N a d p r z e w o d n i c t w o - przegla d faktów i koncepcji
|
|
- Maksymilian Kamiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Katowice, 12 listopada 2008 r. N a d p r z e w o d n i c t w o - przegla d faktów i koncepcji T. DOMAŃSKI Uniwersytet M. Curie-Skłodowskiej w Lublinie
2 Plan referatu:
3 Plan referatu: Wste p / istota stanu nadprzewodza cego /
4 Plan referatu: Wste p / istota stanu nadprzewodza cego / Nadprzewodniki
5 Plan referatu: Wste p / istota stanu nadprzewodza cego / Nadprzewodniki a) klasyczne,
6 Plan referatu: Wste p / istota stanu nadprzewodza cego / Nadprzewodniki a) klasyczne, b) wysokotemperaturowe,
7 Plan referatu: Wste p / istota stanu nadprzewodza cego / Nadprzewodniki a) klasyczne, b) wysokotemperaturowe, c) przegla d odkryć w XXI wieku,
8 Plan referatu: Wste p / istota stanu nadprzewodza cego / Nadprzewodniki a) klasyczne, b) wysokotemperaturowe, c) przegla d odkryć w XXI wieku, d) nadprzewodnictwo w oksypkniktydach.
9 Plan referatu: Wste p / istota stanu nadprzewodza cego / Nadprzewodniki a) klasyczne, b) wysokotemperaturowe, c) przegla d odkryć w XXI wieku, d) nadprzewodnictwo w oksypkniktydach. Fluktuacje nadprzewodza ce powyżej T c / najnowsze doniesienia /
10 Plan referatu: Wste p / istota stanu nadprzewodza cego / Nadprzewodniki a) klasyczne, b) wysokotemperaturowe, c) przegla d odkryć w XXI wieku, d) nadprzewodnictwo w oksypkniktydach. Fluktuacje nadprzewodza ce powyżej T c / najnowsze doniesienia / Podsumowanie
11 1. Wste p
12 Istota nadprzewodnictwa
13 Istota nadprzewodnictwa całkowity zanik oporu /stałopra dowego/ opor 0 T c temperatura
14 Istota nadprzewodnictwa całkowity zanik oporu /stałopra dowego/ opor idealny diamagnetyzm /wypychanie pola magnetycznego/ 0 T c temperatura T > T c T < T c
15 Inne ważne właściwości fizyczne
16 Inne ważne właściwości fizyczne W temperaturze T c dochodzi do przejścia fazowego c V (T) 0 0 ~ e /T T c temperatura (II-ego rodzaju wg klasyfikacji Landaua)
17 Inne ważne właściwości fizyczne W temperaturze T c dochodzi do przejścia fazowego c V (T) ~ e /T (II-ego rodzaju wg klasyfikacji Landaua) 0 0 T c temperatura Poniżej T c pojawia sie parametr porza dku (0) 0 (T) (który zwykle jest współmierny do przerwy energetycznej) temperatura T c
18 Spontaniczne łamanie symetrii
19 Spontaniczne łamanie symetrii Parametr porza dku χ = χ e iθ gdzie χ ĉ k ĉ k
20 Spontaniczne łamanie symetrii Parametr porza dku χ = χ e iθ gdzie χ ĉ k ĉ k prowadzi do łamania symetrii cechowania.
21 Spontaniczne łamanie symetrii Parametr porza dku χ = χ e iθ gdzie χ ĉ k ĉ k prowadzi do łamania symetrii cechowania. Tzw. mechanizm Andersona-Higgsa odpowiedzialny za zjawisko Meissnera był później inspiracja do bardziej fundamentalnych uogólnień, m.in.
22 Spontaniczne łamanie symetrii Parametr porza dku χ = χ e iθ gdzie χ ĉ k ĉ k prowadzi do łamania symetrii cechowania. Tzw. mechanizm Andersona-Higgsa odpowiedzialny za zjawisko Meissnera był później inspiracja do bardziej fundamentalnych uogólnień, m.in r. Y. Nambu (Nagroda Nobla, 2008 r.)
23 Spontaniczne łamanie symetrii Parametr porza dku χ = χ e iθ gdzie χ ĉ k ĉ k prowadzi do łamania symetrii cechowania. Tzw. mechanizm Andersona-Higgsa odpowiedzialny za zjawisko Meissnera był później inspiracja do bardziej fundamentalnych uogólnień, m.in r. Y. Nambu (Nagroda Nobla, 2008 r.) 1967 r. A. Salam, S. Weinberg (Nagroda Nobla, 1979 r.)
24 2. Nadprzewodniki a) klasyczne
25 Pierwsze odkrycie Najwcześniej (przypadkowo) odkrytym nadprzewodnikiem była rte ć z temperatura krytyczna T c = 4,2 K.
26 Pierwsze odkrycie Najwcześniej (przypadkowo) odkrytym nadprzewodnikiem była rte ć z temperatura krytyczna T c = 4,2 K.
27 Pierwsze odkrycie Najwcześniej (przypadkowo) odkrytym nadprzewodnikiem była rte ć z temperatura krytyczna T c = 4,2 K r., Lejda (Holandia).
28 Nadprzewodniki klasyczne Nadprzewodnictwo odkrywano naste pnie w różnych pierwiastkach oraz stopach. Oto wybrane przykłady: 80 ciekly N 2 60 T c (K) ciekly H 2 Nb 3 Ge Nb 3 Sn Nb Pb NbN V Si Nb Al Ge 3 Hg rok
29 2. Nadprzewodniki b) wysokotemperaturowe
30 Nowa epoka odkryć A. Müller, G. Bednorz / IBM Rüschlikon, Szwajcaria / w 1986 roku odkryli, że materiał ceramiczny La 2 x Sr x CuO 4 : który bez domieszkowania (x=0) jest izolatorem w zakresie 0,05 < x < 0,25 staje sie nadprzewodza cy i osia ga maksymalna temperature krytyczna T c =36 K.
31 Nowa epoka odkryć A. Müller, G. Bednorz / IBM Rüschlikon, Szwajcaria / w 1986 roku odkryli, że materiał ceramiczny La 2 x Sr x CuO 4 : który bez domieszkowania (x=0) jest izolatorem w zakresie 0,05 < x < 0,25 staje sie nadprzewodza cy i osia ga maksymalna temperature krytyczna T c =36 K.
32 Nowa epoka odkryć A. Müller, G. Bednorz / IBM Rüschlikon, Szwajcaria / w 1986 roku odkryli, że materiał ceramiczny La 2 x Sr x CuO 4 : który bez domieszkowania (x=0) jest izolatorem w zakresie 0,05 < x < 0,25 staje sie nadprzewodza cy i osia ga maksymalna temperature krytyczna T c =36 K.
33 Nowa epoka odkryć A. Müller, G. Bednorz / IBM Rüschlikon, Szwajcaria / w 1986 roku odkryli, że materiał ceramiczny La 2 x Sr x CuO 4 : który bez domieszkowania (x=0) jest izolatorem w zakresie 0,05 < x < 0,25 staje sie nadprzewodza cy i osia ga maksymalna temperature krytyczna T c =36 K.
34 Odkrycie Müllera i Bednorza zapocza tkowało burzliwy okres poszukiwania nadprzewodników wysokotemperaturowych. 180 * HgBa 2 Ca 2 Cu 3 O 8+δ HgBa 2 Ca 2 Cu 3 O 8+δ 120 Tl 2 Ba 2 Ca 2 Cu 3 O 10 T c (K) ciekly N 2 Bi 2 Ba 2 Ca 2 Cu 3 O 10 YBa 2 Cu 3 O 7 δ 60 La 2 δ Sr δ CuO 4 40 ciekly H Nb 2 Nb 3 Sn 3 Ge 20 Hg Pb Nb NbN V Si Nb Al Ge rok
35 1. Wyjściowe zwia zki (ang. parent compounds) sa kwazi dwuwymiarowymi izolatorami typu Motta
36 1. Wyjściowe zwia zki (ang. parent compounds) sa kwazi dwuwymiarowymi izolatorami typu Motta Pytanie 1: Jaki wpływ ma kwazi dwuwymiarowość i jaka role odgrywa antyferromagnetyzm?
37 2. Stan nadprzewodza cy powstaje poprzez domieszkowanie izolatora:
38 2. Stan nadprzewodza cy powstaje poprzez domieszkowanie izolatora: elektronami lub dziurami O. Fisher et al, Rev. Mod. Phys. 79, 353 (2007).
39 2. Stan nadprzewodza cy powstaje poprzez domieszkowanie izolatora: elektronami lub dziurami O. Fisher et al, Rev. Mod. Phys. 79, 353 (2007). Pytanie 2: Dlaczego diagram jest asymetryczny?
40 3. Domieszkowanie fazy izolatorowej:
41 3. Domieszkowanie fazy izolatorowej: a) przebiega w sposób wysoce niejednorodny / E. Dagotto, Science 309, 257 (2005). /
42 3. Domieszkowanie fazy izolatorowej: a) przebiega w sposób wysoce niejednorodny / E. Dagotto, Science 309, 257 (2005). / b) ładunek i spin gromadza sie oddzielnie wzdłuż jednowymiarowych struktur wste gowych (ang. stripes) / J. Tranquada et al, Nature 429, 534 (2004). /
43 3. Domieszkowanie fazy izolatorowej: a) przebiega w sposób wysoce niejednorodny / E. Dagotto, Science 309, 257 (2005). / b) ładunek i spin gromadza sie oddzielnie wzdłuż jednowymiarowych struktur wste gowych (ang. stripes) / J. Tranquada et al, Nature 429, 534 (2004). / c) realne struktury wste gowe sa dynamiczne, tzn. fluktuuja w krótkiej skali czasu.
44 3. Domieszkowanie fazy izolatorowej: a) przebiega w sposób wysoce niejednorodny / E. Dagotto, Science 309, 257 (2005). / b) ładunek i spin gromadza sie oddzielnie wzdłuż jednowymiarowych struktur wste gowych (ang. stripes) / J. Tranquada et al, Nature 429, 534 (2004). / c) realne struktury wste gowe sa dynamiczne, tzn. fluktuuja w krótkiej skali czasu. Pytanie 3: Czy struktury wste gowe rzeczywiście maja zwia zek z nadprzewodnictwem?
45 4. Struktura elektronowa
46 4. Struktura elektronowa W oparciu o pomiary nowej spektroskopii STM wykazano niejednorodność przerwy energetycznej w lokalnej ge stości stanów. / K. McElroy et al, Phys. Rev. Lett. 94, (2005) /
47 4. Struktura elektronowa W oparciu o pomiary nowej spektroskopii STM wykazano niejednorodność przerwy energetycznej w lokalnej ge stości stanów. / K. McElroy et al, Phys. Rev. Lett. 94, (2005) / Pytanie 4: Czy przerwy energetyczne obszarów normalnych i nadprzewodza cych maja wspólne pochodzenie?
48 5. Pseudoszczelina
49 5. Pseudoszczelina W doświadczalnych pomiarach:
50 5. Pseudoszczelina W doświadczalnych pomiarach: a) właściwości magnetycznych (czas relaksacji NMR, przesunie cie Knighta, rozpraszanie neutronów,...)
51 5. Pseudoszczelina W doświadczalnych pomiarach: a) właściwości magnetycznych (czas relaksacji NMR, przesunie cie Knighta, rozpraszanie neutronów,...) b) transportu ładunkowego (przewodnictwo stałoi zmienno-pra dowe,...
52 5. Pseudoszczelina W doświadczalnych pomiarach: a) właściwości magnetycznych (czas relaksacji NMR, przesunie cie Knighta, rozpraszanie neutronów,...) b) transportu ładunkowego (przewodnictwo stałoi zmienno-pra dowe,... c) widma jednocza stkowego (ciepło właściwe, ARPES, STM,...)
53 5. Pseudoszczelina W doświadczalnych pomiarach: a) właściwości magnetycznych (czas relaksacji NMR, przesunie cie Knighta, rozpraszanie neutronów,...) b) transportu ładunkowego (przewodnictwo stałoi zmienno-pra dowe,... c) widma jednocza stkowego (ciepło właściwe, ARPES, STM,...) jednoznacznie stwierdzono obecność przerwy energetyczna powyżej T c.
54 5. Pseudoszczelina W doświadczalnych pomiarach: a) właściwości magnetycznych (czas relaksacji NMR, przesunie cie Knighta, rozpraszanie neutronów,...) b) transportu ładunkowego (przewodnictwo stałoi zmienno-pra dowe,... c) widma jednocza stkowego (ciepło właściwe, ARPES, STM,...) jednoznacznie stwierdzono Pytanie 5: obecność przerwy energetyczna powyżej T c. Z jakim zjawiskiem zwia zana jest pseudoszczelina?
55 Koncepcje teoretyczne
56 Koncepcje teoretyczne
57 Koncepcje teoretyczne Aktualne interpretacje pseudoszczeliny: (a) jest to prekursor prawdziwej szczeliny stanu nadprzewodza cego (z powodu silnych fluktuacji), (b) reprezentuje inny niż nadprzewodnictwo rodzaj uporza dkowania, który zanika w QCP.
58 Koncepcje teoretyczne Aktualne interpretacje pseudoszczeliny: (a) jest to prekursor prawdziwej szczeliny stanu nadprzewodza cego (z powodu silnych fluktuacji), (b) reprezentuje inny niż nadprzewodnictwo rodzaj uporza dkowania, który zanika w QCP. Fakty doświadczalne nie sa obecnie w stanie rozstrzygna ć, która (i czy w ogóle) z tych interpretacji jest poprawna.
59 2. Nadprzewodniki c) przegla d odkryć w XXI wieku
60 Wykorzystanie nadprzewodników wysokotemperaturowych jest ograniczone niska wartościa ich pra dów krytycznych.
61 Wykorzystanie nadprzewodników wysokotemperaturowych jest ograniczone niska wartościa ich pra dów krytycznych. Pod tym wzgle dem dużo bardziej obiecuja cym jest:
62 Wykorzystanie nadprzewodników wysokotemperaturowych jest ograniczone niska wartościa ich pra dów krytycznych. Pod tym wzgle dem dużo bardziej obiecuja cym jest: przeoczony nadprzewodnik
63 Wykorzystanie nadprzewodników wysokotemperaturowych jest ograniczone niska wartościa ich pra dów krytycznych. Pod tym wzgle dem dużo bardziej obiecuja cym jest: przeoczony nadprzewodnik MgB 2 T c =39 K
64 Wykorzystanie nadprzewodników wysokotemperaturowych jest ograniczone niska wartościa ich pra dów krytycznych. Pod tym wzgle dem dużo bardziej obiecuja cym jest: przeoczony nadprzewodnik MgB 2 T c =39 K / J. Nagamatsu et al, Nature 410, 63 (2001) /
65 Wykorzystanie nadprzewodników wysokotemperaturowych jest ograniczone niska wartościa ich pra dów krytycznych. Pod tym wzgle dem dużo bardziej obiecuja cym jest: przeoczony nadprzewodnik MgB 2 T c =39 K / J. Nagamatsu et al, Nature 410, 63 (2001) / Wiadomo obecnie, że za nadprzewodnictwo MgB 2 odpowiada mechanizm fononowy i uczestnicza w nim elektrony dwóch pasm.
66 Nadprzewodnik i ferromagnetyk
67 Nadprzewodnik i ferromagnetyk Ferromagnetyk UGe 2 po przyłożeniu ciśnienia 1 GPa przechodzi w stan nadprzewodza cy! UGe 2 / S.S. Saxena et al, Nature 406, 587 (2000) /
68 Nadprzewodnik i ferromagnetyk Ferromagnetyk UGe 2 po przyłożeniu ciśnienia 1 GPa przechodzi w stan nadprzewodza cy! UGe 2 / S.S. Saxena et al, Nature 406, 587 (2000) / Zwykle magnetyzm wpływa destruktywnie na nadprzewodnictwo.
69 Nadprzewodniki rutenowe Silnie skorelowany tlenek rutenu to nadprzewodnik z parami trypletowymi, tak jak nadciekły 3 He. Ca 2 x Sr x RuO 4 / S. Nakatsuji et al, Phys. Rev. Lett. 93, (2004) / Badaniem nadprzewodnictwa w zwia zkach rutenowych zajmuja sie s w Polsce m.in. K.I. Wysokiński (Lublin) oraz J. Spałek i wsp. (Kraków).
70 Mokre nadprzewodniki Tlenek kobaltu Na x CoO 2 z interkalowana woda jest nadprzewodnikiem trypletowo singletowym. 60 T (K) Paramagnetic metal Charge ordered insulator H 2 O Intercalated Superconductor Curie-Weiss metal Magnetic Order Na x CoO 2 + y H 2 O 0 0 1/4 1/3 1/2 2/3 3/4 1 Na Content x / J. Cava et al, Phys. Rev. Lett. 92, (2004) / Badaniem tego nadprzewodnika zajmuja sie w Polsce: B. Andrzejewski (Poznań), T. Klimczuk (Gdańsk), M. Maśka i M. Mierzejewski (Katowice).
71 Najtwardszy nadprzewodnik
72 Najtwardszy nadprzewodnik Diament domieszkowany borem (synteza pod ciśnieniem 100 tys. atmosfer) staje sie nadprzewodnikiem w T c =4 K.
73 Najtwardszy nadprzewodnik Diament domieszkowany borem (synteza pod ciśnieniem 100 tys. atmosfer) staje sie nadprzewodnikiem w T c =4 K. / E.A. Ekimov et al, Nature 428, 542 (2004) /
74 Nadprzewodnik z grafitu
75 Nadprzewodnik z grafitu Wapń wstawiony mie dzy płaszczyzny grafitu prowadzi do nadprzewodnictwa w T c =11, 5 K.
76 Nadprzewodnik z grafitu Wapń wstawiony mie dzy płaszczyzny grafitu prowadzi do nadprzewodnictwa w T c =11, 5 K. / N. Emery et al, Phys. Rev. Lett. 95, (2005) /
77 ... a także
78 ... a także silnie radioaktywny PuCoGa 5 ( T c = 18,5 K ) Materiał ten jest używany w broni nuklearnej! / J.L. Sarrao et al, Nature 420, 297 (2002) /
79 ... a także silnie radioaktywny PuCoGa 5 ( T c = 18,5 K ) Materiał ten jest używany w broni nuklearnej! / J.L. Sarrao et al, Nature 420, 297 (2002) / Li pod ciśnieniem ( T c = 20 K ) Zachowanie bardzo nietypowe dla metalu! / K. Shimizu et al, Nature 419, 597 (2002) /
80 ... a także silnie radioaktywny PuCoGa 5 ( T c = 18,5 K ) Materiał ten jest używany w broni nuklearnej! / J.L. Sarrao et al, Nature 420, 297 (2002) / Li pod ciśnieniem ( T c = 20 K ) Zachowanie bardzo nietypowe dla metalu! / K. Shimizu et al, Nature 419, 597 (2002) /... itd.
81 2. Nadprzewodniki d) nadprzewodnictwo w oksypniktydach
82 Wste pne informacje:
83 Wste pne informacje: Oksypniktydami nazywane sa w chemii zwia zki zawieraja ce tlen oraz pierwiastki V-tej grupy np. azot, fosfor czy arsen.
84 Wste pne informacje: Oksypniktydami nazywane sa w chemii zwia zki zawieraja ce tlen oraz pierwiastki V-tej grupy np. azot, fosfor czy arsen. Wzrost zainteresowania oksypniktydami pojawił sie po odkryciu nadprzewodnictwa w LaOFeP (2006 r.) oraz LaOFeAs (2008 r.).
85 Wste pne informacje: Oksypniktydami nazywane sa w chemii zwia zki zawieraja ce tlen oraz pierwiastki V-tej grupy np. azot, fosfor czy arsen. Wzrost zainteresowania oksypniktydami pojawił sie po odkryciu nadprzewodnictwa w LaOFeP (2006 r.) oraz LaOFeAs (2008 r.). Stan nadprzewodza cy pojawia sie w wyniku podstawiania fluoru na miejsce tlenu
86 Wste pne informacje: Oksypniktydami nazywane sa w chemii zwia zki zawieraja ce tlen oraz pierwiastki V-tej grupy np. azot, fosfor czy arsen. Wzrost zainteresowania oksypniktydami pojawił sie po odkryciu nadprzewodnictwa w LaOFeP (2006 r.) oraz LaOFeAs (2008 r.). Stan nadprzewodza cy pojawia sie w wyniku podstawiania fluoru na miejsce tlenu najważniejsze znaczenie odgrywa jednak żelazo.
87 Wste pne informacje: Oksypniktydami nazywane sa w chemii zwia zki zawieraja ce tlen oraz pierwiastki V-tej grupy np. azot, fosfor czy arsen. Wzrost zainteresowania oksypniktydami pojawił sie po odkryciu nadprzewodnictwa w LaOFeP (2006 r.) oraz LaOFeAs (2008 r.). Stan nadprzewodza cy pojawia sie w wyniku podstawiania fluoru na miejsce tlenu najważniejsze znaczenie odgrywa jednak żelazo. Inne stosowane określenie: NADPRZEWODNIKI ZWIA ZKÓW ŻELAZA
88 LaO 1 x F x FeAs Materiał staje sie nadprzewodza cy dla domieszkowania fluorem w zakresie 0, 05 < x < 0, 12.
89 LaO 1 x F x FeAs Materiał staje sie nadprzewodza cy dla domieszkowania fluorem w zakresie 0, 05 < x < 0, 12. T c 26K
90 LaO 1 x F x FeAs Materiał staje sie nadprzewodza cy dla domieszkowania fluorem w zakresie 0, 05 < x < 0, 12. T c 26K Y. Kamihara et al, J. Am. Chem. Soc. 130, 3296 (2008).
91 LaO 1 x F x FeAs Materiał staje sie nadprzewodza cy dla domieszkowania fluorem w zakresie 0, 05 < x < 0, 12. T c 26K Y. Kamihara et al, J. Am. Chem. Soc. 130, 3296 (2008). / Tokyo University of Technology, Japonia /
92 LaO 1 x F x FeAs Materiał staje sie nadprzewodza cy dla domieszkowania fluorem w zakresie 0, 05 < x < 0, 12. T c 26K Y. Kamihara et al, J. Am. Chem. Soc. 130, 3296 (2008). / Tokyo University of Technology, Japonia / Doniesienie z dnia: 9 stycznia 2008 r.
93 SmFeAsO 1 x F x Wykazano jednocześnie, że ten nowy nadprzewodnik charakteryzuje sie wysokim polem krytycznym.
94 SmFeAsO 1 x F x Wykazano jednocześnie, że ten nowy nadprzewodnik charakteryzuje sie wysokim polem krytycznym. T c 43K
95 SmFeAsO 1 x F x Wykazano jednocześnie, że ten nowy nadprzewodnik charakteryzuje sie wysokim polem krytycznym. T c 43K X.H. Chen et al, Nature 453, 761 (2008).
96 SmFeAsO 1 x F x Wykazano jednocześnie, że ten nowy nadprzewodnik charakteryzuje sie wysokim polem krytycznym. T c 43K X.H. Chen et al, Nature 453, 761 (2008). / University of Science and Technology, Hefei, Chiny /
97 SmFeAsO 1 x F x Wykazano jednocześnie, że ten nowy nadprzewodnik charakteryzuje sie wysokim polem krytycznym. T c 43K X.H. Chen et al, Nature 453, 761 (2008). / University of Science and Technology, Hefei, Chiny / Doniesienie z dnia: 25 marca 2008 r.
98 PrO 1 x F x FeAs Maksymalna temperatura krytyczna T c 52K
99 PrO 1 x F x FeAs Maksymalna temperatura krytyczna T c 52K
100 PrO 1 x F x FeAs Maksymalna temperatura krytyczna T c 52K Z.-A. Ren et al, Materials Research Innov. 12, 105 (2008).
101 PrO 1 x F x FeAs Maksymalna temperatura krytyczna T c 52K Z.-A. Ren et al, Materials Research Innov. 12, 105 (2008). / Instytut Fizyki w Pekinie, Chiny /
102 PrO 1 x F x FeAs Maksymalna temperatura krytyczna T c 52K Z.-A. Ren et al, Materials Research Innov. 12, 105 (2008). / Instytut Fizyki w Pekinie, Chiny / Doniesienie z dnia: 29 marca 2008 r.
103 SmO 1 x F x FeAs Maksymalna temperatura krytyczna T c 55K!
104 SmO 1 x F x FeAs Maksymalna temperatura krytyczna T c 55K!
105 SmO 1 x F x FeAs Maksymalna temperatura krytyczna T c 55K! Z.-A. Ren et al, Chin. Phys. Lett. 25, 2215 (2008).
106 SmO 1 x F x FeAs Maksymalna temperatura krytyczna T c 55K! Z.-A. Ren et al, Chin. Phys. Lett. 25, 2215 (2008). / Instytut Fizyki w Pekinie, Chiny /
107 SmO 1 x F x FeAs Maksymalna temperatura krytyczna T c 55K! Z.-A. Ren et al, Chin. Phys. Lett. 25, 2215 (2008). / Instytut Fizyki w Pekinie, Chiny / Doniesienie z dnia: 13 kwietnia 2008 r.
108 Fizyka oksypniktydów Do opisu nadprzewodnictwa należy uwzgle dnić 3 pasma.
109 Fizyka oksypniktydów Do opisu nadprzewodnictwa należy uwzgle dnić 3 pasma.
110 Fizyka oksypniktydów Do opisu nadprzewodnictwa należy uwzgle dnić 3 pasma. H. Ding et al, Europhys. Lett. 83, (2008).
111 Diagram fazowy Porza dek AF sa siaduje z nadprzewodnictwem!
112 Diagram fazowy Porza dek AF sa siaduje z nadprzewodnictwem! J. Zhao et al, cond-mat/ (prerpint).
113 Diagram fazowy Porza dek AF sa siaduje z nadprzewodnictwem! H. Luetknens et al, cond-mat/ (preprint).
114 Pseudoszczelina
115 Pseudoszczelina Pomiary szybkości relaksacji NMR 0.20 T * H ~ 9.89 T (1/T1 T ) (sk) T c T c LaFeAs(O 1-x F x ) x=0.07 x=0.11 x= T (K) Y. Nakai et al, cond-mat/ (preprint).
116 Pseudoszczelina Pomiary tunelowania STM Intensity (arb. units) T = Symmetrized DOS (arb. units) 30 K 70 K 100 K 130 K E F Binding Energy (mev) E F Binding Energy (mev) T. Sato et al, J. Phys. Soc. Jpn. 77, (2008).
117 Pseudoszczelina LaFeAsO 1 x F x wykazuje obecność pseudoszczeliny! LaFeAs(O 1-x F x ) AFM Pseudogap state SC Y. Nakai et al, cond-mat/ (preprint).
118 3. Fluktuacje powyz ej Tc
119 Stan nadprzewodza cy
120 Stan nadprzewodza cy Pomiary doświadczalne wyraźnie, że wskazuja faza nadprzewodza ca jest zwykłym stanem BCS chociaż z energetyczna. anizotropowa szczelina
121 Stan nadprzewodza cy Pomiary doświadczalne wyraźnie, że wskazuja faza nadprzewodza ca jest zwykłym stanem BCS chociaż z energetyczna. anizotropowa szczelina J.E. Hoffman et al, Science 297, 1148 (2002).
122 Stan nadprzewodza cy Pomiary doświadczalne wyraźnie, że wskazuja faza nadprzewodza ca jest zwykłym stanem BCS chociaż z energetyczna. anizotropowa szczelina J.E. Hoffman et al, Science 297, 1148 (2002). Przerwa energetyczna ma symetrie typu fali d k = (cos k x cos k y ) z we złami (nodes) w kierunkach k x = ±k y.
123 Ewolucja przerwy powyz ej Tc
124 Ewolucja przerwy powyżej T c Powyżej T c przerwa energetyczna jest nadal obecna, lecz jej ka towa zależność ulega zmienie. Zamiast we złów pojawiaja sie tzw. Fermi arcs, gdzie pg (k) zanika.
125 Ewolucja przerwy powyżej T c Powyżej T c przerwa energetyczna jest nadal obecna, lecz jej ka towa zależność ulega zmienie. Zamiast we złów pojawiaja sie tzw. Fermi arcs, gdzie pg (k) zanika. A. Kanigel et al, Phys. Rev. Lett. 99, (2007).
126 Ewolucja przerwy powyżej T c Powyżej T c przerwa energetyczna jest nadal obecna, lecz jej ka towa zależność ulega zmienie. Zamiast we złów pojawiaja sie tzw. Fermi arcs, gdzie pg (k) zanika. W zwia zku z tym w literaturze pojawiły sie różne komentarze, np. Death of a Fermi surface K. McElroy, Nature Physics 2, 441 (2006).
127 (a) Energy T c < T Intensity E F k F Wave vector ε k Intensity (b) v k 2 u k 2 E F Energy T <T c k F Wave vector -E k 2 E k W przypadku zwykłego nadprzewodnika (bez fluktuacji) przerwa energetyczna wokół E F prowadzi poniżej T c do powstania dwów gałe zi wzbudzeń typu Bogolubova.
128 Dane doświadczalne poniżej T c Energy (mev) Coherence factor 50 E F (a) A B C -ε k ε k (c) E k 140 K -E k Momentum u k 2 v k 2 u k 2 + v k ε k (mev) Intensity (arb. units) A B C E F -50 E F (b) A B C Binding Energy (mev) H. Matsui, T. Sato, and T. Takahashi, Phys. Rev. Lett. 90, (2003).
129 Zjawiska fluktuacyjne
130 Zjawiska fluktuacyjne Jednym z istotnych problemów jest wie c określenie zakresu, w którym wyste puja fluktuacje parowania.
131 Zjawiska fluktuacyjne Jednym z istotnych problemów jest wie c określenie zakresu, w którym wyste puja fluktuacje parowania. Oto kilka skrajnych podejść:
132 Wa ski zakres fluktuacji RVB resonating valence bonds P.W. Anderson, Phys. Rev. Lett. 96, (2006).
133 Krytyczne fluktuacje kwantowe QCP scenariusz pra dów orbitalnych C.M. Varma, Phys. Rev. B 73, (2006).
134 Fluktuacje na całym diagramie QED 3 teoria dynamicznie fluktuuja cych par w pobliżu punktów we złowych.
135 Fluktuacje na całym diagramie QED 3 teoria dynamicznie fluktuuja cych par w pobliżu punktów we złowych Z. Tesanovic, Phys. Rev. B 65, (2002).
136 Fluktuacje na całym diagramie QED 3 teoria dynamicznie fluktuuja cych par w pobliżu punktów we złowych. T T* (a) CSB (b) CSB dsc dsc AF/ SDW (CSB) QED T c dsc x Z. Tesanovic, Nature Phys. 4, 408 (2008).
137 Podejście fenomenologiczne
138 Efektywny Lagrangian
139 Efektywny Lagrangian Po zastosowaniu transformacji Hubbarda-Stratonovitcha do układu silnie skorelowanych elektronów otrzymuje sie Lagrangian, w którym fermionowe i bozonowe stopnie swobody wzajemnie na siebie oddziałuja.
140 Efektywny Lagrangian Po zastosowaniu transformacji Hubbarda-Stratonovitcha do układu silnie skorelowanych elektronów otrzymuje sie Lagrangian, w którym fermionowe i bozonowe stopnie swobody wzajemnie na siebie oddziałuja. Schemat pogla dowy: w zacieniowanych obszarach wyste pować moga pary fermionów (bozony o twardym rdzeniu) powyżej T c.
141 Efektywny Lagrangian Po zastosowaniu transformacji Hubbarda-Stratonovitcha do układu silnie skorelowanych elektronów otrzymuje sie Lagrangian, w którym fermionowe i bozonowe stopnie swobody wzajemnie na siebie oddziałuja. Schemat pogla dowy: w zacieniowanych obszarach wyste pować moga pary fermionów (bozony o twardym rdzeniu) powyżej T c. V.B. Geshkenbein, L.B. Ioffe and A.I. Larkin, Phys. Rev. B 55, 3173 (1997).
142 Fenomenologiczny model BF H = kσ (ε k µ) c kσ c kσ + q (E q 2µ) b q b q + 1 N k,q ] v k,q [b q c k, c q k, + h.c.
143 Fenomenologiczny model BF H = kσ (ε k µ) c kσ c kσ + q (E q 2µ) b q b q + 1 N k,q ] v k,q [b q c k, c q k, + h.c. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).
144 Fenomenologiczny model BF H = kσ (ε k µ) c kσ c kσ + q (E q 2µ) b q b q + 1 N k,q ] v k,q [b q c k, c q k, + h.c. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990). R. Friedberg, T.D. Lee, Phys. Rev. B 40, 423 (1989).
145 Fenomenologiczny model BF H = kσ (ε k µ) c kσ c kσ + q (E q 2µ) b q b q + 1 N k,q ] v k,q [b q c k, c q k, + h.c. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990). R. Friedberg, T.D. Lee, Phys. Rev. B 40, 423 (1989). Hamiltonian ten można również uzyskać z modelu Hubbarda numerycznie wyznaczaja c wzbudzenia niskoenergetyczne w dim=2.
146 Fenomenologiczny model BF H = kσ (ε k µ) c kσ c kσ + q (E q 2µ) b q b q + 1 N k,q ] v k,q [b q c k, c q k, + h.c. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990). R. Friedberg, T.D. Lee, Phys. Rev. B 40, 423 (1989). Hamiltonian ten można również uzyskać z modelu Hubbarda numerycznie wyznaczaja c wzbudzenia niskoenergetyczne w dim=2. E. Altman and A. Auerbach, Phys. Rev. B 65, (2002).
147 Widmo z uwzgle dnieniem fluktuacji T < T c T=0 A F (k,ω) ω T. Domański and J. Ranninger, Phys. Rev. Lett. 91, (2003).
148 Widmo z uwzgle dnieniem fluktuacji T c < T < T T=0.004 A F (k,ω) T. Domański and J. Ranninger, Phys. Rev. Lett. 91, (2003).
149 Widmo z uwzgle dnieniem fluktuacji T c < T < T T=0.007 A F (k,ω) T. Domański and J. Ranninger, Phys. Rev. Lett. 91, (2003).
150 Widmo z uwzgle dnieniem fluktuacji T > T T=0.02 A F (k,ω) T. Domański and J. Ranninger, Phys. Rev. Lett. 91, (2003).
151 Efektywne widmo
152 Efektywne widmo A F inc (k,ω) T * > T > T c A F coh (k,ω) ω
153 Efektywne widmo A F inc (k,ω) T * > T > T c A F coh (k,ω) ω Jakościowo podobny wynik uzyskano też w symulacjach komputerowych dla ujemnego modelu Hubbarda: a) J.M. Singer et al, Phys. Rev. B 54, 1286 (1996); b) D. Senechal et al, Phys. Rev. Lett. 92, (2004).
154 Date: Tue, 27 Feb :05: From: Hiroaki Matsui To: Tadeusz Domanski Dear Dr. Domanski,... We completely agree with you on that detecting the normal state BQP in the UD cuprates has a huge potential impact on the pseudogap problem. As you know, this kind of measurement is not very easy because the ARPES peak is broad in UD at anti-node and high-temperature. We do not have the data at present, but we are trying to realize such an experiment by selecting the conditions. Thank you very much for contacting us. Sincerely yours, H. Matsui
155 Najświeższe doniesienia!!!
156 Najświeższe doniesienia!!! ARPES : grupa J. Campuzano (Chicago) Wyniki dla: Bi 2 Sr 2 CaCu 2 O 8 A. Kanigel et al, Phys. Rev. Lett. 101, (2008).
157 Najświeższe doniesienia!!! ARPES : grupa J. Campuzano (Chicago) Wyniki dla: Bi 2 Sr 2 CaCu 2 O 8 A. Kanigel et al, Phys. Rev. Lett. 101, (2008).
158 Najświeższe doniesienia!!! ARPES : grupa z Villingen (Szwajcaria) Max Energy [ev] Cut 1 Cut 1 Intensity [arb. units] Energy [mev] Cut 2 Cut 2 Min Energy [ev] Energy [ev] k - k F [ /a] Wyniki dla: La Sr CuO 4 M. Shi et al, cond-mat/ (preprint).
159 Najświeższe doniesienia!!! Wniosek: Powyżej T c istnieja kwazicza stki typu Bogoliubova.
160 Najświeższe doniesienia!!! Wniosek: Powyżej T c istnieja kwazicza stki typu Bogoliubova. Pytanie: W jakim zakresie powyżej T c istnieja takie kwazicza stki?
161 4. Podsumowanie
162 P O D S U M O W A N I E 1. Nadprzewodnik - jest to stan koherentnych par utworzonych z fermionów (elektronów, dziur, atomów,...) opisanych wspólna (makroskopowa ) funkcja falowa
163 P O D S U M O W A N I E 1. Nadprzewodnik = stan koherentnych par fermionowych 2. Za tworzenie par moga być odpowiedzialne różne czynniki:
164 P O D S U M O W A N I E 1. Nadprzewodnik = stan koherentnych par fermionowych 2. Za tworzenie par moga być odpowiedzialne różne czynniki: fonony / nadprzewodniki klasyczne, MgB 2, diament,... /
165 P O D S U M O W A N I E 1. Nadprzewodnik = stan koherentnych par fermionowych 2. Za tworzenie par moga być odpowiedzialne różne czynniki: fonony / nadprzewodniki klasyczne, MgB 2, diament,... / magnony / nadprzewodnictwo układów tzw. cie żkich fermionów,... /
166 P O D S U M O W A N I E 1. Nadprzewodnik = stan koherentnych par fermionowych 2. Za tworzenie par moga być odpowiedzialne różne czynniki: fonony / nadprzewodniki klasyczne, MgB 2, diament,... / magnony / nadprzewodnictwo układów tzw. cie żkich fermionów,... / silne korelacje elektronów na sieci / nadprzewodniki wysokotemperaturowe, rutenowce,... /
167 P O D S U M O W A N I E 1. Nadprzewodnik = stan koherentnych par fermionowych 2. Za tworzenie par moga być odpowiedzialne różne czynniki: fonony / nadprzewodniki klasyczne, MgB 2, diament,... / magnony / nadprzewodnictwo układów tzw. cie żkich fermionów,... / silne korelacje elektronów na sieci / nadprzewodniki wysokotemperaturowe, rutenowce,... / pole magnetyczne / nadprzewodnictwo atomów /
168 P O D S U M O W A N I E 1. Nadprzewodnik = stan koherentnych par fermionowych 2. Za tworzenie par moga być odpowiedzialne różne czynniki: fonony magnony silne korelacje pole magnetyczne
169 P O D S U M O W A N I E 1. Nadprzewodnik = stan koherentnych par fermionowych 2. Za tworzenie par moga być odpowiedzialne różne czynniki: fonony magnony silne korelacje pole magnetyczne 3. Jakościowo podobne efekty moga wyste pować również z udziałem innych obiektów i w innej skali energetycznej: w fizyce ja drowej / oddziaływania typu pairing mie dzy nukleonami / w fizyce cza stek elementarnych / plazma gluonowo-kwarkowa /
170 P O D S U M O W A N I E 1. Nadprzewodnik = stan koherentnych par fermionowych 2. Za tworzenie par moga być odpowiedzialne różne czynniki: fonony magnony silne korelacje pole magnetyczne 3. Jakościowo podobne efekty moga wyste pować również z udziałem innych obiektów i w innej skali energetycznej: w fizyce ja drowej / oddziaływania typu pairing mie dzy nukleonami / w fizyce cza stek elementarnych / plazma gluonowo-kwarkowa /
Nadprzewodniki nowe fakty i teorie
Warszawa, 13 września 2005 r. Nadprzewodniki nowe fakty i teorie T. DOMAŃSKI Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures Schemat referatu: Schemat referatu: Wste
Kwazicza stki Bogoliubova w nadprzewodnikach
Lublin, 20 stycznia 2009 r. Kwazicza stki Bogoliubova w nadprzewodnikach TADEUSZ DOMAŃSKI http://kft.umcs.lublin.pl/doman/lectures Plan referatu: Plan referatu: Wprowadzenie / istota stanu nadprzewodza
Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych
LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach
Nadprzewodnictwo i nadciekłość w układach oddziałuja. cych mieszanin bozonowo-fermionowych. Tadeusz Domański
Toruń, 22 września 2006 r. Nadprzewodnictwo i nadciekłość w układach oddziałuja cych mieszanin bozonowo-fermionowych Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures
Lublin, 23 X 2012 r. Nadprzewodnictwo. - od badań podstawowych do zastosowań. Tadeusz Domański Instytut Fizyki UMCS
Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański Instytut Fizyki UMCS Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański
Nadprzewodniki: właściwości i zastosowania
Lublin, 21 września 2012 r. Nadprzewodniki: właściwości i zastosowania Tadeusz Domański Instytut Fizyki Uniwersytet M. Curie-Skłodowskiej Lublin, 21 września 2012 r. Nadprzewodniki: właściwości i zastosowania
NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były
FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,
Nadprzewodniki: nowe fakty i teorie
FIZYKA FAZY SKONDENSOWANEJ Nadprzewodniki: nowe fakty i teorie Tadeusz Domański Instytut Fizyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin Superconductors: new facts and theories Abstract: We summarize
Najzimniejsze atomy. Tadeusz Domański. Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie.
Odolanów, 10 lipca 2008 r. Najzimniejsze atomy Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman Referat be dzie dotyczyć : kondensacji i nadciekłości
Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.
Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze
Lublin, 27 XI 2015 r. Nadprzewodnictwo. możliwość realizowania ujemnego oporu. Tadeusz Domański Instytut Fizyki UMCS
Lublin, 27 XI 2015 r. Nadprzewodnictwo możliwość realizowania ujemnego oporu Tadeusz Domański Instytut Fizyki UMCS Lublin, 27 XI 2015 r. Nadprzewodnictwo możliwość realizowania ujemnego oporu Tadeusz Domański
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Rafał Kurleto 4.3.216 ZFCS IF UJ Rafał Kurleto Sympozjum doktoranckie 4.3.216 1 / 15 Współpraca dr hab. P. Starowicz
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Lublin, 7 VI ultrazimnych atomów. T. Domański. Instytut Fizyki UMCS.
Lublin, 7 VI 2006 Nadciekłość w układach ultrazimnych atomów T. Domański Instytut Fizyki UMCS http://kft.umcs.lublin.pl/doman/lectures Tematem tego Sympozjum sa różne zjawiska fizyczne, które maja miejsce
Nadpłynność i nadprzewodnictwo
Nadpłynność i nadprzewodnictwo Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski 13 marzec 2019 www.fuw.edu.pl/ byczuk Tarcie, opór, dysypacja... pomaga... przeszkadza...
Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy
Nadprzewodniki Nadprzewodnictwo Nadprzewodnictwo stan materiału polegający na zerowej rezystancji, jest osiągany w niektórych materiałach w niskiej temperaturze. Nadprzewodnictwo zostało wykryte w 1911
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Kondensat Bosego-Einsteina okiem teoretyka
Kondensat Bosego-Einsteina okiem teoretyka Krzysztof Sacha Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński Plan: Kondensacja Bosego-Einsteina. Teoretyczny opis kondensatu. Przyk lady.
S. Baran - Podstawy fizyki materii skondensowanej Nadprzewodnictwo. Nadprzewodnictwo
Nadprzewodnictwo Definicja, odkrycie nadprzewodnictwo spadek oporu elektrycznego do zera poniżej charakterystycznej temperatury zwanej temperaturą krytyczną. Po raz pierwszy zaobserwował nadprzewodnictwo
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
STRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Pierwiastki nadprzewodzące
Pierwiastki nadprzewodzące http://www.magnet.fsu.edu/education/tutorials/magnetacademy/superconductivity101/fullarticle.html Materiały nadprzewodzące Rodzaj Materiał c (K) Uwagi Związki międzymetaliczne
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Kondensaty Bosego-Einsteina
Ostrów Wielkopolski, 14 X 2009 r. Kondensaty Bosego-Einsteina / przegla d współczesnych realizacji / Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej http://kft.umcs.lublin.pl/doman/lectures Ostrów Wielkopolski,
Kondensacja Bosego-Einsteina
Kondensacja Bosego-Einsteina W opisie kwantowo-mechanicznym stan konkretnego uk ladu fizycznego jest określony poprzez funkcje falowa ψ r, r 2,...), gdzie r i oznaczaja po lożenia poszczególnych cza stek.
S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych
Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość
Struktura elektronowa
Struktura elektronowa Struktura elektronowa atomów układ okresowy pierwiastków: 1) elektrony w atomie zajmują poziomy energetyczne od dołu, inaczej niż te gołębie (w Australii, ale tam i tak chodzi się
Teoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
Nadprzewodnictwo niekonwencjonalne: nowe ciecze kwantowe
Nadprzewodnictwo niekonwencjonalne: nowe ciecze kwantowe Józef Spałek Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, 30-348 Kraków Plan: 1. Dlaczego nadprzewodnictwo niekonwencjonalne?
Nanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Frustracja i współzawodnictwo oddziaływań magnetycznych w związkach międzymetalicznych ziem rzadkich. Ł. Gondek
Frustracja i współzawodnictwo oddziaływań magnetycznych w związkach międzymetalicznych ziem rzadkich Ł. Gondek Plan wystąpienia Cel badań Metodologia badań Badane materiały Wybrane wyniki Wnioski ogólne
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *
Przyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Nadprzewodniki wysokotemperatu rowe. I nie tylko.
Nadprzewodniki wysokotemperatu rowe. I nie tylko. Odkrycie nadprzewodnictwa: H. Kamerlingh Onnes (1911) Table from Burns Pierwiastki Li: pierwiastek o najwyższej T c K. Shimizu et al., Nature 419, 597
POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA ENERGETYKI I APARATURY PRZEMYSŁOWEJ NADPRZEWODNICTWO I EFEKT MEISSNERA Katarzyna Mazur Inżynieria Mechaniczno-Medyczna Sem. 9 1. Przypomnienie istotnych
Wybrane zastosowania nadprzewodników wysokotemperaturowych
Wybrane zastosowania nadprzewodników wysokotemperaturowych Ryszard Pałka Department of Electrical Engineering West Pomeranian University of Technology Szczecin KETiI Zakres prezentacji 1. Wprowadzenie
Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć?
Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć? 1 Główne nadprzewodniki Compound wysokotemperaturowe:t c T b liquid nitrogen Hg-1223 Tl-2223 Tl-1223 Bi-2223
I Podstawy: układy wielocząstkowe jako gazy kwantowe Gaz idealny fermionów: podstawowe charakterystyki i ograniczenia... 28
Słowo wstępne............................................... Podziękowania............................................... XIII XVI I Podstawy: układy wielocząstkowe jako gazy kwantowe 1 1. Przedmiot rozważań
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy
na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0
Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie Anna Rutkowska IMM sem. 2 mgr Gdańsk, 2012 Spis treści: 1. Nadprzewodnictwo...3 2. Efekt Meissnera...5 2.1 Lewitacja...5 3. Zastosowanie...6 3.1
+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna
Struktura cia³a sta³ego struktura krystaliczna struktura amorficzna odleg³oœci miêdzy atomami maj¹ tê sam¹ wartoœæ; dany atom ma wszêdzie takie samo otoczenie najbli szych s¹siadów odleg³oœci miêdzy atomami
Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK
Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny
Odolanów, 4 VII ultrazimnych atomów. T. Domański. Instytut Fizyki UMCS.
Odolanów, 4 VII 2006 Nadciekłość w układach ultrazimnych atomów T. Domański Instytut Fizyki UMCS http://kft.umcs.lublin.pl/doman/lectures Plan wykładu: Plan wykładu: Kondensacja Bosego-Einsteina Plan wykładu:
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Kraków, dn. 25 sierpnia 2017 r. dr hab. Przemysław Piekarz Instytut Fizyki Jądrowej Polskiej Akademii Nauk ul. Radzikowskiego Kraków
Kraków, dn. 25 sierpnia 2017 r. Instytut Fizyki Jądrowej Polskiej Akademii Nauk ul. Radzikowskiego 152 31-342 Kraków Recenzja pracy doktorskiej mgr Krzysztofa Bieniasza pt. "Spin and Orbital Polarons in
Konwersatorium 1. Zagadnienia na konwersatorium
Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują
Topologiczny diagram fazowy półprzewodników IV-VI
Topologiczny diagram fazowy półprzewodników IV-VI Tomasz Story (IF PAN) Półprzewodniki IV-VI jako materiały topologiczne Koncepcje teoretyczne stanów topologicznch w materiałach IV-VI i ich weryfikacja
UKŁAD OKRESOWY PIERWIASTKÓW
UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII
2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Nanofizyka co wiemy, a czego jeszcze szukamy?
Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 13 8 stycznia 2018 A.F.Żarnecki Podstawy
TERMODYNAMIKA MODELU FALICOVA KIMBALLA SYMULACJE MONTE CARLO
TERMODYNAMIKA MODELU FALICOVA KIMBALLA SYMULACJE MONTE CARLO Katarzyna Czajka, Maciej M. Maśka Zakład Fizyki Teoretycznej, Instytut Fizyki Uniwersytet Ślaski Kazimierz 2005 PLAN Model Falicova-Kimballa
Półprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu
SPEKTROSKOPIA NMR. No. 0
No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Rzadkie gazy bozonów
Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni
Własności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Nadpłynny gaz, ciecz i ciało stałe
Nadpłynny gaz, ciecz i ciało stałe Nadpłynność Nadpłynność powstaje wskutek kondensacji Bosego - Einsteina bozonów: hel 4 (1938), gazy atomowe (np. Rb, Na, 1995), kryształ helu 4? S. N. Bose A. Einstein
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5. Janusz Typek Instytut Fizyki
Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5 Janusz Typek Instytut Fizyki Plan prezentacji Jakie materiały badałem? (Krótka prezentacja badanych materiałów)
Protokół. Uchwała komisji w sprawie nadania dr. Tomaszowi Zaleskiemu stopnia doktora habilitowanego
Protokół z posiedzenia komisji habilitacyjnej powołanej przez Centralną Komisję do Sprawy Stopni i Tytułów dnia 6 września 2012 r., w celu przeprowadzenia postępowania habilitacyjnego dr. Tomasza Zaleskiego,
Wykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Absorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Henryk Szymczak Instytut Fizyki PAN
NNnnNowe kwazicząstki w magnetykach Henryk Szymczak Instytut Fizyki PAN Zjazd Fizyków 2015 1 Enrico Fermi: nigdy nie należy lekceważyć przyjemności, jaką każdy z nas odczuwa, słysząc coś, o czym już wie
RYSZARD GONCZAREK MARTA GŁADYSIEWICZ-KUDRAWIEC. Scenariusz van Hove a w nadprzewodnictwie wysokotemperaturowym
RYSZARD GONCZAREK MARTA GŁADYSIEWICZ-KUDRAWIEC Scenariusz van Hove a w nadprzewodnictwie wysokotemperaturowym Spis treści Wstęp... 5 Rozdział 1. Prezentacja problematyki... 9 1.1. Wprowadzenie... 9 1.1.1.
Szum w urzadzeniu półprzewodnikowym przeszkoda czy szansa?
Szum w urzadzeniu półprzewodnikowym przeszkoda czy szansa? szczegółowe zastosowania kwantowego szumu śrutowego J. Tworzydło Instytut Fizyki Teoretycznej Uniwersytet Warszawski Sympozjum Instytutu Fizyki
Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.
Fizyka Fizyka eksperymentalna cząstek cząstek (hadronów w i i leptonów) Eksperymentalne badanie badanie koherencji koherencji kwantowej
ZAKŁAD AD FIZYKI JĄDROWEJ Paweł Moskal, p. 344, p.moskal@fz-juelich.de Współczesna eksperymentalna fizyka fizyka jądrowaj jądrowa poszukiwanie jąder jąder mezonowych Fizyka Fizyka eksperymentalna cząstek
Klasyfikacja przemian fazowych
Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób
Siła magnetyczna działająca na przewodnik
Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach
Nadprzewodnictwo w temperaturze pokojowej. Janusz Typek
Nadprzewodnictwo w temperaturze pokojowej Janusz Typek Plan prezentacji Room-temperature superconductivity (RTSC) Zasady nadprzewodnictwa Podział znanych nadprzewodników Pre-historia RTSC Doniesienia o
CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)
CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka
CZ STECZKA. Do opisu wi za chemicznych stosuje si najcz ciej jedn z dwóch metod (teorii): metoda wi za walencyjnych (VB)
CZ STECZKA Stanislao Cannizzaro (1826-1910) cz stki - elementy mikro wiata, termin obejmuj cy zarówno cz stki elementarne, jak i atomy, jony proste i zło one, cz steczki, rodniki, cz stki koloidowe; cz
Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie
Leonard Sosnowski
Admiralty Research Laboratory w Teddington, Anglia (1945-1947). Leonard Sosnowski J. Starkiewicz, L. Sosnowski, O. Simpson, Nature 158, 28 (1946). L. Sosnowski, J. Starkiewicz, O. Simpson, Nature 159,
LHC i po co nam On. Piotr Traczyk CERN
LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC
) (*#)$+$$ poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00
poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00 8 wykładów, 3 wiczenia: w, w, w, w, c, w, w, c, w, w, c(kolo) kolokwium na ostatnich cw. historia zerowy opór efekt Meissnera temperatura, pole
Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna
Elementy Fizyki Jądrowej Wykład 3 Promieniotwórczość naturalna laboratorium Curie troje noblistów 1903 PC, MSC 1911 MSC 1935 FJ, IJC Przemiany jądrowe He X X 4 2 4 2 A Z A Z e _ 1 e X X A Z A Z e 1 e
III.4 Gaz Fermiego. Struktura pasmowa ciał stałych
III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE
S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych
Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w
Nadsubtelne pola magnetyczne 57 Fe w kwazibinarnych fazach Lavesa Sc(Fe Ni 1 x x ) 2 zsyntetyzowanych pod wysokim ciśnieniem
OGÓLNOPOLSKIE SEMINARIUM SPEKTROSKOPII MÖSSBAUEROWSKIEJ Koninki, 8 11 czerwca 28 Nadsubtelne pola magnetyczne 57 Fe w kwazibinarnych fazach Lavesa Sc(Fe Ni 1 x x ) 2 zsyntetyzowanych pod wysokim ciśnieniem
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,