linie_radiowe Plan wykładu. Wprowadzenie zjawisko propagacji wielodrogowej, modele kanału radiowego

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Kodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania

Kodowanie rónicowe. Plan 1. Zasada 2. Podstawowy algorytm 3. Kodowanie adaptacyjne 4. Zastosowania Kodowae rócowe Pla 1. Zasada. Podstawowy algorytm 3. Kodowae adaptacyje 4. Zastosowaa Kodowae rócowe zasada Jako kwatyzacj szeroko przedzału waracja, rozpto daych Obrazy, dwk korelacja w daych Wykorzystae

Bardziej szczegółowo

Sieci Bezprzewodowe. Systemy modulacji z widmem rozproszonym. DSSS Direct Sequence. DSSS Direct Sequence. FHSS Frequency Hopping

Sieci Bezprzewodowe. Systemy modulacji z widmem rozproszonym. DSSS Direct Sequence. DSSS Direct Sequence. FHSS Frequency Hopping dr inż. Krzysztof Hodyr Sieci Bezprzewodowe Część 2 Systemy modulacji z widmem rozproszonym (spread spectrum) Parametry warunkujące wybór metody modulacji Systemy modulacji z widmem rozproszonym Zjawiska

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo

Pomiary parametrów akustycznych wnętrz.

Pomiary parametrów akustycznych wnętrz. Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych.

Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych. Wykładowcy: A. Dąbrowski W8. Sygnały cyfr. 4 (Spread Spectrum), W11. Odbiór sygnałów 3 (Korekcja adaptacyjna) A. Janicki W2.Kodowanie źródeł - sygnały audio M. Golański W3. Kodowanie źródeł- sygnały video

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

będą niezależnymi zmiennymi losowymi z rozkładu o gęstości Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc

Bardziej szczegółowo

EXAFS lokalna sonda strukturalna. Wg. Agnieszka Witkowska i J. Rybicki

EXAFS lokalna sonda strukturalna. Wg. Agnieszka Witkowska i J. Rybicki EXAFS lokalna sonda strukturalna Wg. Agneszka Wtkowska J. Rybck EXAFS trochę hstor EXAFS - Extended X-ray Absorpton Fne Structure - odkryce: Frcke 190, Hertz 190; - zależność od temperatury: Hanawelt 1931;

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne. Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

8.1 Zbieżność ciągu i szeregu funkcyjnego

8.1 Zbieżność ciągu i szeregu funkcyjnego Rozdzał 8 Cąg szereg fukcyje 8.1 Zbeżość cągu szeregu fukcyjego Dla skrócea zapsu przyjmjmy pewe ozaczee. Defcja. Nech X, Y. Przez Y X ozaczamy zbór wszystkch fukcj określoych a zborze X o wartoścach w

Bardziej szczegółowo

Olejowe śrubowe sprężarki powietrza. Seria R55-75kW

Olejowe śrubowe sprężarki powietrza. Seria R55-75kW Olejowe śrubowe sprężark powetrza Sera R55-75kW Nowy pozom ezawodośc, efektywośc wydajośc Śrubowe sprężark powetrza ser R frmy Igersoll Rad to połączee ajlepszych, sprawdzoych kostrukcj techolog z owym,

Bardziej szczegółowo

Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych. http://cygnus.tele.pw.edu.pl/potc

Instytut Telekomunikacji Wydział Elektroniki i Technik Informacyjnych. http://cygnus.tele.pw.edu.pl/potc Wykładowcy: A. Dąbrowski W1.Wprowadzenie, W8. Sygnały cyfrowe 4, W11. Odbiór sygnałów 3 A. Janicki W2.Kodowanie źródeł - sygnały audio M. Golański W3. Kodowanie źródeł- sygnały video S. Kula W4. Media

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

Propagacja fal w środowisku mobilnym

Propagacja fal w środowisku mobilnym Propagacja fal w środowisku mobilnym Spektrum fal radiowych Prędkość, długość, częstotliwość fali Prędkość światła=długość fali x częstotliwość = =3 x 10 8 m/s =300 000 km/s Typy fal Propagacja fali przyziemnej

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

WYZNACZANIE ODPOWIEDZI KANAŁU RADIOKOMUNIKACYJNEGO ZA POMOCĄ CIĄGU PSEUDOLOSOWEGO

WYZNACZANIE ODPOWIEDZI KANAŁU RADIOKOMUNIKACYJNEGO ZA POMOCĄ CIĄGU PSEUDOLOSOWEGO Jerzy GARUS Krystya Maria NOGA Ryszard STUDAŃSKI WYZNACZANIE ODPOWIEDZI KANAŁU RADIOKOMUNIKACYJNEGO ZA POMOCĄ CIĄGU PSEUDOLOSOWEGO STRESZCZENIE W artykule opisao metodę wyzaczaia odpowiedzi kaału radiokomuikacyjego

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

Sieci Bezprzewodowe. Charakterystyka fal radiowych i optycznych WSHE PŁ wshe.lodz.pl.

Sieci Bezprzewodowe. Charakterystyka fal radiowych i optycznych WSHE PŁ wshe.lodz.pl. dr inż. Krzysztof Hodyr 42 6315989 WSHE 42 6313166 PŁ khodyr @ wshe.lodz.pl Materiały z wykładów są umieszczane na: http:// sieci.wshe.lodz.pl hasło: ws123he Tematyka wykładu Charakterystyka fal radiowych

Bardziej szczegółowo

Krzysztof Włostowski pok. 467 tel

Krzysztof Włostowski   pok. 467 tel Systemy z widmem rozproszonym ( (Spread Spectrum) Krzysztof Włostowski e-mail: chrisk@tele tele.pw.edu.pl pok. 467 tel. 234 7896 1 Systemy SS - Spread Spectrum (z widmem rozproszonym) CDMA Code Division

Bardziej szczegółowo

Analiza danych pomiarowych

Analiza danych pomiarowych Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie

Bardziej szczegółowo

Podstawy fizyki sezon 1 VIII. Ruch falowy

Podstawy fizyki sezon 1 VIII. Ruch falowy Podstawy fizyki sezon 1 VIII. Ruch falowy Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Gdzie szukać fal? W potocznym

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)

ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7) PROCES ZARZĄDZANIA PORTFELEM PAPIERÓW WARTOŚCIOWYCH WSPOMAGANY PRZEZ ŚRODOWISKO AUTOMATÓW KOMÓRKOWYCH Ageszka ULFIK Streszczee: W pracy przedstawoo sposób zarządzaa portfelem paperów wartoścowych wspomagay

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).

FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ). FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe

Bardziej szczegółowo

Układy liniowosprężyste Clapeyrona

Układy liniowosprężyste Clapeyrona Układy liiowosprężyste Clapeyroa Liiowosprężysty układ Clapeyroa zbiór połączoych ze sobą ciał odkształcalych, w których przemieszczeia są liiowymi fukcjami sił Układ rzeczywisty może być traktoway jako

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version WIII/1

PDF created with FinePrint pdffactory Pro trial version  WIII/1 Statystyka opsowa Statystyka zajmuje sę zasadam metodam uogólaa wyków otrzymaych z próby losowej a całą populację (czyl zborowość, z której została pobraa próba). Take postępowae azywamy woskowaem statystyczym.

Bardziej szczegółowo

Techniki wielodostępu

Techniki wielodostępu Techniki wielodosępu Paweł Kułakowski Plan wykładu FDMA TDMA ransmisja pakieowa w sieciach LAN requency hopping CDMA i odbiornik Rake SDMA OFDM 1 Wielodosęp w dziedzinie częsoliwości FDMA (Frequency Division

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

Badanie własności sygnałów akustycznych w dziedzinie czasu zastosowanie poziomów LEQ i SEL w badaniach hałasu drogowego.

Badanie własności sygnałów akustycznych w dziedzinie czasu zastosowanie poziomów LEQ i SEL w badaniach hałasu drogowego. MW Ćwczee Nr /5 Dr ż.taeusz Wszołek taeusz.wszolek@ah.eu.pl, \\alaxy.uc.ah.eu.pl\~twszolek twszolek@mal.com ares o wysyłaa sprawozań! Iżyera akustycza, Merctwo wbroakustycze Ćwczee r. Baae własośc syałów

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo